

Progress Report: Genetic Considerations for Wildland Forb and Shrub Restoration Plantings

E. Durant McArthur

Native Plant Selection & Increase

USDA-FS-RMRS-Shrub Sciences Laboratory

Are native or restored populations more variable?

Taxon	Populations Polymorphic loci		Alleles/locus			
	Ν	R	Ν	R	Ν	R
Artemisia	3	2	43%	28%	1.53	1.43
Atriplex	9	3	55%	63%	1.59	1.57
Ericameria	6	2	56%	62%	1.63	1.63
Krascheninnikovia	2	1	44%	53%	1.53	1.67
Purshia	4	3	33%	40%	1.57	1.60

N = Native

No consistent pattern.

R = Restored

Genetics of Restored Populations of Intermountain Shrubs

Results for complete sets:

Usually seed source was "genetically appropriate" = similar to natives near restoration site

and the restored population was similar, too.

Principal Components Analysis of Genetic Distances Based on Isozymes of *Atriplex canescens* and *A. tridentata*

Genetics of Restored Populations of Intermountain Shrubs

Sometimes results were unexpected.

Did seeded population fail?

Was the area reseeded naturally from nearby populations? Was the area reseeded from a soil seed bank? Most likely explanation.

Why the seeded population is so different, when the parents are similar, is unknown but it appears that that a mistake was made in the identity of the seeded population.

Both Carr Fork 2 and Maple Canyon are seriously lacking in genetic variation. Inappropriate transfer? More analysis is needed.

Do Ecoregions Explain Genetic Results?

Taxon	Set	Location	Ecoregion		MLRA	
"Genetically appropriate	•"		from	to	from	to
Artemisia tridentata	В	Carr Fork	19f	13c	GSL	GSL
Atriplex canescens	А	Twist Hollow	14a	14a	GSL	SNBR
Atriplex canescens	С	Ephraim	19d	19g	GSL	GSL
Ericameria nauseosa	В	Black Hills	19f	19g	GSL	GSL
Krascheninnikovia lanata	А	Ephraim	19d	19d	GSL	GSL
"Genetically appropriate	e," bu	t outcome quest	ionable	!		
Purshia tridentata	А	Wallsburg Burn	19g	19g	GSL	GSL

Genetically inappropriate

Ericameria nauseosa A Box Springs 19f 19f GSL CP

Species	Populations	Isozymes	AFLPs	cpDNA	Form	Family
Astragalus utahensis	5	5	4	5	forb	Fabaceae
Balsamorhiza sagittata	4	4	*	0	forb	Asteraceae
Crepis acuminata	5	5	2	5	forb	Asteraceae
Crepis occidentalis	1	1	1	1	forb	Asteraceae
Erigeron pumilus	8	7	5	7**	forb	Asteraceae
Eriogonum umbellatum	7	4	4	7	forb	Polygonaceae
Eriogonum heracleoides	1	1	1	1	forb	Polygonaceae
Eriogonum ovalifolium	2	2	1	2	forb	Polygonaceae
Heliomeris multiflora	6	6	2	0	forb	Asteraceae
Lathyrus brachycalyx	2	2	2	2	forb	Fabaceae
Lomatium dissectum	3	3	*	*	forb	Apiaceae
Lomatium grayii	2	2	*	*	forb	Apiaceae
Lupinus argenteus/sericeus	8	8	4	8	forb	Fabaceae
Penstemon acuminatus	1	1	*	*	forb	Scrophulariaceae
Penstemon deustus	2	0	*	*	forb	Scrophulariaceae
Penstemon speciosus	2	2	*	*	forb	Scrophulariaceae
Phlox longifolia	3	3	*	*	forb	Polemoniaceae
Tragopogon dubius	3	3	*	*	forb	Asteraceae
Vicia americana	6	6	6	6	forb	Fabaceae

Dystyly

Long-styled 'Appar" *Linum perenne*

Short-styled 'Appar" *Linum perenne*

Long-styled Native Linum lewisii

> Perennial Blue Flax Flowers

Phenogram of Perennial Blue Flax Populations Based on Bulked RAPD Samples

Flax Seed

Character	n	North American accessions	n	European accessions	n	'Appar' accessions	Attained significance
Seed length (mm)	9	4.0 a	9	3.5 b	3	3.3 b	0.010
Seed width (mm)	9	2.1 a	9	2.0 a	3	1.9 a	0.128
Seed width/length ratio	9	0.52 a	9	0.58 b	3	0.57 ab	0.011
Weight of 25 seeds (mg)	9	49 a	9	42 ab	3	34 b	0.047

Means and attained significance values for 4 seed characters from 21 accessions of *Linum*. Significant model effects are in bold. Letters following means denote significant differences among source groups at p = 0.05.

Means and attained significance values for 16 morphological characters from *Linum*.

Character	n	North American accessions	n	European accessions	n	'Appar' accessions	Attained significance
Plant height (cm)	81	47.7 a	87	43.5 a	30	39.2 b	< 0.0001
Leaf angle (rank 1-5)	83	3.6 a	87	2.0 b	30	1.6 b	< 0.0001
Leaf length (mm)	81	16.2 a	87	14.4 b	30	12.3 c	< 0.0001
Leaf width (mm)	81	1.6 a	87	1.6 a	30	1.3 b	0.0002
Longest internode length (mm)	81	6.7 a	87	4.7 b	30	5.2 b	< 0.0001
Number nodes per 3 cm	79	8.6 a	87	10.8 b	30	10.2 ab	0.0005
Basal stem color(y,g,r)	82	Green a	87	Green/Red b	30	Red c	0.0052
Stem diameter (mm)	79	1.5 a	87	1.3 b	30	1.1 c	< 0.0001
Number flowering stems	79	11.2 a	87	17.6 b	30	16.7 b	< 0.0001
Number of days to first flowering	77	23.6 a	87	24.1 a	30	23.6 a	0.6041
Flower diameter (mm)	77	29.6 ab	87	31.1 a	30	29.4 b	0.0007
Petal color(b,l,w)	76	Lavender a	87	Blue/Lavender b	30	Blue c	< 0.0001
Pistil length of long-styled (mm)	76	10.9 a	40	8.3 b	16	7.5 b	0.0029
Stamen length of long-styled (mm)	76	7.1 a	40	4.7 b	16	4.5 b	< 0.0001
Pistil length of short-styled (mm)			47	4.9 a	14	4.8 a	0.2531
Stamen length of short-styled (mm)			47	7.4 a	14	7.1 a	0.5054

Sphaeralcea appears to have high levels of genetic diversity in both seeded and native stands.

> Sphaeralcea parvifolia along Colorado River In Utah

Penstemon specious

Penstemons have been used widely In revegetation plantings; penstemons are know to hybridize. Our studies with Palmer's penstemon, however, showed No introgression with sympatic Indigenous penstemons.

Penstemon palmeri

Genetic distance as a function of geographic distance, for Astragalus utahensis.

Principal Components Analysis of Genetic Distances Among Individuals of *Astragalus utahensis*.

Principal Components Analysis Based on Genetic Distances Among 87 Individuals of 7 *Eriogonum umbellatum* Populations, Generated Using Eight Loci

Significant allele frequency variation was observed among populations ($\theta = 0.184, 95\%$ C.I. 0.125 to 0.251), but no evidence of isolation by distance was observed among all populations (R2 = 0.003, P = 0.56), indicating that differentiation is likely due to restricted gene flow even at small scales. Population assignment tests indicate a single population, EDM 3111, to be distinct from the other collections.

Populations were significantly differentiated (θ = 0.205, 95% C.I. 0.128 to 0.301), indicating that 20% of the observed variation is partitioned among populations. Pairwise measures of differentiation indicated most pairs of populations to be significantly differentiated, but no evidence was found for isolation by distance, indicating neighboring populations are no more likely to be genetically similar than geographically separated pairs. Bayesian clustering analyses indicate 7 genetic groups to be present in the combined data set, and individual assignment tests indicate these groups do not follow a geographic pattern.

Acknowledgements

Thanks to the Great Basin Native Plant Increase and Selection Project—principals BLM and RMRS and partners and the U. S. Forest Service National Fire Plan Native Plant Program for funding.

•RMRS

Stewart Sanderson
Rosemary Pendleton
Susan Meyer
Stan Kitchen
Joann Mudge
Gary Jörgensen
W
Rich Cronn

•Valerie Hipkins

Bugham Young University

•Mikel Stevens •Wayne State University •Carl Freeman •Utah Division of Wildlife Resources

> •Jason Vernon. •Bracken Davis

Contractors •Barb Wilson •Carla Wise

