

Boundary Condition Sensitivity Analysis

A summary of the discussions on this topic will be presented by Dr. Namsoo Suk.

Relative Impact of the Four Boundaries: Delaware Trenton, Schuylkill, C&D, and the Mouth of the Bay

- Objectives: To understand the relative temporal and spatial impacts of the four major boundaries on water quality in the main channel.
- Simulation Period: 8/1/01 to 11/29/02 (486 days)
- Four Boundaries, mouth of the Bay, C&D Canal, Schuylkill River, and Delaware Trenton, were considered.
- No loadings were assigned other than 100 mg/l of conservative chemical at four boundaries at a time (4 simulations) plus all four boundaries (1 simulation)
- Considered water column only.
- Initial concentrations for the chemical were set to zero.
- Conservative simulation setup: no decay, no diffusion, no volatilization and no resuspension or settling

3/21/2003

3/21/2003

3/21/2003

Spatial Plot: Relative Impact of the Boundary Conditions: During the simulation period of 10/30/01 through 11/29/02: Median Values:

BC. = 100mg/l for Mouth of the Bay, C&D, Schuylkill, and/or Trenton

Boundary Condition Sensitivity Analysis

- A summary of the discussions on this topic will be presented by Dr. Namsoo Suk.
 Conclusions:
 - ➤ The downstream boundary appears to have a significant influence in the lower 1/3 of the estuary.
 - ➤ The Delaware River at Trenton appears to have a significant influence in the upper 2/3 of the estuary.

Boundary Condition Sensitivity Analysis

Conclusions:

- The influences of the C&D Canal and Schuylkill River are smaller and centered on the locations where they enter the Delaware Estuary.
- The influence of wastewater discharges and minor tributaries is greatest in the central portion of the estuary.

Available data for Decadal Scale Consistency Check

Dr. Steven Eisenreich will present the results of chemical analyses of the sediment core collected in the Woodbury Creek marsh.

SEDIMENTOLOGICAL AND GEOPHYSICAL SURVEY OF THE UPPER DELAWARE ESTUARY

Sommerfield and Madsen, 2003

Core PC-15

Lake Michigan

Focusing Factor ~ 1.9

	Cs-137	Cs-137	Cs-137	Cs-137	Pb-210	xsPb-210
	penetration	maximum	sed, rate	inventory	sed. rate	inventory
Site	(cm)	(cm)	(cm/yr)	(dpm/cm ²)	(cm/yr)	(dpm/cm ²)
C-1	nd ^b	NM	-	-	-	-
C-2	nd	NM	-	-	-	-
C-4	nd	NM	-	-	-	-
C-7	nd	NM	-	-	-	-
C-14b	55	NM	>1.0	3.0	-	-
C-15b	68	NM	-	-	-	-
C-16A	55	43	≥ 1.0	3.5	-	-
MHE	54	NM	≥ 1.0	2.0	-	-
PC-4	19	51	>1.0	4.4	2.0	60
PC-7	37	NM	0.8	2,4	-	27
PC-13	40	29	1.0	4.0°	0.8	28
PC-14	32	NM	0.7	11.5	0.7	52
PC-15	70	61	1.5	22.0	0.7	78
PC-16	14	NM	0.3	12.0	=	33

Table 5. Sediment accumulation rates and radioisotope inventories

^anm, no Cs-137 maximum in core; ^bnd, non-detectable; ^cincomplete inventory (see text)

Sommerfield and Madsen, 2003

PCB Homolog profiles

SEDIMENTOLOGICAL AND GEOPHYSICAL SURVEY OF THE UPPER DELAWARE ESTUARY

Figure 1. Location map of the study area showing geographic features and DRBC zones.

Sommerfeld and Madson, 2003

105% of 1954-1980 atmospheric supply of 21 dpm/cm² Focusing Factor is~1*

Cruise	Sample	Interval	Water	Porosity	7
	ID	(cm)	Content (%)	(%)	
MAKSH	PC15	0-2	60,2	79,9	
MARSH	PC15	4-6	61.8	80.9	
MARSH	PC15	8-10	59,4	79.3	
MARSH	PC15	12-14	62.1	81.2	
MARSH	PC15	16-18	62,9	81.6	
MARSH	PC15	18-20	64,9	82.9	
MARSH	PC15	22-24	60,3	79.9	
MARSH	PC15	26-28	56,2	77.1	
MARSH	PC15	30-32	60,8	80.3	
MARSH	PC15	34-36	59,3	79.2	
MARSH	PC15	38-40	62,8	81.6	
MARSH	PC15	42-44	57.4	78.0	
MARSH	PC15	44-46	58,0	78.4	
MARSH	PC15	46-48	58,6	78.8	
MARSH	PC15	48-50	61.3	80.6	
MARSH	PC15	52-54	61,3	80.6	
MARSH	PC15	54-56	59.5	79.4	
MARSH	PC15	56-58	59,8	79.6	
MARSH	PC15	58-60	57.2	77.8	
MARSH	PC15	60-62	56,7	77.5	
MARSH	PC15	62-64	49 2	71.8	Sommerfield and Madsen 2003
MARSH	PC15	84-80	38,8	62,5	Sommernera and Madsen, 2003
MAKSH	PC15	90-92	39,2	62.9	
MARSH	PC15	68-70	46.2	69.3	
MARSH	PC15	70-72	61.7	80.9	
MARSH	PC15	74-76	55,4	76.5	
MARSH	PC15	80-82	50.4	72.7	

A summary of the discussions on this topic will be presented by Mr. John Yagecic.

Estimated Particulate Carbon Loads to the Delaware Estuary

Delaware River Basin Commission March 21, 2003

Estimated Particulate Carbon Loads to the Delaware Estuary

Estimated loads of particulate detrital carbon (PDC) and biotic carbon (BIC)
Daily loads (kg) for the first portion of the continuous simulation period (September 1, 2001 through December 31, 2002)

External Sources of Particulate Carbon Considered

Sources of PDC

- Boundaries
- Tributaries
- Point Discharges
- CSOs
- Marshes
- Atmospheric Deposition
- Non-point sources

Sources of BIC

- Boundaries
- Tributaries
- Internal Production

Estimated Total PDC Load to the Delaware Estuary by Category During the Continuous Simulation Period (September 1, 2001 through December 31, 2002)

Estimated Total PDC Load to the Delaware Estuary by Category for each Zone During the Continuous Simulation Period (September 1, 2001 through December 31, 2002)

Estimated Total BIC Load to the Delaware Estuary by Category During the Continuous Simulation Period (September 1, 2001 through December 31, 2002)

Estimated Total BIC Load to the Delaware Estuary by Zone During the Continuous Simulation Period (September 1, 2001 through December 31, 2002)

Estimated Penta PCB Loads to the Delaware Estuary

Delaware River Basin Commission March 21, 2003

Penta PCB sources considered

- Boundaries
- Tributaries
- Point Discharges
 - WWTP
 - industrial wastewater
 - industrial stormwater
 - non-contact cooling water
- CSOs
- Atmospheric deposition
- Non-point sources
- Contaminated Sites

Estimated Total Penta PCB Load by Source Category to the Delaware Estuary During the Simulation Period (September 1, 2001 through December 31, 2002) *Excluding Contaminated Sites and Non-Contact Cooling Water*

Source Category

Estimated Total Penta PCB Load to the Delaware Estuary by Category for each Zone During the Simulation Period (September 1, 2001 through December 31, 2002) Excluding Contaminated Sites and Non-Contact Cooling Water

Contaminated Sites

Federal Sites (NPL, Superfund)
Not yet available
State Sites (DE, PA, NJ)
Delaware submitted a draft upper bound estimate
PA and NJ not yet available

Penta PCB Loads with Upper Bound Estimates for Contaminated Sites and Non-Contact Cooling Water

Source Category

A summary of the discussions on this topic will be presented by Mr. John Yagecic.

□ Recommendations/Conclusions:

- ➤ The marshes provide ~70% of the loadings of particulate detrital carbon to the estuary.
- Most of the loadings of PDC from the marshes enters the lower portion of the estuary in Zone 6.
- While further evaluation of the loading estimates should continue, organic carbon loads are sufficiently characterized.

□ Recommendations/Conclusions:

- Significant sources of penta PCBs include tidewater non-point sources, point source discharges and the two major tributaries.
- Current loading estimates for contaminated sites and non-contact cooling water discharges suggest that these categories are also significant.
- Each of the source categories for PCBs should be characterized as accurately as possible and include estimates of uncertainty.

Recommendations/Conclusions:

- Contaminated site loads are potentially important. Complete estimates for USEPA, NJ, and PA are needed.
- Estimates for non-contact cooling water sources were not based upon reanalyzed data with lower detection limits. Should this source category prove to be significant, additional data collection should be conducted in Stage 2 to refine the net loading of PCB homologs.