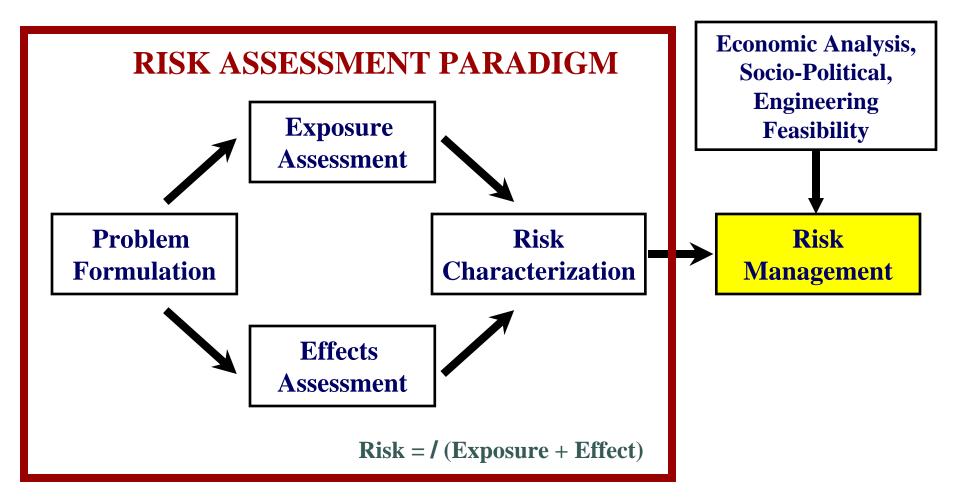
Monitoring and Adaptive Management


Dr. Paul R. Schroeder

Paul.R.Schroeder@usace.army.mil

RISK FRAMEWORK

Topics

- Uncertainty and the Role of Monitoring
- Compliance Monitoring and Adaptive Management
- Development of a Monitoring Plan
- Monitoring Considerations
- Monitoring Components
- Adaptive Management
- Adaptive Management Components
- Example Case Study

Roles of Monitoring

Traditionally

- To assure compliance with regulatory requirements
- Water and air sampling at points of compliance for comparison with water and air quality standards

Adaptively

- To support the risk paradigm
- To address uncertainties in exposure data and source strength
- To address uncertainties in effects data
- > To learn from the project and provide data for future assessments
- To support adaptive risk management alternatives
- To assure effectiveness of control measures
- To assure compliance with risk goals and regulatory requirements

Development of a Monitoring Plan

• What? Parameters to be Monitored

Where? Locations

• When? Frequency

How? Techniques

Who? Resources: budget,

equipment, time and skills

Why? Data Calibration, Processing

and Analysis and Reporting

OK? Does it satisfy the objectives?

Monitoring Considerations

Unsteady Source

Dredging is intermittent, processes are cyclic

Moving Source

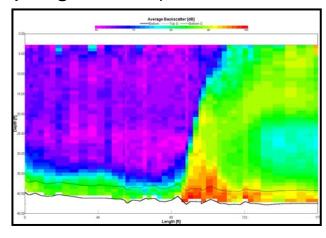
- Hopper dredge travels more than 5 miles in a 60-minute cycle
- Cutterhead swings over a width of 22 250 ft at a rate of 0.5 1 ft/sec
- Auger dredges advances about 500 ft/hr

Multiple Sources

- Dredgehead, overflow, props, anchors, etc.
- Bottom and surface

Unsteady Flow

- Tides
- Wind
- Exposure Pathway for Receptors of Concern


Stressors and Components

Turbidity and TSS

- Discrete samples from multiple depths and locations
- Continuous discrete locations OBS grid
- Periodic transects ADCP
- Calibration samples to estimate TSS from OBS and ADCP

Total Mass Loss and Loss Rate

- TSS (requires background sampling as well)
- > Flow
 - ADCP
 - Gages
 - Current meter transects
 - Models

Stressors and Components

Deposition

- > TSS
- Settling characteristics
- Shear stress characteristics
- Sediment traps
- Modeling

Total Contaminant Mass Loss and Loss Rate

- Discrete samples from multiple depths and locations analyzed for TSS, dissolved and total contaminant concentration
- > TSS
- > Flow
- Sediment density, volume and bulk sediment contaminant concentrations

Adaptive Management

Traditional Approach

- Implement controls
- Monitor to ensure risk goals are being attained

Adaptive approach

- Implement initial controls
- Monitor
- Assess impact/efficiency of controls
- Adapt controls and possibly increase or reduce controls

Adaptive Management

• Adaptive management should be used when:

- High degree of uncertainty in the risk characterization
- High degree of uncertainty in the effectiveness risk management controls
- High costs of risk management

Adaptive management leads to:

- Learning and a better explanation/understanding of the system
- Increase effectiveness of risk management
- Lower costs
- Better decisions

Adaptive Management Approach

- Develop short-term and long-term control alternatives
 - Turbidity and TSS concentrations
 - Contaminants concentrations
 - Flux (flow augmentation)
 - Total loss
- Establish action triggers for the risk management
 - Effects-based criteria
 - Exposure modeling
 - Risk characterization
- Develop a control plan and implement
- Establish an active compliance monitoring plan and implement

Adaptive Management Approach

Establish a response plan for triggers

- Implement short-term control measures (such as stop overflowing or pause dredging)
- Assess impacts
- Analyze event data cause and effect -- learn
- Determine need for long-term controls
- Implement long-term controls (such as slow production, install silt curtain, restrict overflow or seasonal restriction)
- Assess impacts
- Update control, monitoring and response plans
- Perform ecological response monitoring of environmental resources to ensure that effects-based triggers are effective at achieving risk goals

Toddistan Adaptive Management

Risk Characterization Results

- Low impact to juvenile salmonids
- Potential shading and burial of SAVs
- No exposure pathway to corals

Risk Management Control Options

- 15 minutes of overflow
- No overflow in certain reaches of the channel
- No overflow
- Seasonal restriction / environmental window

Action Triggers

- Turbidity greater than 10 NTU above background midway between channel and SAVs and between channel and corals
- Turbidity greater than 100 NTU in upper 15 ft of channel bottleneck

Toddistan Adaptive Management

Initial Controls

15 minutes of overflow

Monitoring plan

- Six ADCP transects daily midway between channel and SAVs and midway between channel and corals for first 3 days throughout range of tidal cycle
- TSS calibration sampling
- Three transects twice a week thereafter during appropriate portion of tidal cycle
- Additional transects if change in currents and wind
- Surficial turbidity/TSS sampling in channel bottleneck

Toddistan Adaptive Management

Response Plan

- If turbidity is less than 25% of triggers, change control to 30 minute overflow.
- If turbidity is greater trigger, change control to no overflow in adjacent reaches.
- If turbidity is greater than 300% of triggers, change control to no overflow.

Update controls, monitoring and response plan

- If turbidity is still less than 25% of triggers, eliminate controls.
- If turbidity is still greater than triggers without overflow, stop dredging and impose environmental window.

Questions?

