A Mental Models Approach To Strategic Risk Communication

Copyright © 2008 Decision Partners LLC.

Strategic Risk Communication

- The essence of strategic risk communication is simple:
 - Create a synergistic collaboration among science, technical, management and communications professionals. Prepare an expert model to integrate expert knowledge.
 - Learn what people already believe about options and why they believe it.
 - Tailor communication to this knowledge and the decisions people face.
 - Subject communication strategies and messages to careful empirical evaluation to ensure effectiveness.
 - Measure communication process and effects outcomes for continuous improvement.
- Key objective: enable decision-makers and stakeholders to make well-informed decisions and take appropriate actions.

Insights from Research

Mental Models Define Judgment

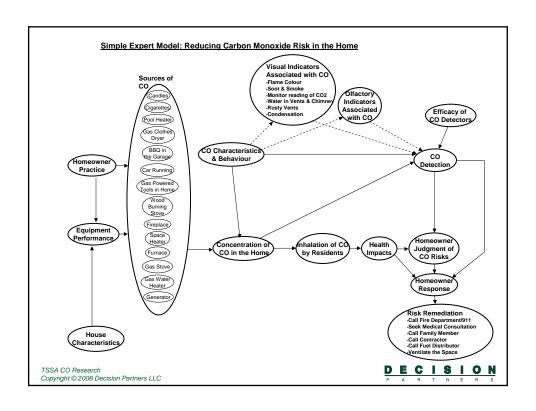
- Mental models:
 - Are webs of belief that guide learning and interpretation and through decision-making, define judgment and shape behavior.
 - Prevent people from seeing alternate perspectives or options.
 - Define the boundaries of thought and action.
- Mental models must be addressed through strategies and communications that:
 - Build on where people are at today in their thinking.
 - Are tailored precisely to the decisions they must make.
- The Bottom Line:
 - Insight into mental models enables organizations to develop strategies and communications tailored to those factors that most influence critical decisions.

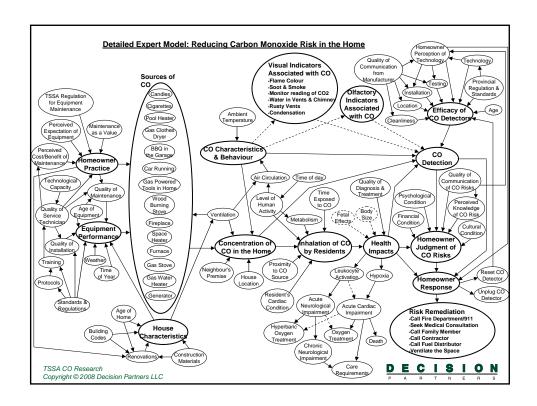
Copyright © 2008 Decision Partners LLC.

CO Case Study

Research Purpose

Purpose:


- To improve TSSA (client) understanding of Ontario homeowners' beliefs and underlying rationale concerning health risks associated with CO in the home, and the decisions homeowners make as a consequence of their mental models.
- Develop a research-based communication strategy to encourage homeowners to take appropriate action to reduce risks associated with CO exposure in the home. Such action will include annual maintenance of fuelburning equipment.
- Approach: Mental Models Method.

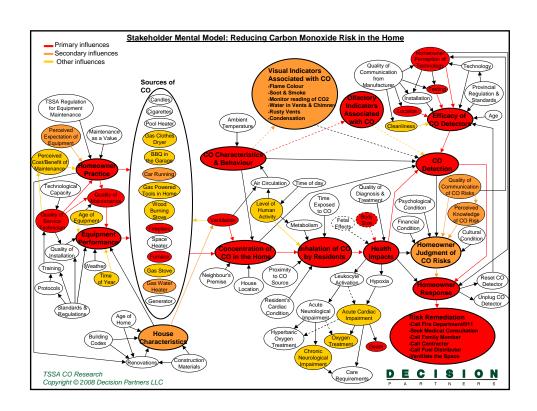


CO Case Study **Expert Model Definition**

- The Expert Model is an influence diagram illustrating an overall system.
- It offers a summary of important technical knowledge about key topics needed to inform decisions about them and illustrates the relationships of varying factors within that system.
- Working with the TSSA CO Team, Decision Partners developed an Expert Model - a picture of the system - of the context in which homeowners make decisions about reducing carbon monoxide risk in the home.

CO Case Study Interview Protocol Topics

- The protocol focused on the following areas:
 - General knowledge about CO, including CO characteristics and behaviour.
 - The specific sources of CO in the home and what causes those sources to produce CO.
 - The means of detection of CO in the home and the homeowner's response to detection.
 - General health impacts from CO exposure.
 - Communication about the risk of CO in the home.



CO Case Study

Sample

- Sarnia: 20 homeowners over 60 years of age.
- Greater Toronto: 20 homeowners over 60 years of age.
- Barrie: 20 homeowners between the ages of 20-40 who had owned their home for 10 years or less.
- The Sarnia and Toronto cohorts are referred to as 'seniors' throughout the report. The Barrie cohort is referred to as 'new homeowners'.
- Of the 60 interviewed, 25 were men and 35 were women.

CO Case Study

Communication Strategy

Communication Goal:

 To improve homeowners' ability (and that of other Communities of Interest) to minimize risks associated with CO exposure through strategic communication designed to enable well-informed risk decision-making on their part.

Focused Strategies:

- Seniors living in original homes.
- New homeowners.
- · Cardiac patients.
- Fuel-burning equipment contractors.
- CO detector manufacturers.

Copyright © 2008 Decision Partners LLC.

Realizing the Value Potential

Decision Partners® provides advanced strategy, research and communications services for understanding and focusing decision-making.

An international team of management professionals and scientists, our methods draw from current understanding in the relevant academic disciplines, including decision science, risk perception, risk communication and marketing science.

Decision Partners® is the world leader in the use of expert modelling and mental models research to generate strategies and communications. For more information about Decision Partners, contact:

Gordon Butte and Sarah Thorne, 1-877-588-9106
gbutte@decisionpartners.com, sthorne@decisionpartners.com

Measuring Mental Models of Construction Management Decision-making

Amlan Mukherjee

Assistant Professor

Civil & Environmental Engineering

Michigan Tech.

Construction Management

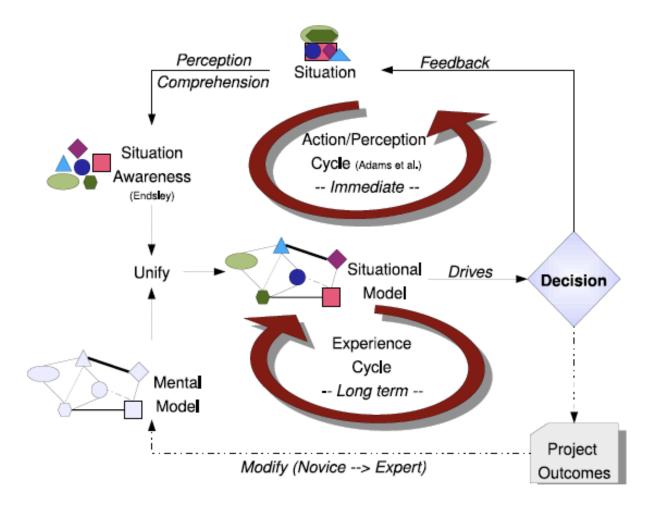
- Dynamic decision-making environment (Sterman 1992):
 - Multiple interacting components (schedule, cost, resource distribution)
 - Interactions are non-linear
 - Multiple feedback loops
- Decision-making
 - Involves unexpected crisis scenarios
 - Goal is to mitigate impacts and meet schedule and budget goals

Problems

- Experienced managers are retiring
 - Void in expertise
 - "Don't know what they know" tacit knowledge
- Construction education and training
 - Focus on resource interactions
 - Limited focus on human-resource interactions and
 - Cognitive aspects of human decision-making

The Cognitive Approach

- Formally Explore Expert-Novice Mental Models
 - How do experts approach problem solving?
 - What involves the shift from novice to expert?
 - Can we formalize tacit expert knowledge?
 - Can we enhance construction education?



Theoretical Underpinning

- Expert-novice Cognition (Bransford et al, Chi et al.)
 - Experts recognize patterns, novices focus on particulars
- Mental Models
 - Dynamic models of individual organization of domain knowledge that driving decisions
 - More useful as qualitative representations
- Situational Awareness (Endsley 2000, Adams et al. 1995, Kirlik & Strauss 2006)
 - What is the role of situational awareness (SA) in effective decision-making?
 - Is SA a product/process?
 - Difficult to measure: based on constructs such as memory and perception

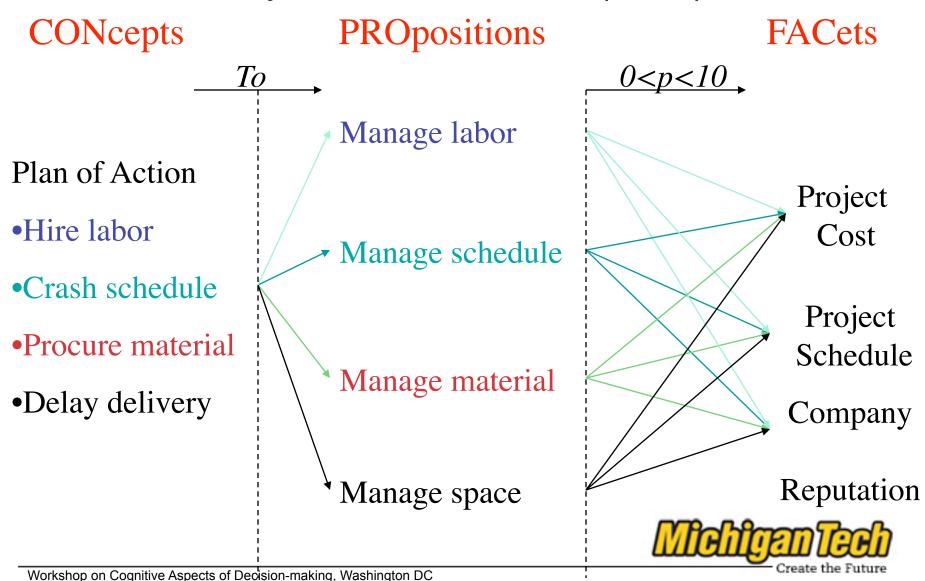
The Situational Model Framework

Formal Methodology

- Use a situational simulation test-bed to collect human decision-making data
- iCDMA First Person CM Strategy Game: goal is to complete project in the face of fast developing scenarios

Formal Methods

- Vary users and projects
- Formal Model
 - $E_{t+1} = update(E_t, D_t)$
 - $-D_t = SM(E_t)$
- Pattern Recognition
 - {Set of Conditions} => {Set of Observations}


$$(\bigwedge_{x \in C} x) \to (\bigwedge_{y \in O} y)$$

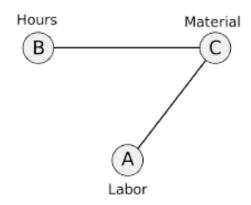
 Stochastic approach: Given a set of conditions, what is the most likely set of observations

$$\forall x, y | x \in C, y \in O : P(y|x) > P(y|\neg x)$$

Analysis: CONPROFAC (Winn)

Quantitative Analysis: Structuredness Index

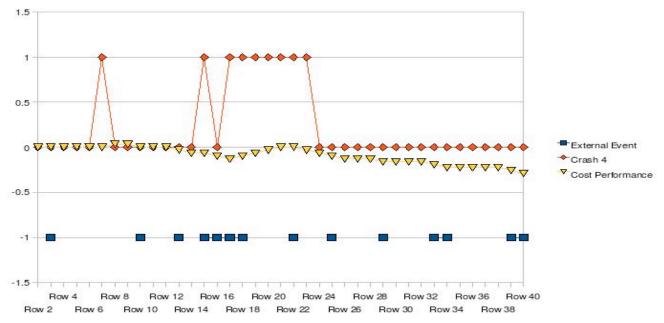
Qualitative
Analysis:
Responses


Plan of Action

- •Hire labor
- •Crash schedule
- •Procure material
- •Delay delivery

Structuredness mack					
Project Cost	5+	5-	• • •	• • •	
Project Schedule	• • •	•••	•••	• • •	
Company Reputation	• • •	•••	•••	• • •	
-	Labor Mgmt	Schedule Mgmt	Material Mgmt	Space Mgmt	

Graphical Models


- Develop Association models
- Assume decision variable interactions to be hierarchical

Temporal Analysis

- Impact of external events: Ability to mitigate
- Time between impact, perception, action, reaction

Related Applications

- Mental models of risk perception and its impact on decision-making
- Individual mental models interacting within social networks and contexts to produce emergent behavior

Adoption of Green Construction Practices: ABM in Professional Networks

- Individual decision-making and emergent network behavior
- •What construction delivery systems are most sustainable?
- •How do individual mental models of decision-making interact within the context of professional networks?
- •Can epidemiological models be used to model the the cognitive aspects of group decision-making?

Implications

- Towards a formal understanding of models of cognition underlying dynamic decision-making (Mukherjee et al. 2005, Watkins & Mukherjee 2008, Watkins et al. 2008)
- Development of adaptive simulation environments that aid human decision-making (Rojas & Mukherjee 2003, 2005a,b, Anderson et al. 2007)
- Furthering construction education
 - Situational simulations in the classroom as effective education interventions (Rojas & Mukherjee 2006)

