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ABSTRACT 
In this seminar we show clean comparisons between EnKF and 4D-Var made in 

Environment Canada, briefly describe the Local Ensemble Transform Kalman Filter (LETKF) 
as a representative prototype of Ensemble Kalman Filter, and give several examples of how 
advanced properties and applications that have been developed and explored for 4D-Var can be 
adapted to the LETKF without requiring an adjoint model. Although the Ensemble Kalman 
Filter is less mature than 4D-Var, its simplicity and its competitive performance with respect to 
4D-Var suggest that it could become the method of choice.  

 
1. Prelude  

The WMO/THORPEX Workshop on Intercomparisons of 4D-Var and EnKF that took place in Buenos 
Aires, Argentina, 10-13 November 2008 was widely attended, with most major operational and research 
centers throughout the world sending several participants.  Presentations are available at 
http://4dvarenkf.cima.fcen.uba.ar/. Mark Buehner et al., 2008, from Environment Canada, presented a very 
clean comparison of their operational 4D-Var and EnKF using the same model resolution for the inner loop 
as in the ensemble, and the same observations (Fig. 1). The results show that the two methods are giving 
comparable results, with a slight edge favorable to EnKF. In the SH, including a background error covariance 
based on the EnKF into the 4D-Var improved the 5-day forecast by about 10 hours (not shown). 

2.  Brief review of the Local Ensemble Transform Kalman Filter algorithm (Hunt et al., 2007) 
This description is written as if all the observations are at the analysis time (i.e., for the 3D-LETKF), but 

the algorithm is the same for the 4D-LETKF (Hunt et al., 2007). In this case the observations are in a time 
interval that includes the analysis time and H is evaluated at the observation time. 

a) LETKF forecast step (done globally) for each ensemble member k:  

   
xn,k

b = Mtn−1 ,tn
xn−1,k

a( ), k = 1,...K
 

b) LETKF analysis step (at time tn, so the subscript n is dropped):  

Xb = x1
b − xb ,...,xK

b − xb⎡⎣ ⎤⎦;

yk
b = H (xk

b ); Yb = y1
b − yb ,..,yK

b − yb⎡⎣ ⎤⎦  
These computations can also be done locally or globally, which is more efficient. Here the overbar represents 
the ensemble average, and M and H are the nonlinear model and observation operators respectively. 
Localization: choose for each grid point the observations to be used, and compute the local analysis error 
covariance and analysis perturbations in ensemble space: 

P̂a = K −1( )I + YbT R−1Yb⎡⎣ ⎤⎦
−1

Wa = [(K −1)P̂a ]1/2
 

The square root required for the matrix of analysis perturbations in ensemble space Wα is computed using the 
symmetric square root (Wang et al. 2004). This square-root has the advantage of having a zero mean and 
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being closer to the identity than the square-root matrix obtained by Cholesky decomposition. As a result the 
analysis perturbations (chosen in different ways in different EnKF schemes) are also closest to the 
background perturbations (Ott et al. 2002). Note that Wα can also be considered a matrix of weights since 
multiplying the forecast ensemble perturbations at each grid point by Wα gives the grid point analysis 
ensemble perturbations. 
Local analysis in ensemble space:  

)(ˆ 1 bobTaa
yyRw −ΥΡ= −

 

Note that wa , in the analysis ensemble space, is a vector of weights, which when multiplied by the matrix 
bX of forecast perturbations gives the grid point analysis increment. 

Wa ← Wa ⊕wa
 

Here the analysis wa is added to each column of Wα to get the analysis ensemble in ensemble space. The 
new ensemble analyses are the K columns of 
Xa = XbWa + xb

 

Global analysis ensemble: 

The analysis ensemble columns for each grid point are gathered together to form the new global analysis 

ensemble xn,k
a

, and the analysis cycle can proceed. 

EnKF mean analysis vs. 4D-Var Bnmc (vs raobs)
NH 120hr SH 120hr 

EnKF mean analysis vs. 4D-Var Bnmc (vs raobs)
NH 120hr SH 120hr 

Fig. 1.  Comparison of bias and standard deviation of 5-day forecasts for February 2007 in the NH and SH 
verified against rawinsondes for zonal and total wind speed, geopotential height, temperature and dew point 
depression. Blue and pink colors on the left and right side of each panel indicate the results are better for 4D-Var 
and for EnKF, respectively, with a level of significance of at least 95%.   From Buehner et al., 2008,  
http://4dvarenkf.cima.fcen.uba.ar/Download/Session_7/Intercomparison_4D-Var_EnKF_Buehner.pdf 
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3.  Adaptation of 4D-Var techniques into EnKF 

4DVar and EnKF are essentially solving the same problem since they minimize the same cost function 
using different computational methods. These differences lead to several advantages and disadvantages for 
each of the two methods (see, for example, Lorenc 2003; Table 7 of Kalnay et al. 2007a; discussion of 
Gustafsson 2007; response of Kalnay et al. 2007b).  

A major difference between 4D-Var and the EnKF is the dimension of the subspace of the analysis 
increments (analysis minus background). 4D-Var corrects the background forecast in a subspace that has the 
dimension of the linear tangent and the adjoint models used in the minimization algorithm, and this subspace 
is generally much larger than the local subspace of corrections in the EnKF determined by the ensemble size 
K-1. It would be impractical to try to overcome this apparent EnKF disadvantage by using a very large 
ensemble size. Fortunately, the localization of the error covariances carried out in the EnKF in order to 
reduce long distance covariance sampling errors, substantially addresses this problem by greatly increasing 
the number of degrees of freedom available to fit the data. As a result, experience so far has been that the 
quality of the EnKF analyses with localization 
increases with the number of ensemble members, 
but that there is little further improvement when 
the size of the ensemble is increased beyond about 
100. The observation that 50-100 ensemble 
members are sufficient for the EnKF seems to hold 
for atmospheric problems ranging from the storm- 
and meso-scales to the global-scales.  

There are a number of additional attractive 
advantages of 4D-Var. They include the ability to 
assimilate observations at their right time 
(Talagrand and Courtier 1987), the fact that within 
the data assimilation window 4D-Var acts as a 
smoother (Thépaut and Courtier 1991), ability to 
use the adjoint model to estimate the impact of 
observations on the analysis (Cardinali et al. 2004) 
and on the forecasts (Langland and Baker 2004), 
the ability to use long assimilation windows (Pires 
et al. 1996), the computation of outer loops 
correcting the background state when computing 
nonlinear observation operators, the ability to use 
a lower resolution simplified model in the inner 
loop (see discussion of Fig. 3 later), and the 
possibility of accounting for model errors by using 
the model as a weak constraint (Trémolet 2007). 
In the rest of this section we discuss how these 
advantages that have been developed for 4D-Var 
systems can also be adapted and used in the 
LETKF, a prototype of EnKF.  

a)  4D-LETKF and no-cost smoother  

As indicated by Figure 2, the same weighted combination of the forecasts with weights given by the 
vector wa is valid at any time of the assimilation interval. This provides a smoothed analysis mean that (like 
in 4D-Var) is more accurate than the original analysis because it uses all the future data available throughout 
the assimilation window (Kalnay et al. 2007b; Yang et al. 2008a). It should be noted that, as in 4D-Var, the 
smoothed analysis at the beginning of the assimilation window is an improvement over the filtered analysis 
computed using only past data. At the end of the assimilation interval only past data is used so that (like in 
4D-Var) the smoother coincides with the analysis obtained with the filter. Similarly we can use the matrix 

4D-LETKF  

tn −1  tntime 

Fig. 2.  Schematic showing that the 4D-LETKF finds 
the linear combination of the ensemble forecasts at 
tn that best fits the observations throughout the 
assimilation window tn−1 − tn . The white circles 
represent the ensemble of analyses (whose mean is the 
analysis xa ), the full lines represent the ensemble 
forecasts, the dashed line represents the linear 
combination of the forecasts whose final state is the 
analysis, and the grey stars represent the asynchronous 
observations. The cross at the initial time of the 
assimilation window tn−1  is a no-cost Kalman 
smoother, i.e., an analysis at tn−1  improved using the 
information of “future” observations within the 
assimilation window by weighting the ensembles at 
tn−1  with the weights obtained at tn . The smoothed 
analysis ensemble at tn−1  (not shown in the schematic) 
can also be obtained at no cost using the same linear 
combination of the ensemble forecasts valid at tn given 
by Wa . (Adapted from Kalnay et al. 2007b). 
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Wα and apply it to the forecast perturbations XbWα to provide an associated uncertainty evolving with time 
(Ross Hoffman, pers. comm., 2008). The updating of the uncertainty is critical for the “Running in Place” 
method described next, but the uncertainty is not updated in the “outer loop” approach.  

b) Application of the no-cost smoother to the acceleration of the spin-up  

4D-Var has been observed to spin up faster than EnKF (e.g. Caya et al. 2005), presumably because of its 
smoothing properties that allow finding the initial conditions at the beginning of the assimilation window that 
will best fit all the observations. The fact that we can compute a no-cost smoother allows the development of 
an efficient algorithm, called  Running  in  place  by  Kalnay  and  Yang  (2008),  that should be useful in 
rapidly evolving situations.   For example, when radar measurements first detect the development of a severe 
storm, then the current EnKF estimate of the atmospheric state and its uncertainty are no longer useful. In 
other words, while formally the EnKF members and their average are still the most likely state and best 
estimate of the uncertainty given all the past data, these EnKF estimates are no longer likely at all. At the 
start of severe storm convection, the dynamics of the system change substantially, and the statistics of the 
processes become non-stationary. In this case, as in the spin-up case in which there are no previous 
observations available, the running in place algorithm ignores the rule “use the data and then discard it” and 
recycles a few times the new observations.  
Running in place algorithm: 

This algorithm is applied to each assimilation 
window during the spin-up phase. The LETKF is 
“cold-started” with any initial ensemble mean and 
perturbations at t0 . The “running in place” loop at 
time tn (initially t0 ) is as follows: 1. Integrate the 
ensemble from tn to tn+1 , perform a standard 
LETKF analysis and obtain the analysis weights for 
the interval [tn,tn+1] , saving the mean square 
observations minus forecast (OMF) computed by 
the LETKF; 2. Apply the no-cost smoother to 
obtain the smoothed analysis ensemble at tn by 
using these weights; 3. Perturb the smoothed 
analysis ensemble with small zero-mean random 
Gaussian perturbations, a method similar to 
additive inflation. Typically the perturbations have 
amplitudes equal to a small percentage of the 
climate variance; 4. Integrate the perturbed 
smoothed ensemble to tn+1 . While the forecast fit 
to the observations continues to improve according 
to a criterion such as 

 
OMF2 (iter) −OMF2 (iter +1)

OMF2 (iter)
> ε ,  

go to step 2 and perform another iteration. If not, 
replace tn with tn+1  and go to step 1. 

Running in place was tested with the LETKF in a quasi-geostrophic, QG, model (Fig. 3, adapted from 
Kalnay and Yang 2008). When starting from a 3D-Var analysis mean, the LETKF converges quickly (not 
shown), but from random initial states it takes 120 cycles (60 days) to reach a point in which the ensemble 
perturbations represent the “errors of the day” (black line in Fig. 3). From then on the ensemble converges 
quickly, in about 60 more cycles (180 cycles total).  

Fig. 3.  Comparison of the spin-up of a quasi-
geostrophic model simulated data assimilation when 
starting from random initial conditions. Observations 
(simulated radiosondes) are available every 12 hours, 
and the analysis RMS errors are computed comparing 
with a nature run. Black line: original LETKF with 40 
ensemble members, and no prior statistical 
information. Blue line: 4D-Var with optimal 
background error covariance. Red line: LETKF 
“running in place” with ε = 5%  and 40 ensemble 
members. Green line: as the red line but with 20 
ensemble members. 
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By contrast, the 4D-Var started from the same initial mean state, but using as background error 
covariance the 3D-Var B scaled down with an optimal factor, converges twice as fast, in about 90 cycles 
(blue line in Fig. 3). The running in place algorithm with ε = 5% (red line) converges about as fast as 4D-Var, 
and it only takes 2-4 iterations per window even though it does not have the benefit of any prior statistical 
information.  

c)  “Outer loop” and dealing with nonlinear ensemble perturbations 

A disadvantage of the EnKF 
is that the Kalman Filter 
equations used in the analysis 
assume that the ensemble 
perturbations are Gaussian, so 
that when windows are relatively 
long and perturbations become 
nonlinear, this assumption breaks 
down and the EnKF is not 
optimal. By contrast, 4D-Var is 
recomputed within an 
assimilation window until the 
initial conditions that minimize 
the cost function for the 
nonlinear model integration in 
that window are found. In many 
operational centres (e.g. the 
National Centers for 
Environmental Prediction, NCEP, 
and the European Centre for 
Medium-range Weather Forecasts, 
ECMWF) the minimization of the 
3D-Var or 4D-Var cost function is 
done with a linear “inner loop” 
that improves the initial 
conditions minimizing a cost function that is quadratic in the perturbations. In the 4D-Var “outer loop” the 
nonlinear model is integrated from the initial state improved by the inner loop, and the linearized 
observational increments are recomputed for the next inner loop (Fig. 4).  

The ability of including an outer loop increases significantly the accuracy of both 3D-Var and 4D-Var 
analyses (Arlindo da Silva, pers. comm., 2006), so that it would be important to develop the ability to carry 
out an equivalent “outer loop” in the LETKF. This can be done by considering the LETKF analysis for a 
window as an “inner loop”, and, using the no-cost smoother, adapting the 4D-Var outer loop algorithm to the 
EnKF. The method was tested with the Lorenz (1963) model with short and long windows as in Kalnay et al. 
2007a. The results (Table 1) suggest that it should be possible to deal with nonlinearities and obtain results 
comparable or better than 4D-Var by methods such as an outer loop and running in place. 

d) Adjoint forecast sensitivity to observations without adjoint model 

Langland and Baker (2004) proposed an adjoint-based procedure to assess the observation impact on 
short-range forecasts without carrying out data-denial experiments. This adjoint-based procedure can 
evaluate the impact of any or all observations assimilated in the data assimilation and forecast system on a 
selected measure of short-range forecast error. In addition, it can be used as a diagnostic tool to monitor the 
quality of observations, showing which observations make the forecast worse, and can also give an estimate 
of the relative importance of observations from different sources. Following a similar procedure, Zhu and 
Gelaro (2008) showed that this adjoint-based method provides accurate assessments of the forecast 
sensitivity with respect to most of the observations assimilated, and detected that the way certain AIRS 

Fig. 4.  Schematic of how the 4D-Var cost function is minimized in the 
ECMWF system. (From Yannick Trémolet, August 2007 class on 
Incremental 4D-Var at University of Maryland summer Workshop on 
Applications of Remotely sensed data to Data Assimilation). 
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RMSE analysis error 4D-Var LETKF 
(inflation factor) 

LETKF with less than 3 
“outer loop” iterations 

Window=8 steps (perturbations 
are approximately linear) 0.31 0.30 

(1.05) 
0.27 

(1.04) 

Window=25 steps (perturbations 
are nonlinear) 0.53 0.66 

(1.28) 
0.48 

(1.08) 

Table 1.  Comparison of 4D-Var and LETKF for the Lorenz (1963) 3-variable model. 4D-Var has been 
simultaneously optimized for the window length (Kalnay et al., 2007a, Pires et al. 1996) and the 
background error covariance, and the full nonlinear model is used in the minimization. LETKF is 
performed with 3 ensemble members (no localization is needed for this problem), and inflation is 
optimized. For the 25 steps case, running in place further reduces the error to a remarkably low value of 
about 0.39. 

humidity channels were used actually made forecasts worse. Unfortunately, this powerful method to estimate 
observation impact requires the adjoint of the forecast model which is complicated to develop and not always 
available. 

Liu and Kalnay (2008) proposed an ensemble-base sensitivity method able to assess the same forecast 
sensitivity to observations as in Langland and Baker (2004), but without using the adjoint model. 

Fig. 5.  Time average (over the last 7000 analysis cycles) of the contribution to the reduction of forecast 
errors from each observation location. Left: the observation at the 11th grid point has 0.8 random errors 
rather than the specified value of 0.2. Right: the observation at the 11th grid point has random errors as 
specified but it has a bias of 0.5 rather than 0.0, as specified. Ensemble sensitivity method: green line with 
closed circles; adjoint method: red line with plus signs. Adapted from Liu and Kalnay (2008). 

Figure 5 shows the result of applying this method to the Lorenz (1996) 40-variables model. In this case 
there were observations at every point every 6 hours created from a “nature” run by adding Gaussian 
observational errors of mean zero and standard deviation 0.2. At the location 11, however, the standard 
deviation of the errors was increased to 0.8, (Fig. 5, left-hand panel) without “telling” the data assimilation 
system about the observation problem in this location. In Fig. 5 (right-hand panel), the standard deviation 
was kept at its correct value, but a bias of 0.5 was added to the observation at the 11th grid point, still 
assuming that the bias was zero in the data assimilation. As shown in the figure, both the adjoint and the 
ensemble-based sensitivity were able to identify that the observations at grid point 11 had a deleterious 
impact on the forecast. They both show that the neighboring points improved the forecasts more than average 
by partially correcting the effects of the 11th point observations. 
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Although the cost function in this example was based on the Eulerian norm, appropriate for a univariate 
problem, the method can be easily extended to an energy norm, allowing the comparison of the impact of 
winds and temperature observations (or any other type of observation such as radiances) on the forecasts. 

e) Use of a lower resolution analysis 

The inner/outer loop used in 4D-Var was introduced in subsection c), where we showed that a similar 
outer loop can be carried out in EnKF. We now point out that it is common practice to compute the inner 
loop minimization, shown schematically in Figure 4, using a simplified model (Lorenc, 2003), which usually 
has lower resolution and simpler physics than the full resolution model used for the nonlinear outer loop 
integration. The low-resolution analysis correction computed in the inner loop is interpolated back to the full 
resolution model (Figure 4). The use of lower resolution in the minimization algorithm of the inner loop 
results in substantial savings in computational cost compared with a full resolution minimization, but it also 
degrades the analysis. 

Yang et al. (2008b) took 
advantage that in the LETKF the 
analysis ensemble members are 
a weighted combination of the 
forecasts, and that the analysis 
weights Wα are much smoother 
(they vary on a much larger 
scale) than the analysis 
increments or the analysis fields 
themselves. They tested the idea 
of interpolating the weights but 
using the full-resolution forecast 
model on the same quasi-
geostrophic model discussed 
before. They performed full 
resolution analyses and 
compared the results with a 
computation of the LETKF 
analysis (i.e., the weight matrix 
Wα) on coarser grids, every 3 by 
3, 5 by 5 and 7 by 7 grid points, 
corresponding to an analysis 
grid coverage of 11%, 4% and 
2% respectively, and with the 
interpolation of the analysis 
increments. They found that 
interpolating the weights did not 
degrade the analysis compared 
with the full resolution, whereas 
interpolating the analysis increments resulted in a serious degradation (Fig. 6). The use of a symmetric 
square root in the LETKF ensures that the interpolated analysis has the same linear conservation properties 
as the full resolution analysis. The results suggest that interpolating the analysis weights computed on a 
coarse grid without degrading the analysis can substantially reduce the computational cost of the LETKF. 
Although the full resolution ensemble forecasts are still required, they are also needed for ensemble 
forecasting in operational centers. We note that the fact that the weights vary on large scales, and that the use 
of a coarser analyses with weight interpolation actually improves slightly the analysis in data sparse regions, 
suggesting that smoothing the weights is a good approach to filling data gaps such as those that appear in 
between satellite orbits. (Yang et al. 2008b, Lars Nerger, pers. comm. 2008). Smoothing the weights, both in 
the horizontal and in the vertical may also reduce sampling errors and increase the accuracy of the analyses. 

Fig. 6.  The time series of the RMS analysis error in terms of the potential 
vorticity from different DA experiments. The LETKF analysis from the 
full-resolution is denoted as the black line and the 3D-Var derived at the 
same resolution is denoted as the grey line. The LETKF analyses derived 
from weight-interpolation with different analysis coverage are indicated 
with blue lines. The LETKF analyses derived after the first 20 days from 
increment-interpolation with different analysis coverage are indicated with 
the red lines. Adapted from Yang et al. (2008b). 
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f) Model error 

Model error can seriously affect the EnKF because, among other reasons, the presence of model biases 
cannot be detected by the EnKF original formulation, and the ensemble spread is the same with or without 
model bias (Li 2007). For this reason, the most widely used method for imperfect models is to increase the 
multiplicative or additive inflation (e.g. Whitaker et al. 2007). Model biases can also be taken into account 
by estimating the bias as in Dee and da Silva (1998) or its simplified approximation (Radakovich et al. 2001). 
More recently, Baek et al. (2007) pointed out that model bias could be estimated accurately augmenting the 
model state with the bias, and allowing the error covariance to eventually correct the bias. Because the bias 
was assumed to be a full resolution field, this required doubling the number of ensemble members in order to 
reach convergence. 

In the standard 4D-Var, the impact 
of model bias cannot be neglected 
within longer windows because the 
model (assumed to be perfect) is used as 
a strong constraint in the minimization 
(e.g. Andersson et al. 2005). Trémolet 
(2007) has developed several techniques 
allowing for the model to be a weak 
constraint in order to estimate and 
correct model errors. Although the 
results are promising, the methodology 
for the weak constraint is complex, and 
still under development. 

Li (2007) compared several 
methods to deal with model bias (Fig. 
7), including a “Low-dimensional” 
method based on an independent 
estimation of the bias from averages of 
6 hour estimated forecast errors started 
from a reanalysis (or any other 
available good quality analysis). This 
method was applied to the SPEEDY 
(Simplified Parameterizations 
primitivE-Equation Dynamics) model 
assimilating simulated observations 
from the NCEP-NCAR (National 
Centers for Environmental Prediction-
National Center for Atmospheric 
Research) Reanalysis, and it was found 
to be able not only to estimate the bias, but also the errors in the diurnal cycle and the model forecast errors 
linearly dependent on the state of the model (Danforth et al. 2007; Danforth and Kalnay 2008). 

The results obtained by Li (2007) accounting for model errors within the LETKF, presented in Figure 7 
indicate that: a) additive inflation is slightly better than multiplicative inflation, b) methods to estimate and 
correct model bias (e.g. Dee and da Silva 1998; Danforth et al. 2007) should be combined with inflation, 
which is more appropriate in correcting random model errors. The combination of the Low-Dimensional 
method with additive inflation gave the best results, and was substantially better than the results obtained 
assuming a perfect model (Fig. 7). We note that the approach of Baek et al. (2007) of correcting model bias 
by augmenting the state vector with the bias can be used to determine other parameters, such as surface 
fluxes, observational bias, nudging coefficients, etc. It is similar to increasing the control vector in the 

Fig. 7.  Comparison of the analysis error averaged over two months 
for the zonal velocity in the SPEEDY model for several simulations 
with the radiosonde observations available every other point. The 
yellow line corresponds to a perfect model simulation with the 
observations extracted from a SPEEDY model “nature run”. The 
red is the control run, in which the observations were extracted 
from the NCEP-NCAR Reanalysis, but the same multiplicative 
inflation was used as in the perfect model case. The blue line and 
the black solid lines correspond to the application of optimized 
multiplicative and additive inflation respectively. The long-dashed 
line was obtained correcting the bias with the Dee and DaSilva 
(1998) method, and combining it additive inflation. The short-
dashed is as the long-dashed but using the Danforth et al. (2007) 
low dimensional method to correct the bias, and the green line is as 
the long-dashed line but using the simplified Dee and DaSilva 
method. Adapted from Li (2007).
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variational approach, and is only limited by the number of degrees of freedom that are added to the control 
vector and sampling errors in the augmented background error covariance. 

4.  Summary and discussion 

4D-Var and the EnKF are the most advanced methods for data assimilation. 4D-Var has been widely 
adopted in operational centres, with excellent results and much accumulated experience. EnKF is less mature, 
and has the disadvantage that the corrections introduced by observations are done in a space of lower 
resolution, since they depend on the ensemble size, although this problem is ameliorated by the use of 
localization. The main advantages of the EnKF are that it provides an estimate of the forecast and analysis 
error covariances, and that it is much simpler to implement than 4D-Var. Recent “clean” comparisons 
between the operational 4D-Var and EnKF systems in Environment Canada, using the same model resolution 
and observations, indicated that the forecasts had essentially identical scores, whereas the 4D-Var using a 
background error covariance based on the EnKF gave a 10-hour improvement in the 5-day forecasts in the 
Southern Hemisphere (Buehner et al. 2008). 

It is frequently stated that the best approach should be a hybrid that combines “the best characteristics” 
of both EnKF and 4D-Var (e.g. Lorenc 2003). Unfortunately this would also bring the main disadvantage of 
4D-Var to the hybrid system, i.e., the need to develop and maintain an adjoint model. This makes the hybrid 
approach attractive to operational centres that already have appropriate linear tangent and adjoint models, but 
not otherwise.  

In this review we have instead focused on the idea that the advantages and new techniques developed 
over the years for 4D-Var, can be adapted and implemented within the EnKF framework, without requiring 
an adjoint model. The LETKF (Hunt et al. 2007) was used as a prototype of the EnKF. It belongs to the 
square root or deterministic class of the EnKF (e.g. Whitaker and Hamill 2002) but simultaneously 
assimilates observations locally in space, and uses the ensemble transform approach of Bishop et al. (2001) 
to obtain the analysis ensemble as a linear combination of the background forecasts. We showed how the 
LETKF could be modified to include some of the most important 4D-Var advantages: a no-cost smoothing 
algorithm, useful not only to use “future” (as in reanalysis) but also to accelerate spin-up and handle 
nonlinear, non-Gaussian ensemble perturbations, and how to implement an “outer loop” within the LETKF. 
Taking advantage that the LETKF calculates the analysis weights valid throughout the data assimilation 
window that linearly combine the forecast perturbations to compute the analysis ensemble, we computed the 
LETKF on coarse grids and interpolated the weights to the full resolution grid. Yang et al. (2008) found that 
the weight interpolation from a coarse resolution grid did not degrade the analysis, suggesting that the 
weights vary on large scales and smoothing them can increase the accuracy of the analysis, and that weight 
interpolation is ideal to fill up analysis data voids. 

One of the most powerful applications of the adjoint model is the ability to estimate the impact of classes 
of observations on the short range forecast (Langland and Baker 2004), and we showed how this “adjoint 
sensitivity” can be computed within the LETKF without an adjoint model (Liu and Kalnay, 2008). Finally, Li 
(2007) compared several methods used to correct model errors and showed that it is advantageous to 
combine methods that correct the bias, such as that of Dee and da Silva (1998) and the low-dimensional 
method of Danforth et al. (2007), with methods like inflation that are more appropriate to account for random 
model errors. This is an alternative to the weak constraint method (Trémolet 2007) to deal with model errors 
in 4D-Var, and involves the addition of a relatively small number of degrees of freedom to the control vector. 
Li et al. (2008) also developed a method to optimally estimate both the inflation coefficient for the 
background error covariance and the actual observation error variances (not shown here). 

In summary, we have emphasized that the EnKF can profit from the methods and improvements that 
have been developed in the wide research and operational experience acquired with 4D-Var. Given that 
operational tests comparing 4D-Var and the LETKF indicate that the performance of these two methods is 
already very close (e.g. Miyoshi and Yamane 2007, Buehner et al. 2008), and that the LETKF and other 
EnKF methods are much simpler to implement, their future looks bright.  
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