Risk-informed Decision Making

Igor Linkov, Paul Schroeder, Jongbum Kim and Todd Bridges

US Army Engineer Research and Development

RISK FRAMEWORK

Presentation -- Overview

Using Risk Assessment in Decisions

- MCDA Approach
- > Application to Toddistan
- Conclusions

Main Points

- Risks and benefits associated with alternative resuspension management strategies can be quantified using MCDA.
- Model, Parameters and Scenario uncertainty and variability associated with predicting efficiency of dredging alternatives as well as stakeholder value judgment are important to consider
- Challenges of risk assessment and planning require coupling traditional risk assessment and planning with MCDA to support dredging decisions

Evolving Decision-Making Processes

Toddistan Environmental Window

Environmental Window

- Provides protection for juvenile salmon by eliminating TSS during migration
- Provides protection from light attenuation by eliminating TSS during SAV growing season
- Provides protection from rate of deposition by eliminating TSS during SAV growing season
- Does not provide protection from burial by anoxic deposition; therefore, overflow is restricted to 15 minutes to provide this protection

Toddistan Scenario Info

Dredging Scenario	Production (m³/day)	Dredging Duration (days)*	Dredging Costs**
No Overflow	32,000	219	\$13,100,000
15 Minutes Overflow	48,000	146	\$8,800,000
30 Minutes Overflow	58,000	122	\$7,300,000
Environmental Window w/ 15 Minutes Overflow	48,000	146 over two dredging seasons	\$9,900,000***

- * Days without downtime
- ** Without mob-demob cost of about \$700,000
- *** Plus an additional mob-demob cost of \$700,000

Metrics

Alternative	Direct and Indirect Costs	Survivability of Juvenile Salmonids, %	Survivability of SAV %
Hopper - No Overflow	100	95	95
Hopper – 15 Min. Overflow	70	80	70
Hopper – 30 Min. Overflow	60	70	30
Env. Window w/ 15 Min. OF	80	100	80

Risk Concerns / Recovery

	Recove	Weight of	
Eco-Risk	Sublethal Effect	Lethal Effect	Concern
Salmonids	Rapid, weeks to months	Rapid, 1 year	Low
SAVs	Moderate, 1 year	Slow, decade	High
Corals	Very Slow, decade	Very Slow. decades	Very High

Assessment Criteria

Expert Choice C:\Documents and Settings\u4epril3.ERD\My Docume	ents\Conferences\DredgingCapitalist.	AHP 🔳 🗖 🔀
Eile Edit Assessment Synthesize Sensitivity-Graphs View Go Tools Help		
🗅 🖙 🖶 🤣 🎒 💁 🕼 👫 🥡 🖺 🕽 📰 🧒 Redraw 裬 🗛 🖍		
🕹] 3:1] ABC] 🚍] 📻] 🛛 🖓 YHMA] 🆽]		
1	Alternatives: Distributive mode	<u>k</u>
Goal: Select the optimal dredging alternative	Hopper	.211
Salmon Health (L: .115)	Hopper 15 min	.262
TSS (L: 1.000)	Hopper 30 min	.295
SAV Health (L: ,121)	Environmental Window	.231
Burial ($l: .250$)		
□ □ Cost (L: .764)		
Direct (L: .833)		
Indirect (L: .167)	Information Document	
<u> </u>		

Criteria Weights

📴 Expert Choice 💿 C:\Documents and Settings\u4epril3.ERD\My Documents\Conferences\DredgingCapitalis	st. AHP		
Eile Edit Assessment Inconsistency Go Tools Help			
🗅 🖙 🖬 🤣 🎒 🖪 🛔 🗐 ♪ 💷 🦿 🌂 <u>R</u> eorder <u>S</u> tructural adjust Freeze Judgments			
🕹 (3:1) ABC (=) 📻 (YHM) (=)			
Salmon Health	: :	Extreme Very Stro	ong
Compare the relative importance with respect to: Goal: Select the optimal dredging alternative		Strong Moderate Equal Moderate Strong	3
SAV Health	: :	Very Stro Extreme	ong
Salmon He SAV	Health	Cost	
Salmon Health	1.0		7.0
Cost Incon: 0.00			0.0

Pairwise Numerical Comparisons

Metric Assessment by Criteria

File Edit Assessment Inconsistency Go Tools Help Image: Structural adjust Freeze Judgments
🗅 🖆 🖬 🖉 🎒 💁 🚠 📓 🗅 🚍 🦿 🌂 Reorder Structural adjust Freeze Judgments
Hopper - Extreme - Very Strong
Compare the relative preference with respect to: Cost \ Direct - Strong - Moderate - Moderate - Moderate - Strong - Str
Hopper 15 min - Very Strong
Hopper 15 Hopper 30 Environme
Hopper 1.5 1.8 1.3
Hopper 15 min 1.2 1.1
For the second s

Results for Different Stakeholders

Sensitivity Analysis

Results

- Balanced weighting would yield selection of
 15 minutes of overflow as the optimal alternative
- High weighting of cost and indirect costs/ schedule yields selection of 30 minutes of overflow as the optimal alternative
- High weighting of environmental resource protection yields selection of no overflow or possibly environmental windows as the optimal alternative

Summary

- 15 minutes of overflow was selected as the optimal alternative
- Adaptive management will be used to address uncertainties concerns
- Monitoring within a adaptive management framework will be used to ensure ecological risks are acceptable

Questions?

