
Seed and Seeding Technologies for Reestablishing Wyoming Big Sagebrush in Diverse Seed Mixes

Robert D. Cox, Nancy L. Shaw

USDA Forest Service Rocky Mountain Research Station, Boise Idaho

Mike Pellant

USDI Bureau of Land Management, Boise, Idaho

David Pyke

USGS Biological Resources Division, Corvallis, Oregon

Loren St. John

USDA NRCS Aberdeen Plant Materials Center, Aberdeen, Idaho

Dan Ogle

USDA Natural Resources Conservation Service, Boise, Idaho

Steven Perkins

USDA NRCS Great Basin Plant Materials Center, Fallon, Nevada

Jim Truax

Truax Company, New Hope, Minnesota

Also:

Bob Karrfalt, USFS National Seed Laboratory, Dry Branch, Georgia Stuart Hardegree, USDA-ARS NWRC, Boise Idaho

GBNPSIP funded activities: 2007

Seeding Equipment:

- 1. Reestablishing diverse native Wyoming big sagebrush communities: a comparison of seeding equipment.
- 2. Equipment and Strategies to Enhance the Postwildfire Establishment and Persistence of Great Basin Native Plants

Sagebrush Seed:

- 3. Effect of Moisture Content, Storage Temperature, Duration, and Packaging Material on Wyoming Big Sagebrush Seed Viability
- 4. Wyoming Big Sagebrush Hydrothermal Time to Germination

Seeding Equipment and Techniques

- 1. Examine the ability of two drills (Rangeland and Minimum-till) to establish species mixes.
- 2. Compare establishment at multiple seeding rates.
- 3. Compare establishment of weedy species in areas seeded with each drill.

Seed Drills

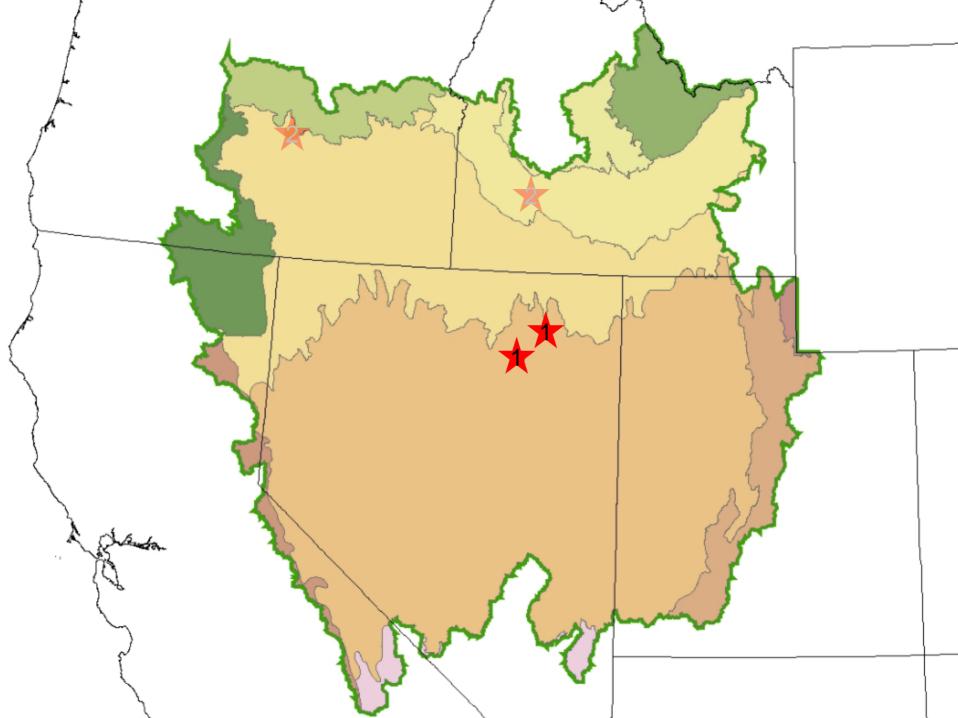
1st Study: Seeded in 2006

Drill	Seeding Rates
	No Seed
Minimum-till	Low
	High
	No Seed
Rangeland	Low
	High
No Drill	No Seed

Min-Till/Control

Min-till/Low

Min-till/High


No Drill/Control

Range/Control

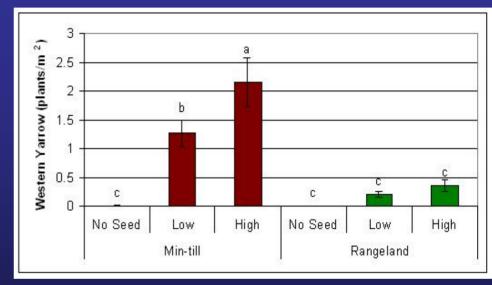
Range/Low

Range/High

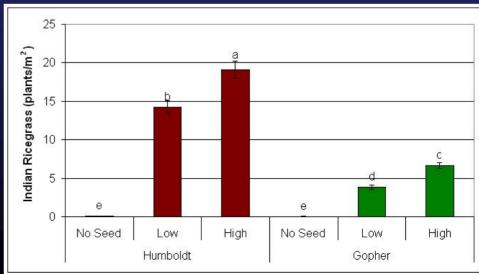
Sites and Seed Mixes

Drill mix

Fourwing saltbush
Blue flax
Munro globemallow
Bluebunch wheatgrass
Bottlebrush squirreltail
Indian ricegrass

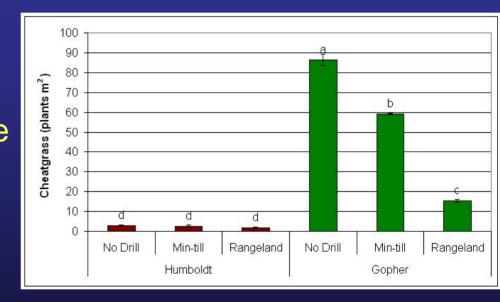

Broadcast

Wyoming big sagebrush Rubber rabbitbrush Western yarrow Sandberg bluegrass



Results: Density of Seeded Species

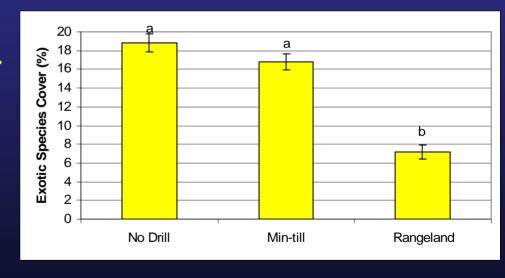
- Broadcast Species:
 - Significantly higher emergence at both low and high seeding rates from minimum-till drill


- Drilled Species:
 - No difference between drill types

Results: Density of Seeded species

Cheatgrass:

Greater density at one site in un-drilled plots and in plots seeded with the minimum-till drill


Results: Cover of Exotic Species

Unseeded plots:

Rangeland drill
 produced lower cover
 of exotic species than
 the minimum-till drill or
 no drill at all

Seeded plots:

 Again, rangeland drill has lower cover of exotic species than minimum-till drill

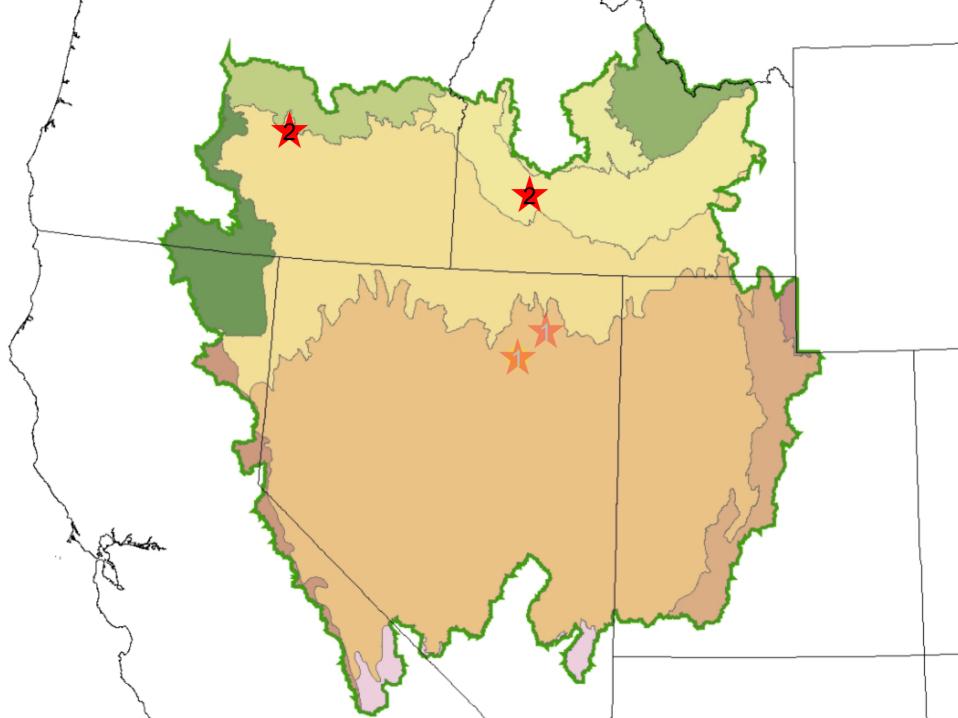
1st Study: Conclusions

- Compared to the rangeland drill, the new, minimum-till drill provided:
 - greater emergence of "broadcast" species
 - Similar emergence of drilled species
 - Greater density of cheatgrass and other non-native species
- Use the Right Tool for the Right Job:
 - When seeding a diverse seed mix including smallseeded species for broadcast, a newer minimum-till drill may provide better emergence at lower seeding rates (= \$\$\$\$ saved)

2nd Study: Seeded in 2007

Seeding Method	Seeding Rate
	No Seed
Minimum-till	Low
	Med
	High
Minimum-till + Broadcast	Medium
Minimum-till + Winter Broadcast	Medium
	No Seed
Devendend	Low
Rangeland	Med
	High
Rangeland + Broadcast	Medium
Rangeland + Winter Broadcast	Medium
No Drill	No Seed

Min-Till/Control
Min-till/Low
Min-till/Med
Min-till/High
Min-till + BC/Med Min-till + winter BC/Med
No Drill/Control
Range/Control
Range/Low
Range/Med
Range/High
Range + BC/Med Range + winter


BC/Med

×5

Min-till/Med

Range/Med

No Drill/Control

Sites and Seed Mixes

Drill mix

Sulfur buckwheat Munro globemallow Bluebunch wheatgrass Bottlebrush squirreltail Indian ricegrass

Broadcast

Wyoming big sagebrush Rubber rabbitbrush Sandberg bluegrass Scabland Penstemon

Drill, drill broadcast, and hand broadcast: Nov 2007

463472

Winter hand broadcast: Jan 2008

Seeds

3rd Study: Seed Storage

- 5 seedlots
- 4 moisture contents
 - 8, 10, 12, 14% M.C.
- 2 storage containers
 - Plastic mesh, 4mil
 plastic sheet
- 3 storage temperatures
 - Ambient, 2°, -12°

4th Study: Hydrothermal time to Germination for ARTRW

5 seedlots

~10 water potentials

~10 Temperatures

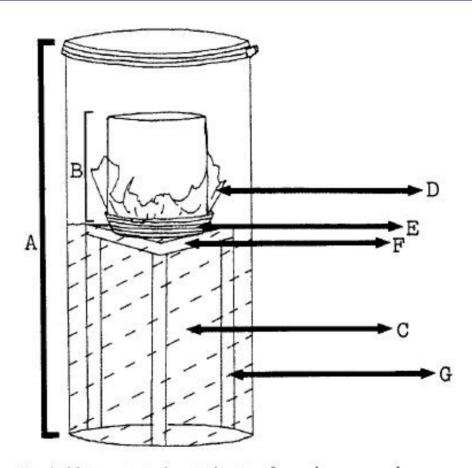


Fig 1 Matric potential control system for seed priming and germination. A, germination vial, B, priming/germination cup, C, osmotic solution; D, cellulose membrane, E, snap-top lid with 25 mm diameter hole, F, plastic screen; G, support rods

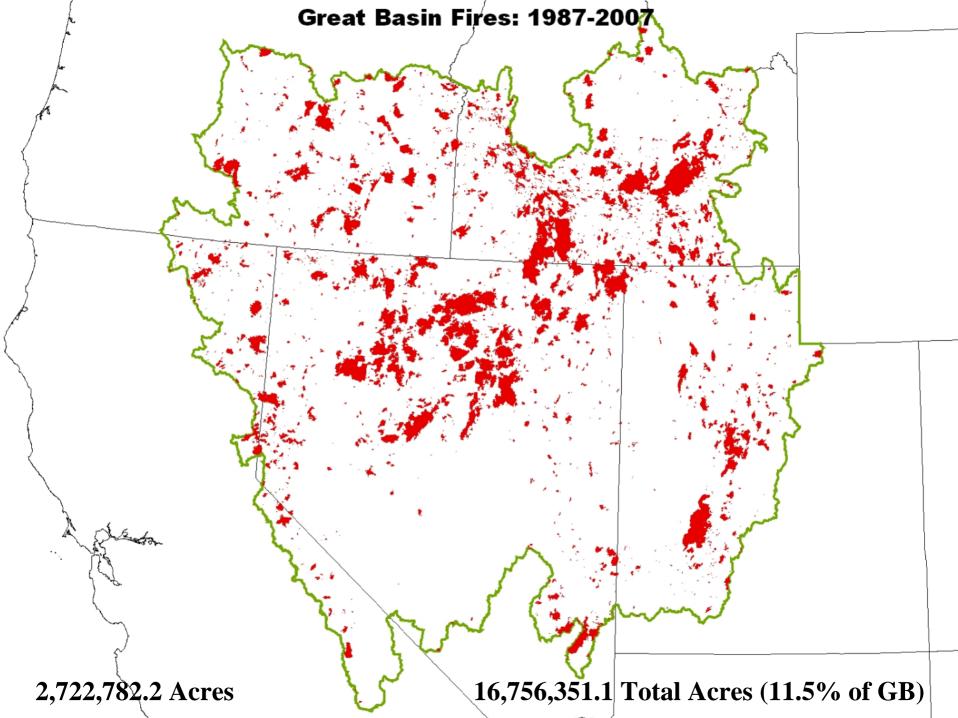
Many Thanks!

Funding:

Site selection:

- Tom Warren, Nevada BLM Elko Field Office
- Dave Rose, BLM Burns Interagency Fire Zone
- Mike Barnum, Idaho BLM Four Rivers FO

- Jan Gurr
- Matt Fisk
- Nick Williams
- Kelsey Sherich
- Scott Jensen


- Hilary Parkinson
- Lance Kosberg
- Erin Denney
- Dallis Gilbert

USDA NRCS
Aberdeen PMC
(Brent Cornforth,
Boyd Simonson
Charlie Bair)

Seeding equipment

