Long-Term Approach for the Sustainability of CDFs

Susan Bailey, Trudy Estes US Army ERDC, Vicksburg, MS <u>Susan.E.Bailey@usace.army.mil</u> <u>Trudy.J.Estes@usace.army.mil</u>

Motivation

- Declining disposal capacity
- Emergence of sustainability initiatives
- Maturing of regional sediment management and beneficial use opportunities

The Goal of Sustainability

- ...as it applies to CDFs, is to manage dredged material disposal in such a manner that:
 - 1) disposal capacity is optimized and dredging operations are not limited by disposal capacity;
 - > 2) operations are economically feasible now as well as in the future; and
 - > 3) adverse environmental impact is minimized and benefits maximized.

Objectives

Assess the scope of the problem

- Dredged volume going to CDFs
- Storage critical timeline
- Regional complexion?

Develop a management strategy

- Policy changes
- Management practices
- Needed research

Approach

- Survey
- Inventory

Identify available tools

- State of the practice vs. state of the art
- Dredging/disposal minimization
- CDF management
- Beneficial use
- Cost optimization
- Identify obstacles
- Develop a strategy

Inventory

USACE Districts, DMMPs, webpages

- Projects
- Annual and projected dredging volumes (trends)
- Confined Disposal Facilities

- Remaining capacity/Projected life
- CDF management practices

Inventory

Survey

- Questions pertained to
 - CDF usage
 - storage capacity shortages
 - beneficial use of dredged material
 - obstacles that hamper CDF usage and beneficial use
 - regional sediment management
- 24 Districts responded
- Limitations
 - Single viewpoint (subjective)
 - Nonspecific as to scope of response

How critical is issue of CDF storage capacity?	
9 % 73 %	Unlimited Shortage in ?? yrs
18 %	Out of capacity

To what extent are CDFs used for dredged material disposal?

CDF Use for DM Disposal – Percent of District Responding

Problems that Hamper Effective Usage of CDFs

(based on informal survey response)

Mass Balance Approach

Minimize the volume of dredged material

Approaches to Sustainability

- placed into CDFsReduce dredging needs
 - Improve dredging efficiency
 - Alternative placement areas

Manage CDFs to maximize capacity

- Maximize storage volume
- Minimize sediment volume (dewater)
- Facilitate removal

• Recover capacity through beneficial use

Dredging/Disposal Minimization

- Reduce dredging needs
 - Erosion control
 - Structures to minimize shoaling
- Precision/alternative dredging methods
- Alternative placement
 - Open water
 - Beach nourishment

Management

• Maximize CDF capacity

- Sound construction and expansion
- Ideal placement
- Minimize occupied volume (trenching, dewatering)
- Management to facilitate beneficial use
 - Processing or staging areas
 - Active or passive separation
 - Compartmentalization
 - Blending
 - Provide access

Obstacles

- Inconsistent funding
- Limited dredging budget

Beneficial Use

Obstacles

- Cost (rehandling, transport)
- Policy (Federal Standard)
- Cost sharing
 - Unwieldy mechanisms (Section 204)
 - Funding limitations public and private
- Limited advance planning
- Criteria
- Recommendations

Obstacles to Beneficial Use of Dredged Material

Cost Optimization

Present value comparisons

Staged construction

Life cycle analysis

Economies of scale

Findings

- Capacity shortage clearly an issue
- Multifaceted approach
 - BU has most potential
- Need BU policy roadmap
- Integrate planning and operations
- Agency coordination

Strategy

Implementation

Collaboration

- Workshops, National BU Team?
- "How to" tech notes
- Website
- Innovative dredging contracts
- Improve BU marketing
- Sediment source reduction plan
- CDF Inventory
- Tools for cost/life cycle assessment of alternatives

Research needs

Identified Research Needs

- Establishment of Risk-Based Criteria
- Testing Protocols for Beneficial Use
- CDF Characterization
- Benefits Analysis Tool for DMMP
- Dredged Material Processing for Reuse
- Retro-Fitting for Sustainability
- CDF Construction
- Implementation of Sustainability Strategies

Implementation Plan

- Step 1 Real capacity recovery potential
- Step 2 Assess site specific issues

- Step 3 Develop a comprehensive, long term plan for sustainability
- Step 4 Implementation, funding recruitment, permitting, formal agreements in place

QUESTIONS?

Look for a Tech Report out later this FY

http://el.erdc.usace.army.mil/dots/doer/doer.html

