

Urban Design, Lifestyle, and the Development of Chronic Conditions

Roland Sturm, Ph.D. Senior Economist RAND

Today's Presentation

 How have children's lives changed in last 30 years?

- Time use, transportation
- See background papers for media, homework, PE, diet
- 2. Urban design, lifestyles, and chronic conditions
 - What differs across age groups?

Changes in Weekly Minutes Spent on Activities from 1981 to 1997, Age 3-12

Source: calculations based on data from Hofferth and Sandberg (2001)

RAND

If Children Spend More Time Away From Home, How Do They Get There?

Utilitarian Walking Important Source of Physical Activity

- Walking to get somewhere different from exercise
- Small energy imbalance sufficient for obesity epidemic:

-1/2 mile a day additional walking could have prevented it

Utilitarian walking influenced by built environment

- are destinations within walking/biking distance?
- Land use mix, zoning regulations
- School siting

Data Show No Decline in Total Active Travel Time for Children 5-15 (Mins/Day) -But Active Travel Time Is Minimal

But there are issues about data comparability over time **RAND** Source: NPTS 1977, 1990 and NHTS 2001 for children 5-15

A5087-7 01/04

Number of Daily Walking Trips

may have increased, but could be incomparable survey designs

RAND

Source: NPTS 1977, 1990 and NHTS 2001 for children 5-15

Walking to School as Percent of School Trips (Children 5-15)

RAND Source: NPTS 1977, 1990 and NHTS 2001 for children 5-15

Summary: Transportation Trends for Youth

- Definitely a decline in walking to school and opportunity for interventions to increase physical activity
- Unclear whether transportation trends changed youth physical activity in recent years
- Best estimate would show small increase in active travel because of increased number of trips
- However, total amount of active travel is negligible: not even 10 minutes/day for 5-15 years olds
- "Active Living Communities"?

Suburban Sprawl, Physical and Mental Health

Roland Sturm, PhD Deborah A. Cohen, MD

Funded by the National Institute of Environmental Health Sciences, Grant number P50ES012383

Research Question

- Study relation between objective measures of sprawl and medical and mental health problems
- Many strong opinions and wild claims, few facts
- Good evidence for accidents, air pollution, increased driving
- Early evidence suggesting relation to reduced walking, higher BMI
- No analyses of broader set of health measures yet

Individual Level Data

- Healthcare for Communities (HCC), national household phone survey fielded in 1998-2001
- Clustered in 60 sites and national sample, 10,000 observations in wave 1, 12,000 in wave 2
- Suburban sprawl indicators available only for 38 sites, resulting in N = 8686
- Adults only (chronic conditions not particularly relevant for children)

Sprawl Can Be Measured

Dimension	Metrics
Street length	 Average block length Block size in square miles % small blocks
Land use mix	 % population within 1 mile of shopping, schools, business Job/resident balance
Concentration of people and jobs	 Variation of density across census tracts Density gradient % of population less than 3 or more than 10 miles from business center
Population density	 People per square mile % in low or high density areas Average lot size

Cities Ranked by Sprawl

From Least to Most Sprawl

New York	178
San Francisco	147
Portland, OR	126
Los Angeles-Long Beach	102
Rochester, NY	78
Atlanta	58
Riverside-San Bernardino	14

RAND http://www.smartgrowthamerica.com/sprawlindex/sprawlindex.html⁵⁰⁸⁷⁻¹⁶ 01/04

Outcome Measures

- Physical health: 16 chronic health conditions or symptom clusters
- Mental health: validated scales (CIDI-SF) for depressive and anxiety disorders
- Health-related quality of life: validated scales for physical health (PCS-12), for psychological well-being (MHI-5). Higher values indicate better health
- Linear and logit regression with sprawl as main explanatory variable and adjusting for individual and site factors

People Were Asked to Self-Report on A Variety of Chronic Health Problems

Asthma Stroke Diabetes **Hypertension Arthritis Physical disability Trouble breathing** Cancer **Neurological condition**

Angina/heart disease Back pain Abdominal/digestive problems Liver disease **Migraine/headache Urinary tract problems** Other chronic pain

Explanatory Variables and Analysis

- Individual variables measured in HCC: Age, sex, race, educational, household income, marital status, family size, current employment, sex
- MSA variables (not from HCC): Annual rain days, days hotter 90 degrees, days colder 32 degrees, average household size, percentage working age
- Sensitivity analysis: Excluding employment status and income, include MSA size.
- Do not include lifestyle measures, e.g. BMI, which are consequences of sprawl

Sprawl Is Associated with More Health Problems

Number of chronic conditions per 1000 persons

RAND

Source: Sturm and Cohen, Public Health, 2004

Demographic Factors Associated with Increased Likelihood of Chronic Conditions

	Increase in Number of Chronic Conditions per 1000 people
Aging 4 years	100
Reducing household income by half	60
Black race	93
High school degree	319

Source: Sturm and Cohen, Public Health, 2004

Sprawl Has a Substantial Independent Effect

	Increase in Number of Chronic Conditions per 1000
Aging 4 years	100
Reducing household income by half	60
Black race	93
High school degree	319
50-point increase in Urban Sprawl Index	96

Source: Sturm and Cohen, Public Health, 2004

More Results

- 14 of the 16 physical conditions associated with more sprawl
- But no effect at all for mental health
- Subpopulation effects:
 - not very different for minorities (108 vs 93)
 - But substantially higher for lower income individuals (139) and the elderly (247)
- Most significant individual factors: street accessibility, land use mix

Strongest Effects of Streets and Mixed Use Factors for these Conditions

- Arthritis, joint pain
- Trouble breathing
- Abdominal/digestive problems
- Migraine/headaches
- Heart disease

Weak Design -> Tentative Results

- Metropolitan areas may be too large and heterogeneous for interpretation
- Data are from a single point in time; longitudinal data would be useful
- Outcome data are self-reported symptoms and conditions, not objective diagnoses
- But consistent with other studies of urban design and physical activity, BMI
- Physical activity pathway most plausible

Discussion

- Disproportionate impact on the physical health of the elderly and possibly the poor – maybe fewer resources to mitigate the limitations imposed by environment?
- Street, but not overall index, significantly associated with hypertension and heart disease
 - conditions for which a physical activity pathway is most plausible
 - Utilitarian walking?
- In contrast to prominent hypotheses, no effects of adverse effects on mental health.

Sprawl and Health: Conclusion

- Provides initial support to hotly debated claim that suburban sprawl affects health.
- Evidence is tentative, stronger data and research designs needed
- If results are replicated, policies that affect urban design can play a critical role in the prevention of chronic disease
- Costs and effect sizes of redesign not clear

What Differs For Young Children?

- Longitudinal survey of children, currently from K-G5
- More than 1000 schools nationwide, over 20,000 children
- Outcomes:
 - BMI change
 - Parent-reported outside play time
 - (chronic conditions not meaningful for this age group)
- No data on walk to school, utilitarian walking

BMI Increase Over Time

	Boys		Girls			
	Mean	Median	50 th GC	Mean	Median	50 GC
BMI K	16.4	16.0	15.4	16.3	15.8	15.2
BMIG 1	16.8	16.2	15.5	16.7	16.1	15.5
BMIG3	18.5	17.5	16.2	18.5	17.4	16.4

Excess BMI gain at median: 0.7 units for boys, 0.4 for girls

(At median, boys gain about 1.5 BMI units whereas they should only gain 0.8 according to growth charts -> 0.7 too much)

Effects for Young Children Are Different From Effects for Adults

- No significant relationship of sprawl and BMI for young children (higher gain in more sprawling areas)
- More sprawl weakly associated with more parentreported playing outside, but similarly small and statistically insignificant
- Unstructured playing outside important part of physical activity among young children (through elementary school)
 - May be more common in suburban cul-desacs
- However, utilitarian travel increases as children get older, active travel (biking, walking) could peak among adolescents

RAND

Need right mix of safety and connectivity

A5087-30 01/04

Other Factors Important for Differential Weight Gain Among Young Children

- Key role of individual and family factors
- School environment:
 - Physical education for girls at risk for overweight (Datar and Sturm, AJPH, 2004)
- Local food prices:
 - Relative prices for fruits and vegetables can explain large part of excess weight gain (Sturm and Datar, Public Health, in press)
 - But direct pathway from prices to consumption has not been demonstrated

Effect of Local Food Prices on BMI Change Between Kindergarten and 3rd Grade

Summary

- For adults, sprawl associated with higher prevalence of chronic conditions
- Association between sprawl and chronic conditions may reflect underlying physical activity pathway
- Utilitarian physical activity, especially walking, is important and dependent on urban design
- Walking to school unambiguously declined as source of utilitarian physical activity for children
- Less clear that total active travel time decreased
- No clear evidence either way that sprawl affects children's weight gain or outside playing time