Beneficial Uses of Dredged Material

Richard A. Price Environmental Laboratory richard.a.price@erdc.usace.army.mil

Dredged Material

• What is it?

- >Toxic sludge?
- >Toxic waste?
- Spoil?
- Solid waste?
- > Displaced soil & sediment?

Sources of contamination

Beneficial Use

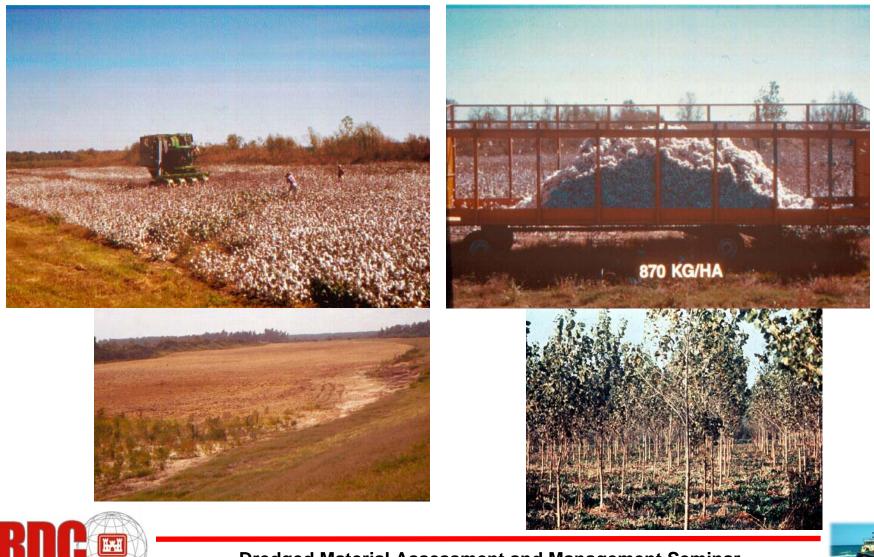
• What is it?

 The use of sediment removed in dredging operations for habitat or land development or as raw material in construction and soil material products.

Beneficial Uses of Dredged Material

Oldies, New and Innovative

Beach Nourishment


Construction Fill

Agriculture

Engineer Research and Development Cer

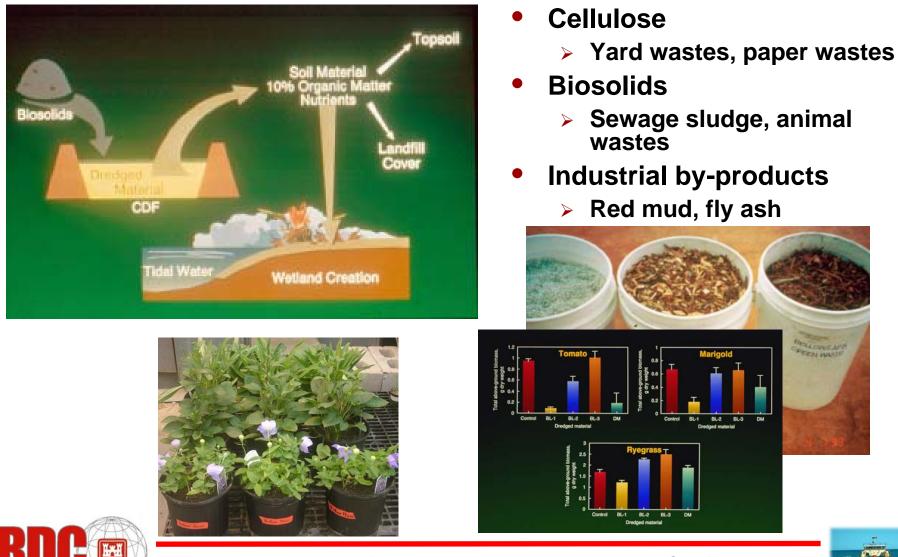
Recreation

Wetland Habitat and Shoreline Protection

Island Habitat

Mineland Reclamation

Dredged Material Recycling


Construction Materials

Blending for Success

Dredged Material to Landscapes

Grand Haven, MI

Two Paths for BU

- Beneficial use is part of the dredging and placement process
 - Regional Sediment Management
 - Keeping sediment in the system
- Beneficial use is part of the CDF recovery process
 - Mining CDFs to reclaim capacity
 - Design CDFs for placement & processing

What is the Need/Problem?

Regional sediment management

- Requires more beneficial use than disposal
- Cost-sharing for increased expense is an issue
- Concerns with water quality/ecological impacts

Need to reclaim CDF capacity – issues with contaminants

- Sand/gravel generally not a contaminant concern resource
 - Low demand in dredging area
 - Logistics may be cost prohibitive partnering
- Fine grained generally a contaminant concern spoil
 - Poor engineering properties Agronomic value?
 - Uncertainty dealing with contaminated material

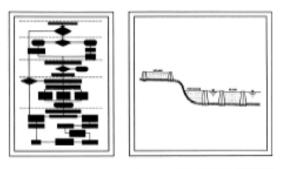
Formula for Success

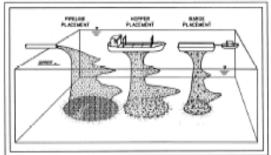
- A four-part formula is usually required for success
 - Fechnical feasibility
 - Legal / regulatory concerns
 - Public support
 - > Economics

Bad Press, Big Mess

Water board may consider port fine By Hank Shaw - Record Staff Writer Published Saturday, January 29, 2005

After months of delays and excuses from the Port over its sale of toxic dredge spoils to state agencies and area construction firms, the patience of the Central Valley Regional Water Quality Control Board has worn thin. Dredge spoils contaminated with toxic metals were sold to dozens and possibly hundreds of sites across Northern California over the past 14 months.

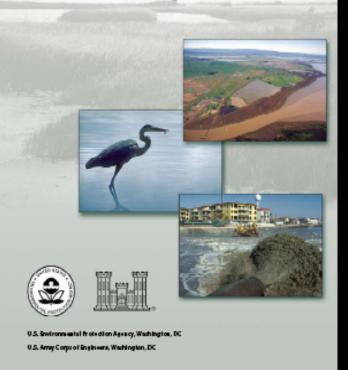



EPA/CE Guidance

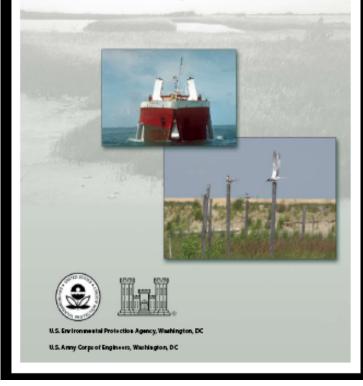
United States Environmental Protection Apency Department of the Array EPA642-8-92-008 U.S. Array Casps of Engineers Revised May 2004

US Army Corps of Engineers Evaluating Environmental Effects of Dredged Material Management Alternatives— A Technical Framework

- BU opportunities
- Physical suitability
- Logistics & Mgt needs
- Environmental suitability – no testing methods specified
 - State/Fed screening criteria
 - Physical & biological tests



New USEPA/USACE Guidance


Identifying, Planning, and Financing Beneficial Use Projects Using Dredged Material

Beneficial Use Planning Manual

The Role of the Federal Standard in the Beneficial Use of Dredged Material from U.S. Army Corps of Engineers New and Maintenance Navigation Projects

Beneficial Uses of Dredged Materials

Regional Guidance

September, 2004 Second Edition

With references to: Upland Beneficial Use of Dredged Material Testing and Evaluation Annotated Bibliography

State Regulations

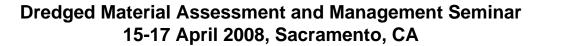
STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

RULES AND REGULATIONS FOR DREDGING AND THE MANAGEMENT OF DREDGED MATERIAL

February 2003

Regulation # DEM-OWR-DR-02-03

Comparison of State Criteria for Beneficial Use of Dredged Material Industrial Use


Contaminant	۱L°	IN⁵	MI	MN℃	NYd	OHe	PA	WIf
Arsenic	0.05*	20		25	14.5	41		0.042
Lead	0.0075*	230		700	150	300		50
Zinc	7,500	10000		70000	2,480	2,800		4,700
PCBs	1	5.3		8	10			
Benzo(a)pyrene	0.8	1.5		4	0.061			0.0088
Benzene	0.03	0.67		4	0.06			
	Cleanup –	Cleanup –		Cleanup —	Reuse –	Sludge		Reuse -
Criteria Source	industrial	Industrial		Industrial	Specific	roles		general

All units are in milligrams per kilogram (mg/Kg) of material except * in milligrams per liter (mg/L) of leachate.

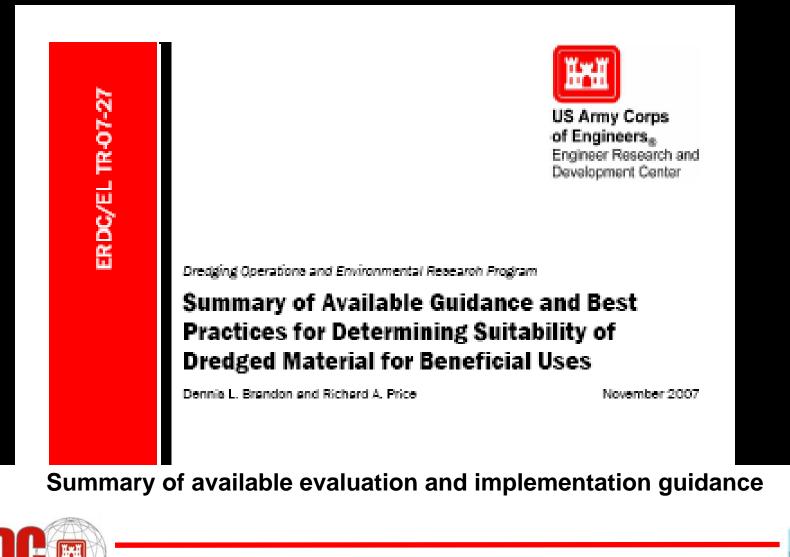
a: Illinois values are based on the most restrictive exposure route for that contaminant from the TACO Tier 1 industrial tables.⁷³ For ionizable contaminants, a soil pH of 7.0 is assumed for the groundwater ingestion route.

- b: Indiana values are based on the RISC tables for an industrial soil.74
- c: Minnesota criteria are based on SRV Tier 2 chronic industrial standards.%
- d: New York metal criteria are based on Suggested Metals Limits for General Reuse Options,⁹⁷ category A; surficial use of contaminated material prohibited. Organic criteria based on DER TAGM 4046.⁹⁸
- e: Ohio values are based on monthly average limits contained in Ohio's sewage sludge rules.²² There are additional limits for a single application and a total lifetime loading limit.
- f: Wisconsin criteria are based on NR 538, Appendix 1, Table 1B. These criteria qualify the material as Category 1, allowing its application in nearly all beneficial uses. Less restrictive criteria may be applicable following evaluation by the WDNR.

Comparison of State Criteria for Beneficial Use of Dredged Material Compost or Topsoil, Unrestricted Use

			-	-				1
Contaminant	ILª	IN⁵	MI°	MN ^d	NY ^e	OH	PA	Wla
Arsenic	0.05*	3.9	7.6	10	7.5	41		0.042
Lead	0.0075*	81	400	400	Background	300		50
Zinc	7,500	10000	65	1,242**	Background	2,800		4,700
PCBs	1	1.8	1.2	1.2	1.0			
Benzo(a)pyrene	0.09	0.5	2	1.0**	0.061			0.0088
Benzene	0.03	0.034	0.1	0.034**	0.06			
Criteria Source	Cleanup – Residential	Cleanup – Residential	Use- specific regulation	Cleanup – Residential	Specific reuse and general cleanup	Sludge rules		Reuse – General

All units are in milligrams per kilogram (mg/Kg) of material except * in milligrams per liter (mg/L) of leachate.


a: Illinois values are based on the most restrictive exposure route for that contaminant from the TACO Tier 1 residential tables.⁷³ For ionizable contaminants, a soil pH of 7.0 is assumed for the groundwater ingestion route.

- b: Indiana values are based on the RISC tables for a residential soil.74
- c: Michigan compost criteria are based on draft rules¹⁸³ for Part 115.¹³
- d: Minnesota criteria are based on SRV Tier 2 chronic residential standards,96 except for **, which are from SLV Tier 1 standards194.
- e: New York criteria are based on DER TAGM.⁹⁸ Background can be a site or regional background, as appropriate. Compost values in 6 NYCRR Part 360-5¹⁶ may apply if the dredged material is used as a limited component.
- f: Ohio values are based on monthly average limits contained in Ohio's sewage sludge rules²². There are additional limits for a single application and a total lifetime loading limit.
- g. Wisconsin criteria are based on NR 538, Appendix 1, Table 1B. These criteria qualify the material as Category 1, allowing its application in nearly all beneficial uses.

New Guidance for Suitability

Dredged Material Assessment and Management Seminar 15-17 April 2008, Sacramento, CA

oor Research and Development C

Physical Suitability

Dredged Material Sediment Type								
Beneficial Use Options	Rock	Gravel & Sand	Consolidated Clay	Silt/Soft Clay	Mixture			
		Engineere	d Uses	- -	•			
Land creation	Х	X	Х	Х	Х			
Land improvement	Х	Х	Х	Х	Х			
Berm creation	Х	Х	Х		Х			
Shore protection	Х	Х	Х					
Replacement fill	Х	Х			Х			
Beach nourishment		Х						
Capping		Х	Х		Х			
		Agricultural/Pr	oduct Uses		1			
Construction materials	Х	Х	Х	Х	Х			
Aquaculture			Х	Х	Х			
Topsoil				Х	Х			
		Environmental Er	hancements					
Wildlife habitats	Х	Х	Х	Х	Х			
Fisheries improvement	Х	Х	Х	Х	Х			
Wetland restoration			Х	Х	Х			
Source: http://el.erdc.usac	ce.army.mil	/dots/budm/types	html#mixture.	•	•			

Table 2. Suitability of dredged material for various BUs.

Environmental Suitability

Dredged Material Assessment and Management Seminar 15-17 April 2008, Sacramento, CA

ngineer Research and Development Cen

Contaminated Sediment?

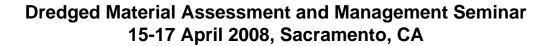
Define Contaminated

- Rendered impure
- Rendered harmful (unsuitable)
- Define Clean
 - Zero (undetectable) metals, organics, etc
 - Causes no adverse effects (suitable)

WARNING: Keep out of reach of children under 6 years of age. If you accidentally swallow more than used for brushing, seek professional help or contact a poison control center immediately."

- FDA Mandated Warning on Fluoride Toothpaste Labels

Do the benefits outweigh the risks?



Testing Guidance for Environmental Suitability

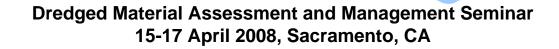
- Evaluation of Dredged Material Proposed for Ocean Disposal (Ocean Testing Manual)
 - Marine Protection, Research and Sanctuaries Act (1972)
 - > **Pass/fail testing for suitability** Generally applies to BU
- Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. - Testing Manual (Inland Testing Manual)
 - Section 404 CWA (1977)
 - > **Pass/fail testing for suitability** Generally applies to BU
- Evaluation of Dredged Material Proposed for Disposal at Island, Nearshore, or Upland Confined Disposal Facilities – Testing Manual (Upland Testing Manual)
 - NEPA and CWA
- Future Guidance Beneficial Uses Testing Manual (BUTM)

Reclaim CDF Capacity - Beneficial Use

- Material assumed not suitable for open water disposal
 - Assumed to be contaminated
- Material from mixed dredging projects
 - Sampling and characterization segregate, blend?
- Testing and evaluation procedures are not well established
 - State regulatory requirements vary widely
- Emerging Issues Noxious plants

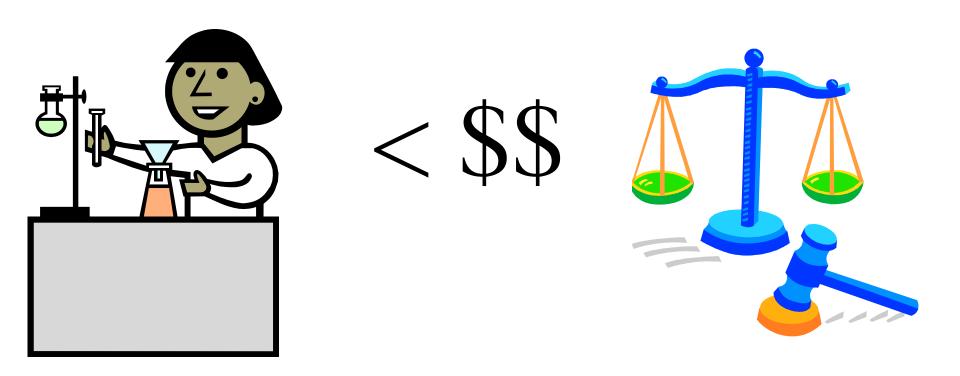
Addressing Contaminant Status

- Suitability State regulatory guidance for reuse.
 - State criteria, cleanup levels, Eco-SSLs, etc.
- Exposure effects Contaminant pathways.
 - Effects on water quality (solubility) WQS
 - Bioavailability to plants and animals
 - Human contact
- Treatment Options Material may be treated to meet regulatory compliance.
 - Phytoremediation, bioremediation, chemoremediation, etc.
- Adverse impacts Restricted uses.
 - Exposure/effects response, risk assessment.



Challenges

- Negative press and perceptions
- Clear guidance for implementation
- Finding willing stakeholders
- Long-term sustainability
- Liability, regulations



The Bottom Line

Beneficial Uses of Dredged Material

U.S Army Corps of Engineers | Engineer Research and Development Center | U.S. Environmental Protection Agency

Most dredged material can be a valuable resource and should be considered for beneficial uses. The purpose of this site is to demonstrate potential beneficial uses of dredged material by presenting existing case studies as examples. Category descriptions, procedural outlines, and reference resources are also provided.

This site is a collaborative effort between U.S. Environmental Protection Agency and U.S. Army Corps of Engineers

Web Resources

- Dredging Operations Technical Support <u>http://el.erdc.usace.army.mil/dots/dots.html</u>
- Beneficial Uses of Dredged Material <u>http://el.erdc.usace.army.mil/dots/budm/budm.</u> <u>cfm</u>
- Dredging Operations and Environmental Research Program <u>http://el.erdc.usace.army.mil/dots/doer/doer.ht</u> <u>ml</u>