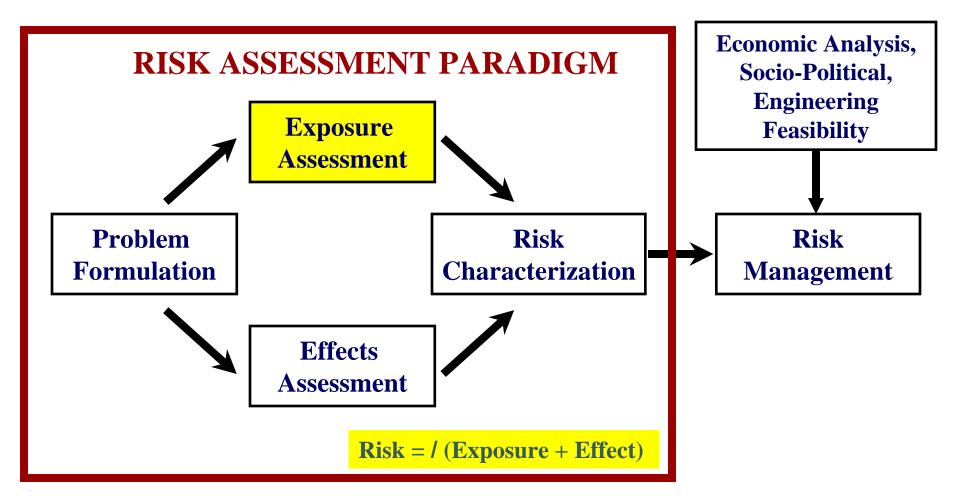
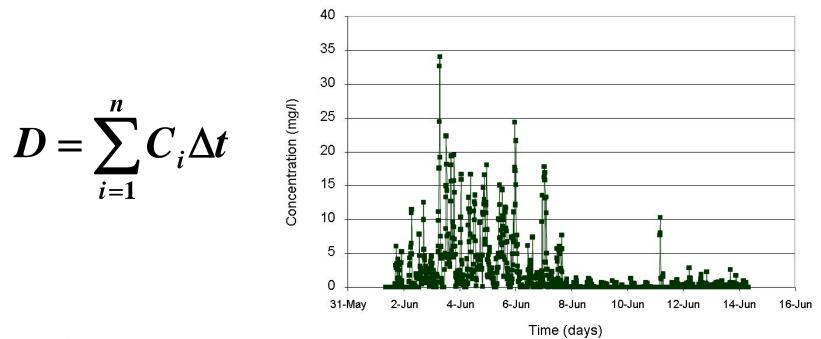
Exposure Processes and Assessment

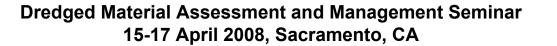

Dr. Paul R. Schroeder Dr. Joe Z. Gailani

Paul.R.Schroeder@usace.army.mil Joe.Z.Gailani@usace.army.mil

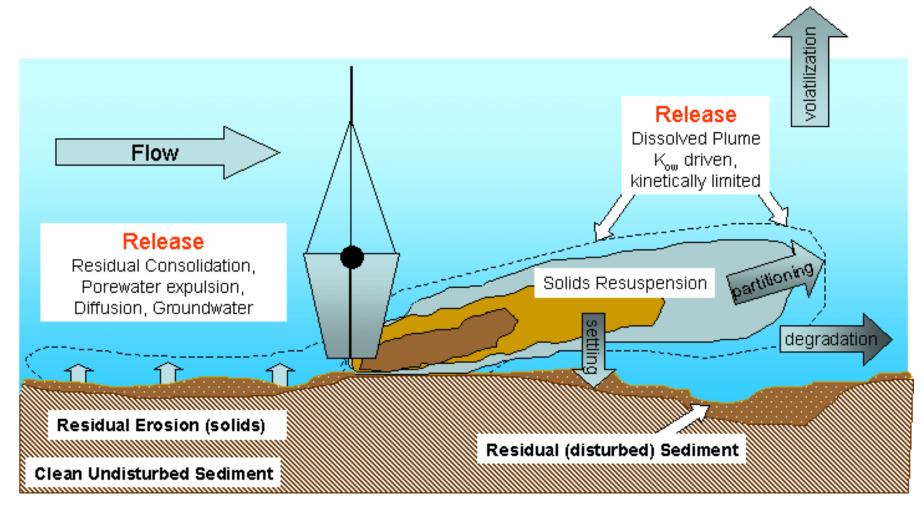
RISK FRAMEWORK



 Exposure is a quantification of the level and duration of a stressor affecting the receptor often expressed as a dose



Topics


- Exposure Pathways and Drivers
- Sediment Characterization
- Resuspension Source Strength Predictions
- Dredging Residuals Generation and Transport
- Contaminant Release Predictions
- Screening Models
- Comprehensive Exposure Modeling
- Dose Modeling for Cumulative Exposure
- Example Case Study

Exposure Pathways

Other Sources

Exposure Pathways and Risk Drivers

Sediment Resuspension

- Turbidity
- Suspended solids
- Contribution to deposition and benthic impacts

• Transport of Dredged Material Residuals Out of Dredge Prism

- Burial
- Benthic toxicity
- Bioaccumulation

Contaminant Release

- Water quality
- Water column toxicity
- Bioaccumulation

Sediment Resuspension

- Sediment resuspension <u>will</u> occur at dredging projects-the extent varies
- Often less than 1% of mass of fine-grained fraction of sediment dredged
- Average Backscatter (dB)

- Factors:
 - Sediment properties such as bulk density, particle size distribution, and mineralogy
 - Site conditions: water depth, currents, and waves, presence of hardpan, bedrock, or loose cobbles or boulders
 - Nature and extent of debris and obstructions
 - Operations: production, thickness of dredge cuts, dredging equipment type, methods, operator skill

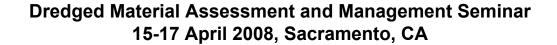
Sediment Characterization

- Sediment characteristics is the dominant driver for resuspension and residuals transport
- Sediment parameters for predicting sediment loss by resuspension and erosion (Source Strength) and transport:
 - > Water content (w)
 - Atterberg limits -- LL, PL and PI PI = LL PL
 - > Liquidity index (LI) -- LI = (w PL) / PI
 - Grain size distribution
 - Settling velocity
 - Erodibility coefficients
- Contaminant Release
 - Dredging Elutriate Test (DRET)
 - Partitioning and Mass Transfer Coefficients

Atterberg Limits

- LL = Liquid Limit
- PL = Plastic Limit
- PI = Plasticity Index

Resuspension Source Predictions


• Hayes characteristic resuspension approach

- Process-based
- Sediment dependence correlated to liquidity index and grain size
- Equipment specific processes and characteristic losses
- Equipment factors: size and controls
- Site factors: debris, heterogeneity, water depth and current
- > Operations: speed, cut, relative production rate
- Makes adjustments to characteristic loss rates by process based on empirical and theoretical evidence

Empirical

- Equipment, Operations and Controls
- Sediment type
- Limited data sources and limited conditions for selection

Mechanical Dredge Operation

Release processes

- Bottom wake
- Expulsion during closing
- Stripping during raising
- Draining during slewing
- Washing during descent
- Lost loads from debris

Operator controls

- Cycle time
- Depth of cut
- Debris removal

Example of Hayes Approach

Empty Bucket Descent

 \succ $r_1' = f_{aa} f_{dv} f_{dd} f_{sed} r_1$

Bucket Impact and Closure

- \succ $\mathbf{r}_2' = \mathbf{f}_{bv} \mathbf{f}_{ec} \mathbf{f}_{sed} \mathbf{r}_2$
- Full Bucket Ascent

- $F_{ta} \leq 1 \qquad r_{3}' = [(f_{la}W_{la} + f_{bw}W_{bw} + f_{ea}W_{eb})f_{ta} + f_{sw}W_{sw}]f_{sed}r_{3}$
- > for $f_{ta} > 1$ $r_{3}' = [(f_{la}w_{la} + f_{ea}w_{eb}) f_{ta} + f_{bw}w_{bw} + f_{sw}w_{sw}] f_{sed} r_{3}$
- Full Bucket Slewing
 - \succ r₄' = f_{so} f_{sed} r₄
- Where: $r_1 = 0.01$ $r_2 = 0.09$ $r_3 = 0.15$ $r_4 = 0.25$
- Sediment characteristics affect each process

D. F. Hayes, T. D. Borrowman , and P. R. Schroeder (2007). Process-Based Estimation of

Sediment Resuspension Losses During Bucket Dredging. WODCON XVIII, Orlando, FL

Other Contributors

Barge Overflow

For
$$V_{ds} \le V_{hb}$$
 $R_{OF} = 0$
For $V_{ds} > V_{hb}$ $R_{OF} = 100 \left(\frac{\gamma_{OF}}{\gamma_{sed}}\right) \left[\frac{(bV_{ds} - V_{hb})}{V_{ds}}\right]$

- **Debris** $R_{debris} = \frac{5 f_{sed} N_{debris}}{100}$
- No predictive measures proposed for bottom sweeping, movement, anchoring, etc.

Hydraulic Dredge Operation

• Factors affecting release rate:

- Pump rate
- Cutterhead speed
- Swing speed
- Depth of cut
- Direction of cut
- Debris
- Banks / slopes

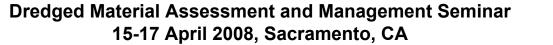
Empirical Solids Releases

Equipment

- Mechanical dredges
 - Open or watertight
 - Environmental

Losses of fine-grained mass of dredged sediment to water column

- \rightarrow 0.2 to 9%, typically 0.5 to 2%
- \rightarrow 0.1 to 5%, typically 0.3 to 1%
- > Hydraulic dredges \rightarrow 0.01 to 4%, typically 0.2 to 0.8%


Production versus turbidity control

Operator feedback

Erosion

- Weakening of sediment structure
- Entrainment of water in residuals

Residuals Source Predictions

Empirical

Mass Available: 2 to 9% of sediment mass in last cut

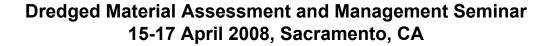
Sediment Properties

- Erosion characteristics
- Settling rates
- Site Properties bottom shear stress

Dredging Work Plan

- Equipment
- Operations
- Sequence

Control Measures



Near-Field Models

Two primary purposes

- > Evaluate source strength
- Evaluate acute impacts in vicinity of dredgehead during operations
- Spatial scale is restricted to ~10 m from dredge-head
- Examples of available models
 DREDGE (USACE)
 TASS (Wallingford)

Far-Field Models

Primary purpose

- Evaluate impacts during operational and post-dredge periods
- Spatial scale ranges from ~10 m to > 1,000 m from dredge-head

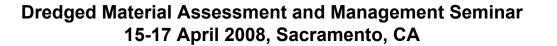
Examples of available models

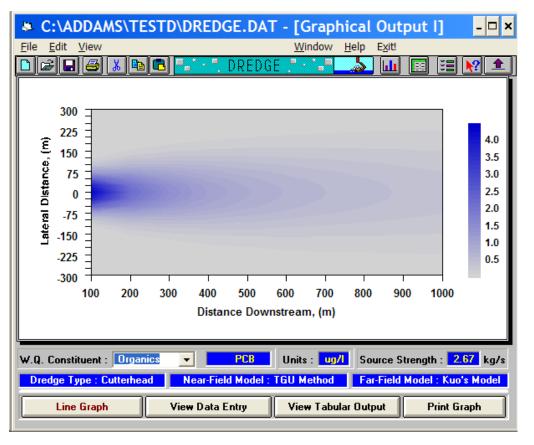
- Plume models (screening)
 - DREDGE (USACE)
- Particle tracking models
 - PTM (USACE)
- Comprehensive models
 - Coupled hydrodynamic-sediment transport models

Dissolved Contaminant Releases

Entrainment of porewater

- > 0.5 to 10% of porewater in dredged sediment lost to water column
- Dispersion of particulate and dissolution/partitioning of particulateassociated contaminants
 - Function of variable contaminant properties, availability and kinetics
- Advection and diffusion from residuals and face of dredge cut




ADDAMS Screening Models

- Mixing Models for Short-term, Near-/Mid-Field Water Quality and Toxicity Evaluations
 - DREDGE continuous resuspension
 - CDFATE / CORMIX continuous discharge/overflow
 - STFATE discrete discharges
- 1-D Models for Releases from Residuals and Sediment
 - RECOVERY
 - ► CAP

Prediction of Sediment Resuspension and Contaminant Release by Dredging

DREDGE INPUTS

C:\ADDAMS\TESTD\DREDGE.DAT - [Input Data Entry]						
<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>W</u> indow <u>H</u> elp E <u>x</u> it!					
🗅 😂 🖶 🚳 🛋 🖅 DREDGE 🕂 🚬 🔟 🗐 🔚 🕅 1						
Select Dredge	Contaminant Modeling					
O Hydraulic Dredge	TSS					
Open Clamshell Characteristics	Add Delete Edit					
Near Field Model						
Estimated Source Strength kg/s % Loss	Marine Environment					
	Site					
● TGU Method 🔹 1.85 .71	O Freshwater Environment					
Correlation 1.84 .69	Dredged Material Transport Method					
O User Estimate	Pipeline					
	O Hopper with Overflow Information					
Far Field Model Selection	O Hopper without Overflow					
Kuo's Model Far Field	Estimated contribution to near-field					
O TABS Model Model Data	sediment resuspension					
Help View Tabular Results	View Graphical Results Exit					
Dredged Material Assessment and Management Seminar						

15-17 April 2008, Sacramento, CA

Цж.

Engineer Research and Development Cente

CDFATE

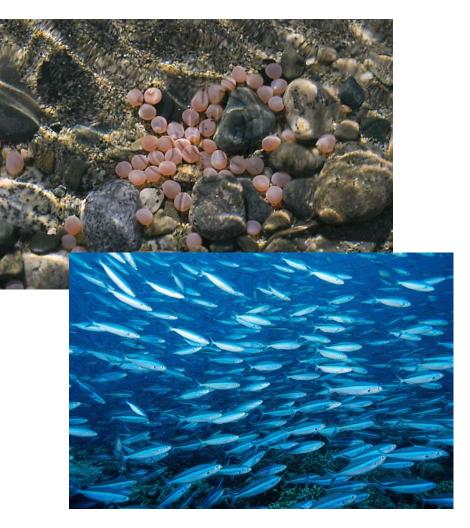
Computation of Mixing Zone Size or Dilution for Continuous Discharges or Overflows

CDFATE INPUTS

	CDFAT	'E - C:\A	DDAMS\CD	FATEW\EX	AMPLE-HOP	PPERWEIROVERFL 🔳 🗖 🔀		
<u>File E</u> dit <u>R</u> un <u>V</u> iew <u>H</u> elp								
Discharge Description								
	Example - Hopper Dredge: Weir Overflow							
	Discharge Case							
	→	Hopper [Dredge: Single Port D Dredge: Weir Overflo Shaw Discharge		🔿 CDF Dis	scharge From Side Stream Channel scharge From Partially Full Pipe		
	O Pipeline Slurry Discharge O CDF Dike Leakage							
	Receiving Water Data							
		Receiving Water Depth: 10.0 m			Bottom Roug	·		
	Is the Receiving Stream Narrow? Beceiving Water Width: N/A				-	/ater Velocity: 0.50 m/s		
	2		ving Water Width: N/	A		Conditions: Medium		
	Channel Type: Unbounded 🚽 Receiving Water Density: 999.00 kg/m^3							
Effluent Density and Modeling Parameters								
	Effluent Density: 1100.00 kg/m^3			3	Pollutant: Lead			
	Plume Modeling Distance: 5000.0 m				Simulated Pollutant Concentration: 25.00			
	Number of Reporting Periods: 50					on Maximum Concentration: 5.00		
	Criterion Continuous Concentration: 2.00							
i								
			<u>R</u> un Simulation	View <u>O</u> utput	View <u>G</u> raphics	Help		
			<u>S</u> ave Data File	<u>D</u> ata Wizard	<u>E</u> rror Check	E <u>x</u> it		
	Dredged Material Assessment and Management Seminar							

15-17 April 2008, Sacramento, CA

Цж.


Engineer Research and Development Center

Estimating Exposure Using PTM

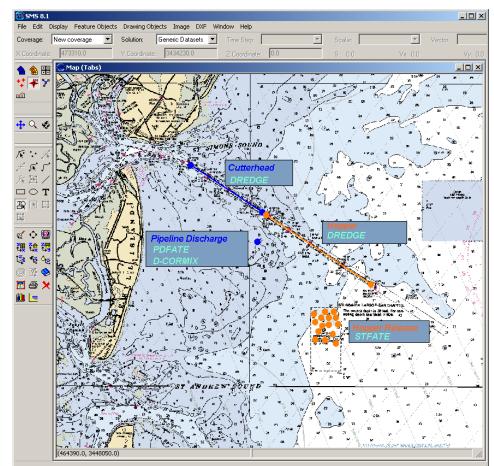
MOTIVATION:

- Dredged material mgmt and optimization requires longterm, far-field fate predictions for
 - Beneficial Use
 - Resource Management
 - Regulatory Compliance
- Field data collection not possible for these low concentration conditions
- Need to extrapolate sources to areas where no data exist

Estimating Exposure Using PTM

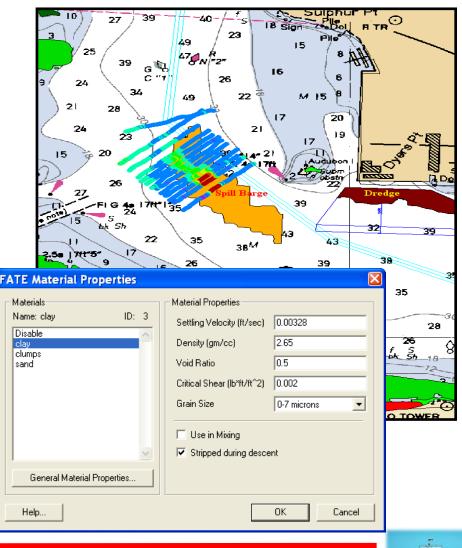
SOLUTION

- Lagrangian Particle Tracker for modeling transport only from specified sources
- Numerically efficient method for quantifying time-varying concentration, deposition, dose, and exposure
- Efficient modeling of multiple scenarios to quantify potential exposure pathways



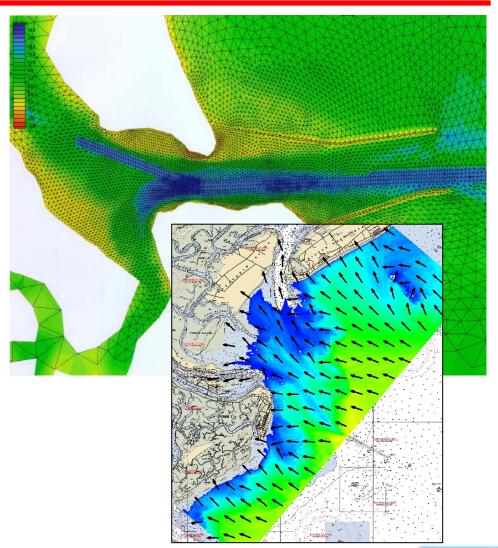
Estimating Exposure Using PTM

- PTM is a Lagrangian model specifically designed to monitor dredge sources.
- Efficient simulation of multiple scenarios, sources and constituents
- User-defined or model generated source strengths for sediments and constituents
- Isolate and monitor fate of designated sources for exposure estimates
- Physical/chemical properties and processes incorporated into PTM
- Multiple classes of particles to represent different constituents



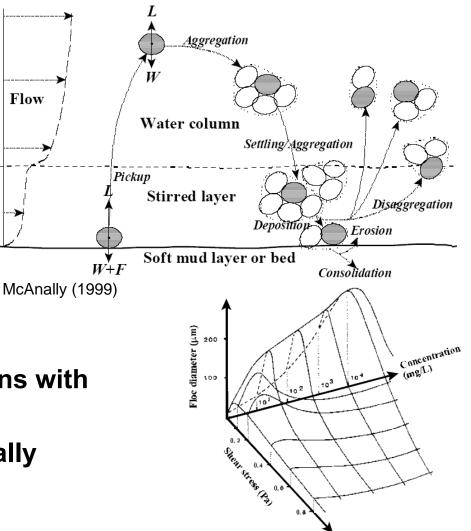
PTM Source Description

- User defines sources generated from:
 - Dredge source models
 - FATE models
 - Known release rates
- Sources from:
 - Dredging operations
 - Placement operations
 - ODMDS erosion
 - Overflow
- Source strengths vary temporally and spatially (incl. vertically)
- Each particle represents a defined mass of constituent and includes constituent behavior



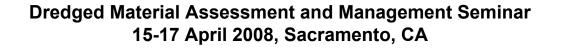
PTM Hydro/Waves

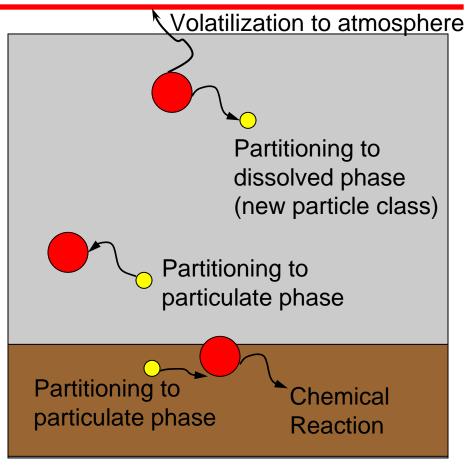
- PTM hydro input directly from large-domain model
- Wave input (optional) from wave transformation model
- Hydro and wave forcings drive particles
- Hydro and wave models are mature, demonstrated
- Generally, field data insufficient to define hydro for complex domain
- Exposure is dependent on accurate predictions of wave and hydrodynamics



PTM Sediment Processes

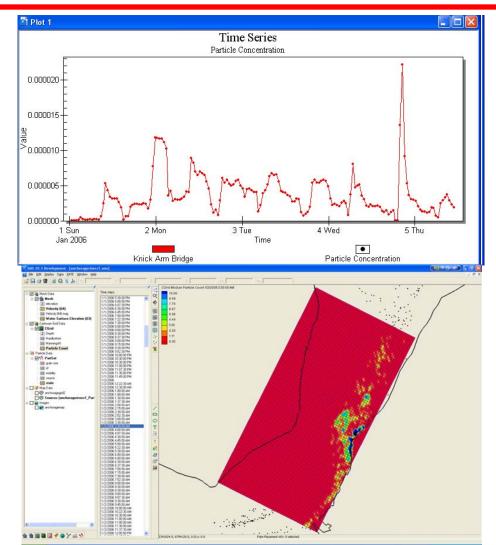
- Particles Include complex, physics-based description for first order processes influencing transport of the sediments they represent
 - Settling
 - Aggregation/flocculation
 - Resuspension
 - BBL Dynamics
- Processes are time-varying
- Accounts for particle interactions with native bed (mixing and burial)
- Native bed properties are spatially variable


PTM Constituent Processes

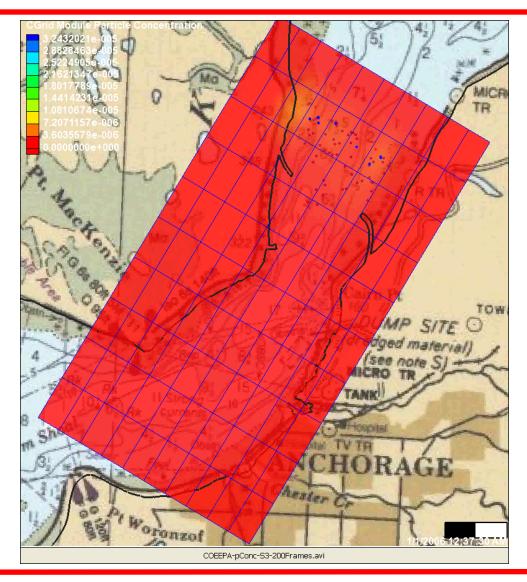

 Particles can simulate ammonia, DO, contaminant, or other non-conservative substance

Process descriptions include

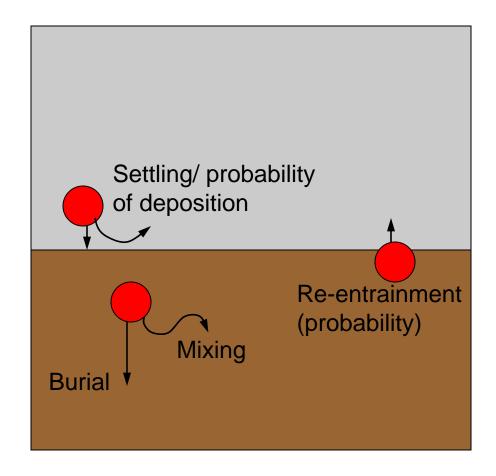
- Non-equilibrium partitioning
- Volatilization
- Chemical Reactions
- Settling/Buoyancy
- Address contaminant, WQ, and species issues associated with dredging
- Modular code permits modification for inclusion of additional processes



PTM Concentration Predictions

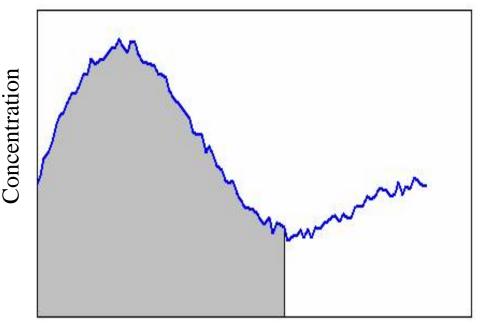

- Time Series at point
- Average over user-specified domain (point or area)
- Snapshot over entire domain
- Analysis for user-specified combination of constituents
- Vertically varying concentration analysis
- Extract data for further analysis
- Generally used in exposure analysis and resource protection

PTM Concentration Predictions



PTM Deposition/Sedimentation

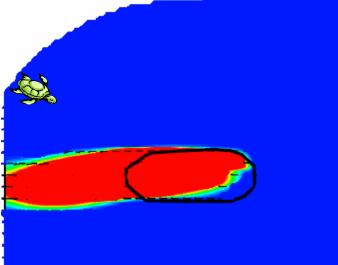
- Temporally varying fate (deposition) of dredged material is critical to many exposure estimates
- Deposition and re-entrainment are highly dependent on native bed dynamics
- PTM does not account for transport of native sediments
- PTM deposits particles and includes interactions with native bed active layer
 - Probability of Deposition
 - Mixing
 - Burial
 - Re-entrainment



Estimating Exposure

- Effects of sediment or constituent on organisms is both concentration and time dependent.
- Exposure estimates, coupled with effects are used directly in Risk Characterization

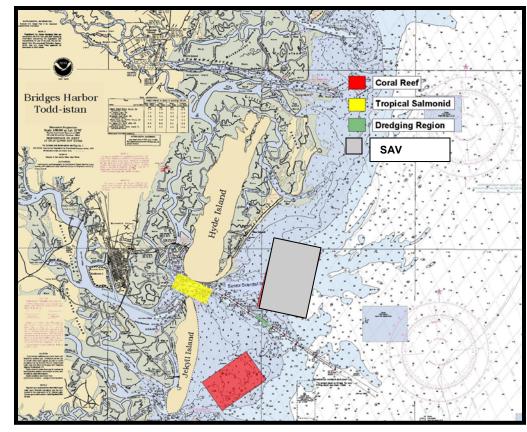
$$D = \int_t^{t+\Delta t} C \, dt$$

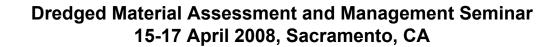

Estimating Exposure in PTM

- Virtual Gages
- Present (fixed space)
 - ▹ point
 - volume

Future (moving)

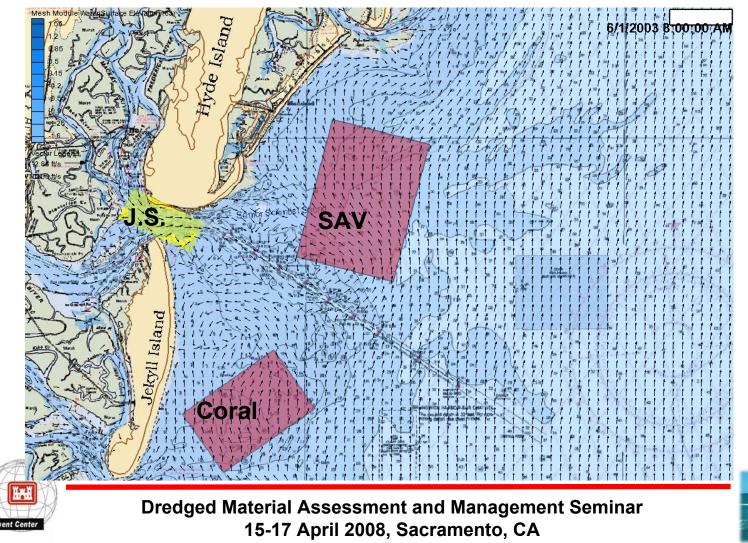
- drifting with flow
 - passive larvae
- > moving with behaviors
 - fish
 - motile larvae

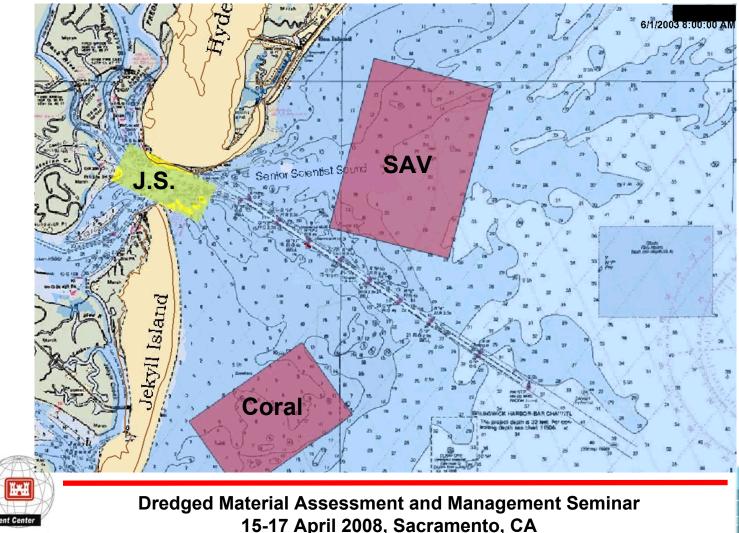




Hypothetical Example: Exposure

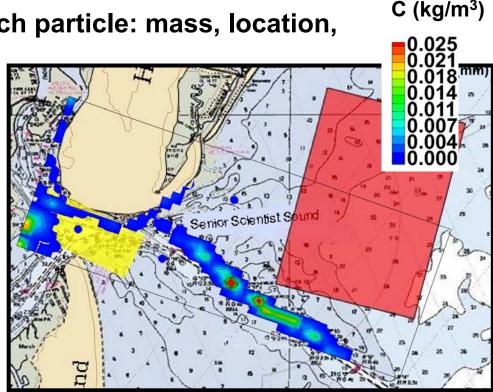
- Ebb Shoal Environment
- Three resources of concern for exposure
 - Coral Reef
 - > Fish
 - > SAV
- 3-Day Hopper Dredging (overflow and no-overflow)
- 6-Day PTM Simulation to allow for post-dredging transport and deposition
- Assess exposure due to deposition, suspended solids
- Compare various scenarios (dredging rate, method, etc)



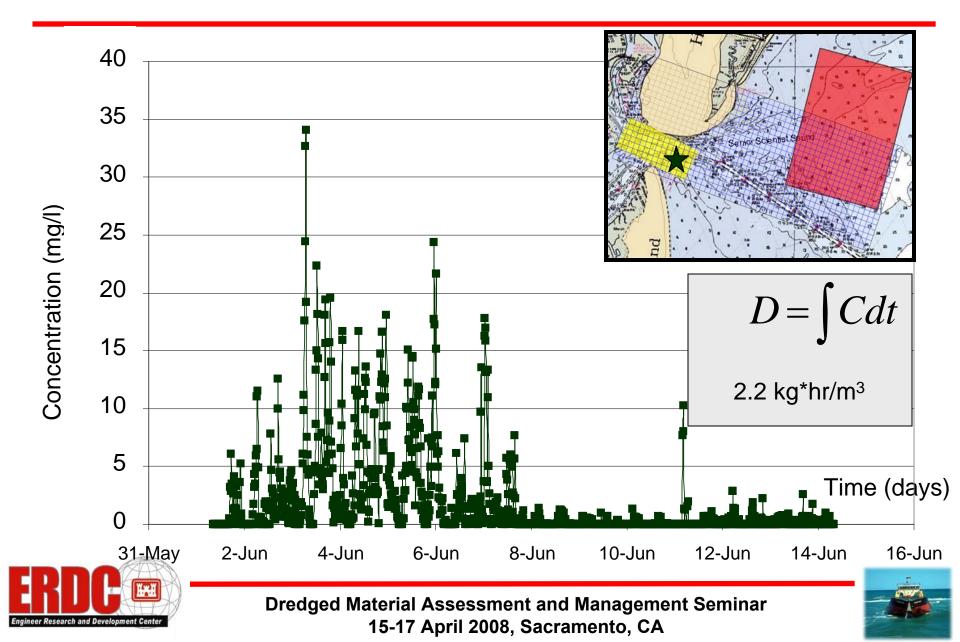

Hypothetical Example: Exposure

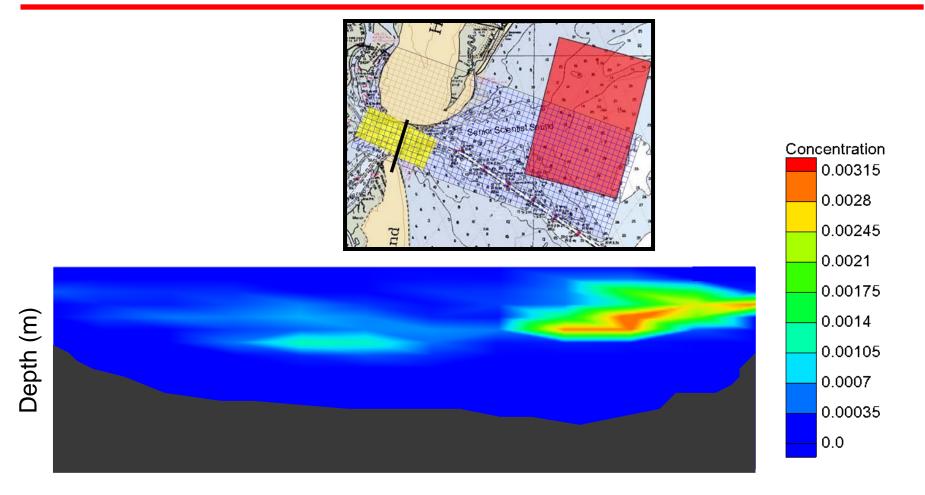
Understanding time-varying concentration and wave conditions over complex regions requires validated wave and hydrodynamic models

Hypothetical Example: Exposure


PTM 6-day simulation with overflow indicates most sediment remains in channel with some north of channel. Very little near coral reef

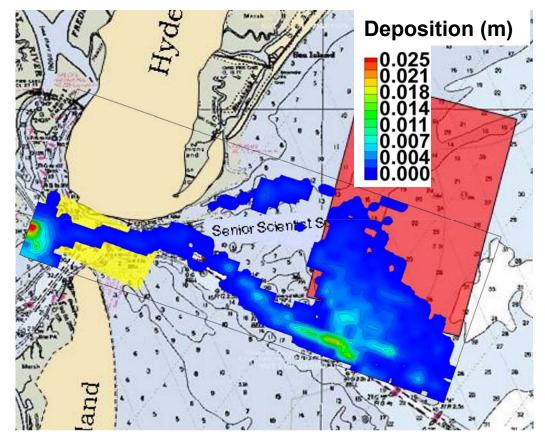
Hypothetical Example: TSS Exposure

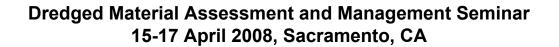

- Concentration is highly variable both spatially and temporally
- Significant TSS difference between overflow and no overflow cases
- PTM maintains all data for each particle: mass, location, properties
- These are translated to concentration of each sediment type and each constituent
- Assess exposure due to suspended solids
- Convert TSS to NTU to assess light attenuation



Time Series of Concentration \rightarrow Dose

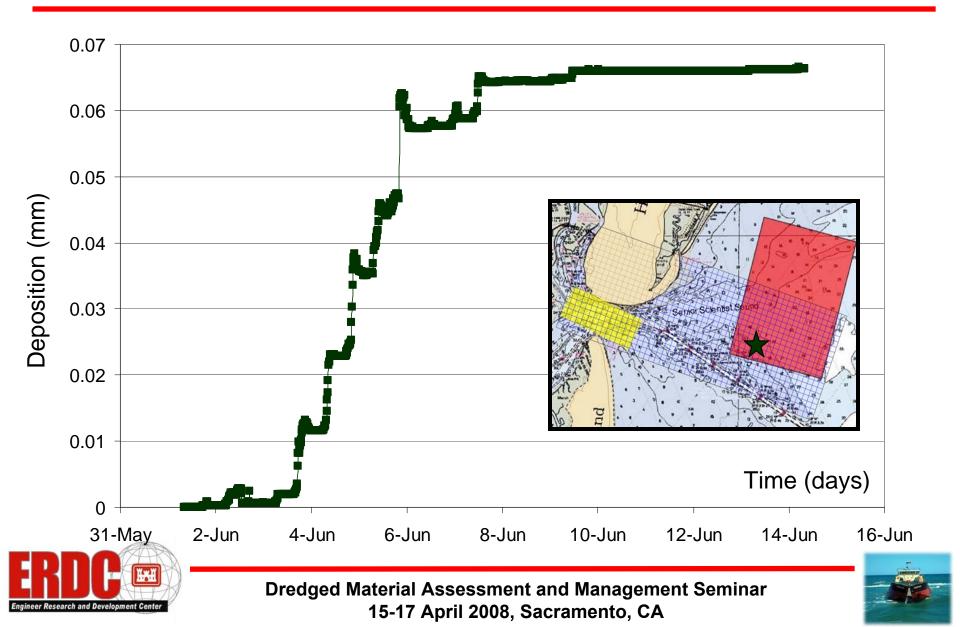
Cross-Section of Inlet TSS

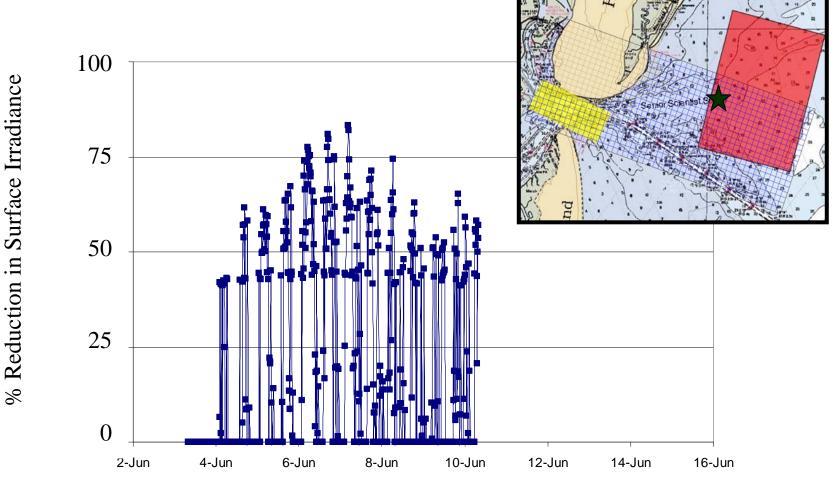

Cross-section Distance (m)



Case Study: Bed Exposure

- Most deposition in channel or in harbor
- In-Harbor deposition will not impact juvenile Salmonid, where exposure pathway is the water column
- Some deposition occurs in SAV habitat
- Combine deposition data with effects data to determine risk
- No pathway to coral reef
- SAV exposure may be season-dependent





Time Series of Deposition

Time Series of Light Attenuation

Summary

- No Pathway for exposure to coral reef
- Suspended Solids move into the Juvenile Salmon migration pathway but covers only a portion of the channel cross-section
- Deposition and light attenuation occur over southern half of the SAV
- Dredge-induced turbidity moves out of the region after approximately two weeks
- Concentration and deposition patterns are dynamic

