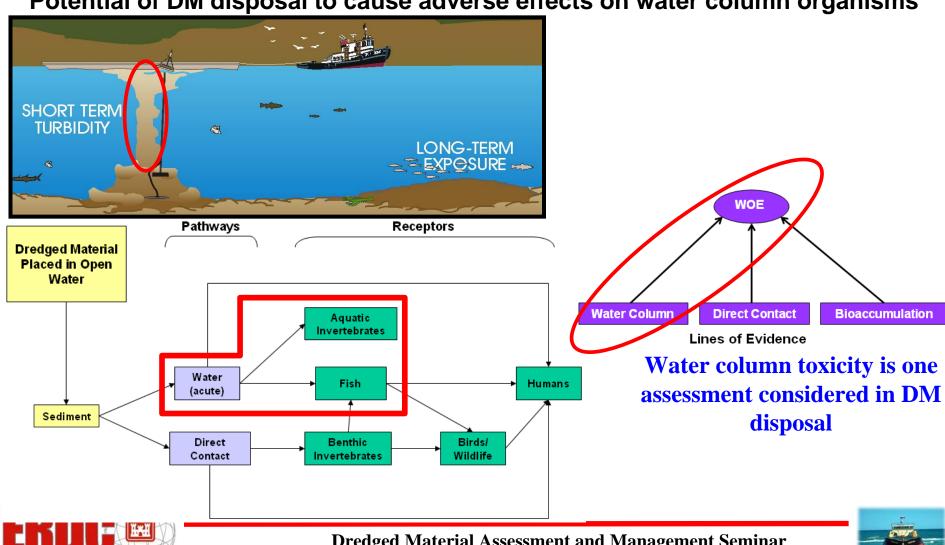
Water Column Evaluation

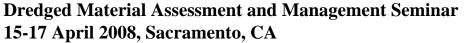
Alan J Kennedy
US Army ERDC, Vicksburg, MS

Email: Alan.J.Kennedy@erdc.usace.army.mil

Water Column Evaluation (Approach)

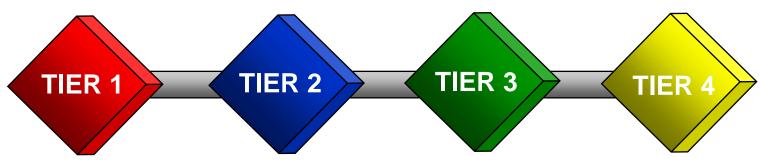
Main objectives


- Assess potential for water column toxicity
 - Open water disposal of dredged material (DM)
- DM suspended in water for short period
 - The concern is with <u>short-term</u> exposure and effects
- Determine if chemical concentrations provide enough information?
 - How do contaminant concentrations relate to applicable standards?
 - Can an informed decision regarding toxicity potential be made?
 - If more information needed, move to bioassay testing

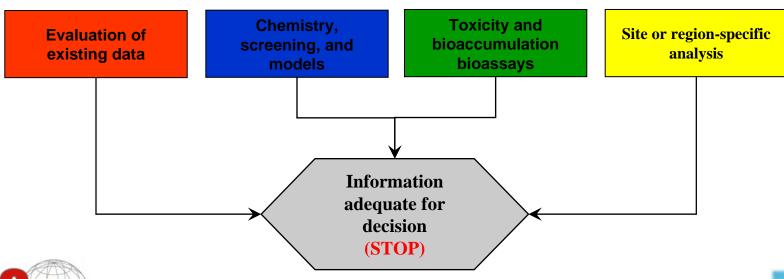


Water Column Evaluation (Conceptual Model)

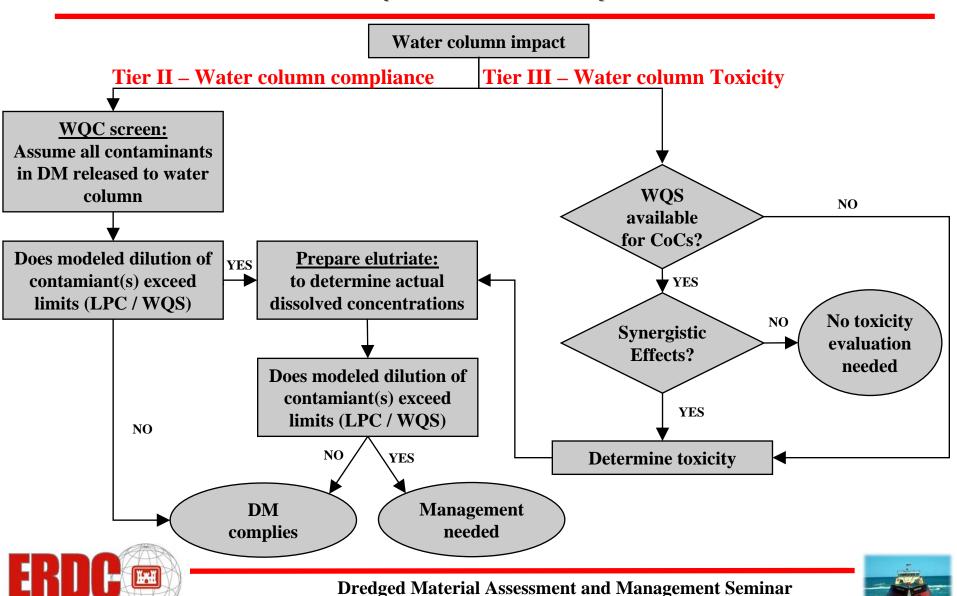
Potential of DM disposal to cause adverse effects on water column organisms

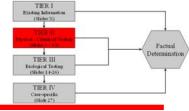


gineer Research and Development Cente.



Water Column Evaluation


Tiered process → follow as far as necessary to make decision

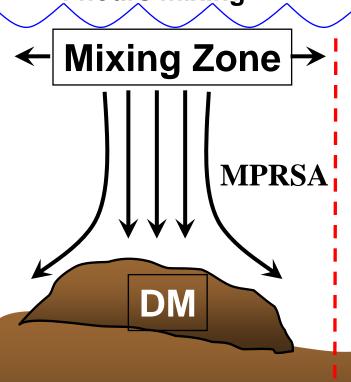


Water Column Evaluation (Decision Tree)

15-17 April 2008, Sacramento, CA

Water Column Evaluation (Physical / Chemical Testing)

- Contaminant concentration in disposed DM:
 - Ocean disposal (Ocean Testing Manual)
 - Seaward of national baseline
 - Marine Protection, Research and Sanctuaries Act (MPRSA)
 - Limiting Permissible Concentration (LPC)
 - <u>Definition:</u> concentration of DM constituents in the water after mixing that does not exceed applicable marine WQC
 - Usually 0.01 factor applied to LC50
 - Inland disposal (Inland Testing manual)
 - Landward of national baseline, rivers, lakes
 - Clean Water Act
 - Mixing zones variable contingent on state, water body
 - Compliance with WQS (at least as strict as national standards)

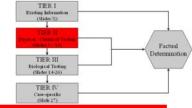


Water Column Evaluation (Physical / Chemical Testing)

Must meet LPC/WQS at all times

Outside Zone

"The discharge of dredged material cannot cause the WQS to be exceeded outside the mixing zone unless the State provides a variance to the standard."
---Inland Testing Manual (1998)



Sediment

TIER II: Two step process

1. Screening Step:

- Conduct chemical analysis of DM for CoCs
- Very conservative assumption
 - 100% DM contaminants goes to water
- Apply to contaminant requiring greatest dilution (D)
 - DM < LPC or WQS → DM complies → STOP
 - DM > LPC or WQS → Move to step 2

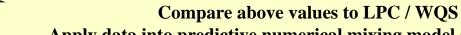
2. Elutriate preparation step:

- More realistic chemical analysis
- Use more representative dissolved concentrations in mixing model
- No biological testing

$$D = C_s * \frac{SS}{1000} - \frac{C_{wq}}{C_{wq} - C_{ds}}$$

D = Dilution to meet WQS and / or WQC

Cs = contaminant concentration in the sediment

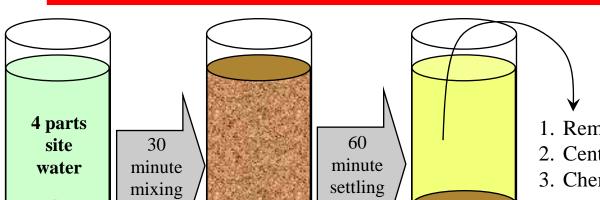

SS = suspended solids concentration

Cwq =WQS and / or WQC

Cds = Disposal site concentration

$$D = \frac{C_e - C_{wq}}{C_{wq} - C_{ds}}$$

Cwq = WQS and / or WQC Cds = Disposal site concentration micrograms per liter Ce = concentration of the dissolved contaminant in the standard elutriate

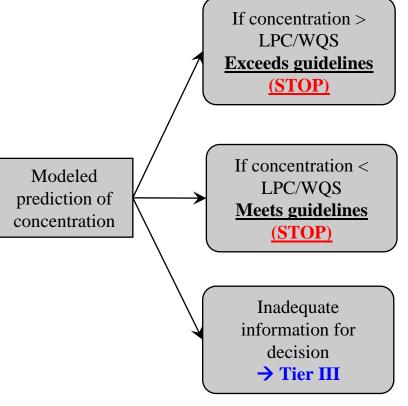

Apply data into predictive numerical mixing model (Appendix C)

TIER II: Step Two: Prepare Elutriate

1. Remove overlying water

- 2. Centrifugation / filtration
- 3. Chemical analysis

Media Type	Application
Dredged Material (1 part)	Elutriate preparation
Dredging Site Water (4 parts)	Elutriate preparation



1 part sediment

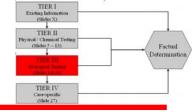
TIER II: Possible conclusions

1. DM exceeds LPC / WQS

- Needs management action
- No further testing needed

2. DM meets LPC / WQS:

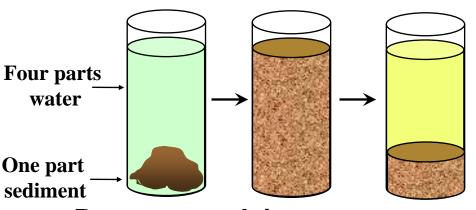
- 4-hours within mixing zone (MPRSA)
- At all times outside mixing zone


3. DM meets LPC / WQS but...

- WQC not available some contaminant(s)
- Concern for contaminant interactions
 - Move to Tier III analysis

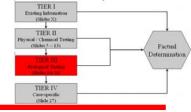
TIER III: Overview

- Biological testing conducted if Tiers I / II:
 - Do not supply adequate information for decision
 - Identify CoCs that lack WQS
 - Suggest DM contains contaminants at potentially adverse levels (gray area)
 - Suggest potential for unknown chemical interactions
- Tier III
 - Biological exposures conducted
 - Evaluate potential for toxicity
 - Generate lethal / effective median concentration (LC / EC50)
 - Relate toxicity information to mixing model / standards



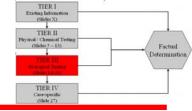
TIER III: Biological Testing Summary

Prepare elutriate (as before)


- Remove overlying water
- Contains both dissolved and suspended DM
 - Centrifuge / filter (only if necessary to assess survival)
- Assess survival across elutriate dilution
- Apply resulting toxicity data to mixing model

Media Type	Application
Dredged Material (1 part)	Elutriate preparation
Dredging Site Water (4 parts)	Elutriate preparation
Disposal Site Water	Dilution of elutriate for bioassay
Reconstituted (or other approved) water	

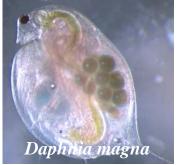
TIER III: Test Species Selection



- Three species of different phyla <u>recommended</u> to evaluate the potential for elutriate toxicity
 - Zooplankton, crustaceans, fish, molluscs, (phytoplankton)
 - ▶ MPRSA → must test two species
 - ➤ CWA → should test multiple species
 - At least one <u>needs to be</u> a recommended species (previously "benchmark")
 - Routinely utilized
 - Proven track record
 - National guidance or RIM

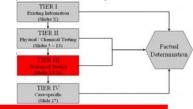
TIER III: Test Species Selection

- Other test species can represent organisms indigenous to the disposal site
 - Important local species
 - Regional Implementation Manuals
- Factors to consider during selection (no order of importance)
 - Ecological relevance / indigenous
 - Appropriate chemical sensitivity / age class (juveniles)
 - Availability of standardized protocol / consistent track record
 - Availability year round
 - Susceptibility to confounding factors (DO₂, laboratory handling)




Tier III: Test Species Freshwater disposal

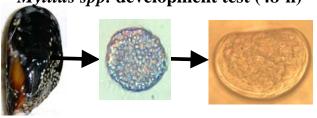
- Freshwater (< 1 ‰)
 - Arthropoda / Crustacea
 - Cladocerans (i.e., zooplankton)
 - Daphnia magna / pulex *
 - Ceriodaphnia dubia *
 - Vertebrata
 - Fish
 - Pimephales promelas *
 - Lepomis macrochirus
 - Oncorhynchus mykiss *


OK Dept Wildlife Conservation

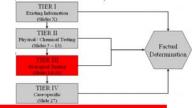
* Recommended species

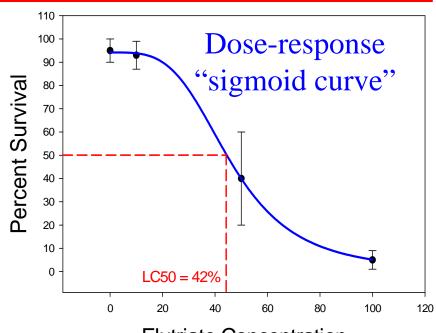
Tier III: Test Species Marine/estuarine disposal

- Marine (> 25 ‰)
 - Echinodermata
 - Urchins, Strongylocentrotus, Arbacia
 - Sand Dollar, Dendraster spp.
 - > Arthropoda / crustacea
 - Shrimp
 - Americamysis bahia *
 - Neomysis *
 - Holmesimysis spp. *
 - Copepods, Acartia sp. *
- Estuarine / Marine (1 25+ ‰)
 - Bivalve Molluscs
 - Oysters, Crassostrea spp. *
 - Mussels, Mytilus spp. *
 - Vertebrata
 - Silversides, Menidia *Cyprinodon variegatus *



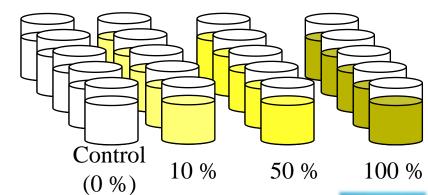
Mytilus spp. development test (48-h)




* Recommended species

TIER III: Conduct of Bioassays

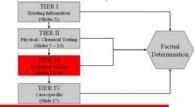
Test methods	ITM Appendix E
Exposure	48 or 96-hours
Primary endpoint	Survival or development
Dilutions	Three (10, 50, 100%)
Replicates / dilution	Five
Organisms / replicate	Usually 10
Acceptability criterion	• ≥70 or 90 % survival
	 Reference toxicity test within range

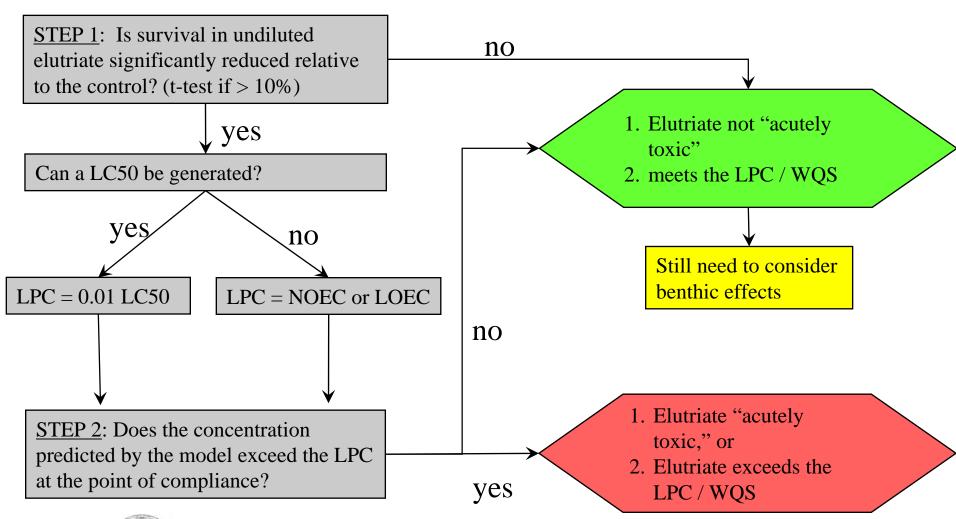


Elutriate Concentration

Specific testing protocols

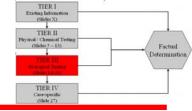
- •ITM Appendix E
- •US EPA / ASTM citations within





Dredged Material Assessment and Management Seminar 15-17 April 2008, Sacramento, CA

TIER III: Data analysis

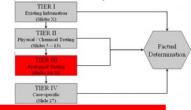


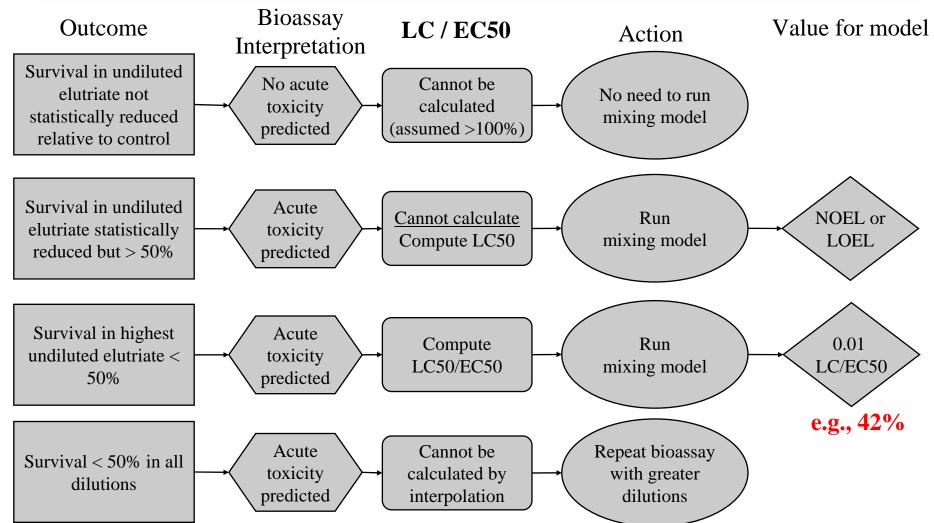
TIER III: Data Analysis (Step 1)

- Is survival in the undiluted elutriate reduced more than 10% relative to the control?
- Is the undiluted elutriate statistically reduced relative to the control (dilution water)?

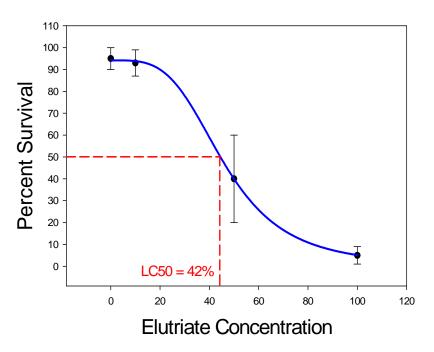
= 20 \pm 8% Survival

= 90 \pm 5% Survival




Next step: determine LC50 value, LPC and modeled dilution

TIER III: Data Interpretation



TIER III: Data Analysis (Step 2)

Determine the LC50 value

 $LC50 (42\%) \times 0.01 (LPC) = 0.42\%$

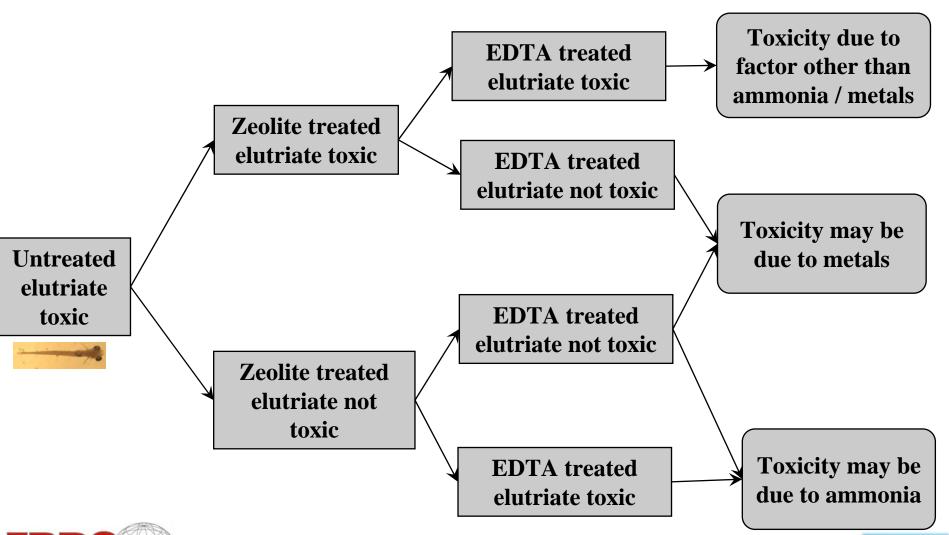
Model output indicates DM is < 0.1% inside and outside the mixing zone

- •DM diluted to lower concentration (0.1%) than LPC (0.42%)
- •DM elutriate does not exceed LPC / WQS ("passes")

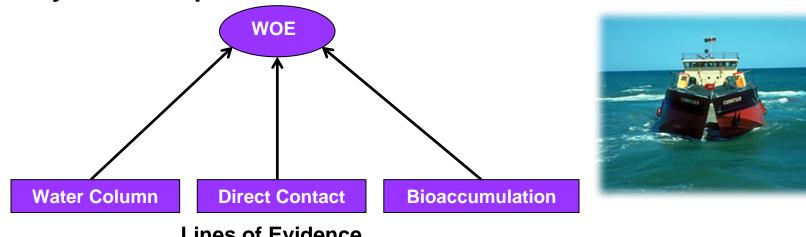

TIER III: Possible conclusions

- 1. DM discharge toxicity <u>not predicted</u> relative to the reference condition
- 2. DM discharge toxicity <u>is predicted</u> relative to the reference condition
- 3. Further information needed for actual determinations
 - Move to Tier IV (less common)

TIER IV: Case-specific (laboratory / field testing)


- Implemented when lower tiers do not provide enough information for factual determinations
 - Rare occasions
 - Inconclusive test results
 - Conflicting evidence
 - Ammonia toxicity suspected
- Specific studies may include:
 - Use of different test species / exposure durations / endpoints (e.g., growth, reproduction)
 - Laboratory or in situ exposures (field)
 - TRE / TIE to discriminate ammonia from metals / organics

Contaminant TRE/TIE (ammonia)



Synthesis

- **Main Goal:** Evaluate potential of DM to cause adverse effects on water column organisms
- This is just one pathway to establish a weight of evidence
- Still need to consider other pathways (e.g., benthic toxicity)
- Process: Generate / analyze data to estimate potential for toxicity of DM disposal

Lines of Evidence

Procedure: Follow tiered process only as far as necessary to make risk-based decision

