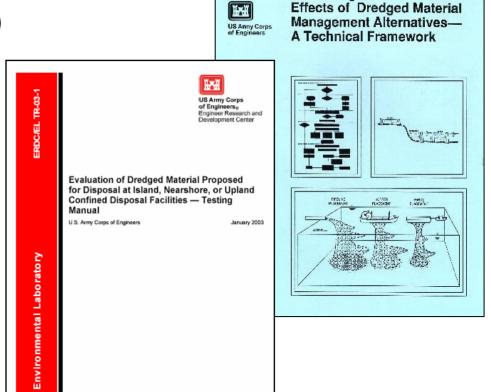
# Upland Disposal Problem Formulation and Conceptual Model Development

Trudy J. Estes
US Army ERDC, Vicksburg, MS


Email: Trudy.J.Estes@usace.army.mil



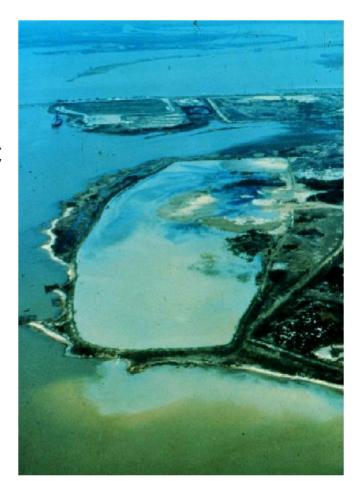


## **Governing Framework**

- Regulatory
  - Clean Water Act (CWA)
- Technical
  - USACE/EPA Technical Framework
  - Upland Testing Manual (UTM)



**€EPA** 


**Evaluating Environmental** 





#### **Clean Water Act**

- Regulatory (Section 404)
- Requires return flow
  - Trigger for RCRA Subtitle C Exclusion<sup>1</sup>
  - BUT states can still choose to regulate DM as solid waste



1 Palermo and Wilson 2000



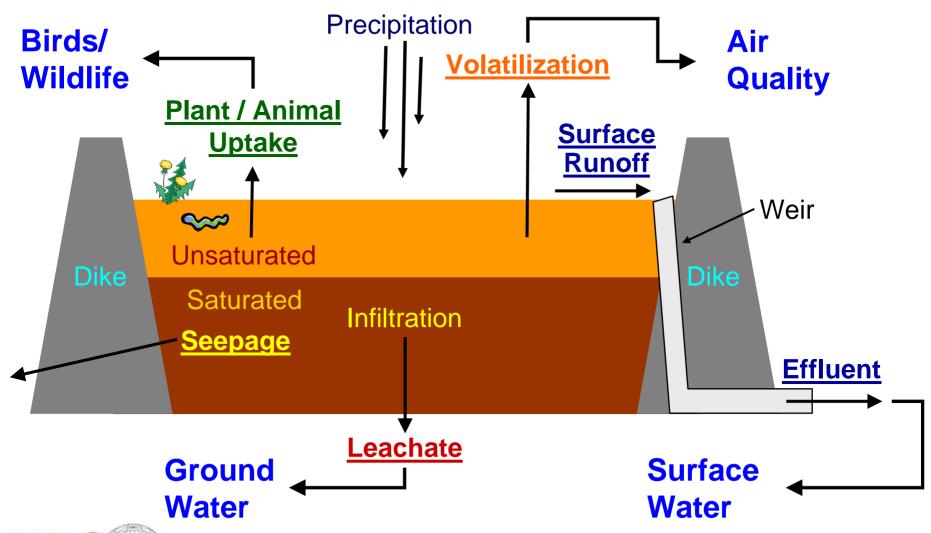


## **USEPA/USACE** Technical Framework

- Guidance (not regulatory)
- Articulates NEPA, CWA, MPRSA requirements
- Alternatives screening
  - http://el.erdc.usace.army.mil/dots/pdfs/epa/tech-frame-rev04.pdf
  - Open water
  - Confined disposal
  - Beneficial use
- Environmental suitability






## **Upland Testing Manual**

- Guidance (not regulatory)
  - http://el.erdc.usace.army.mil/dots/pdfs/trel03-1.pdf
- Concerned with contaminant exposures associated with CDFs
- Develop lines of evidence to support decision making
  - Management requirements
  - Need for controls
  - > Alternatives analysis
  - > Evaluation of risk, inform risk management





## **Conceptual Model - Contaminant Pathways**





## **CDF Pathway End Points**

- Effluent and Runoff
  - WQ Standards and/ or WC Toxicity after Mixing
- Leachate
  - Applicable WQ Standards after Attenuation (groundwater or surface water)
- Volatiles
  - OSHA Human Exposure Standards after Dispersion
  - Health Based Air Concentration for Acceptable Risk
- Plant and Animal Uptake
  - Comparison of uptake to Reference Soil
  - Comparison to EcoSSL's





## **UTM – A Tiered Approach for Evaluations**

| Tier I   | Existing Info                             |         | þ             |                |  |
|----------|-------------------------------------------|---------|---------------|----------------|--|
| Tier II  | Screening Evaluations                     | olexity | fort Required | ost            |  |
| Tier III | Effects-Based Testing and Evaluations     | Comp    | Data/Effort   | $\mathfrak{I}$ |  |
| Tier IV  | Case Specific Studies/<br>Risk Assessment |         |               |                |  |



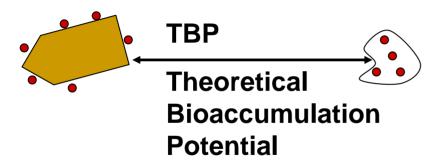


## Tier I – Existing Information

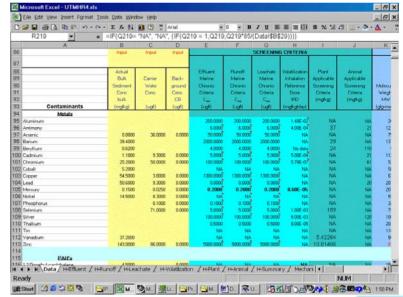
- "Reason to believe"
  - Need for Pathway Evaluations
- Compile
  - Available sediment and water chemistry
  - Sediment physical characterization
  - Municipal, industrial, surface water inputs
  - Project info (maintenance vs. new work)
  - Available data from other agencies diversity studies, tissue sampling
- Establish Relevant Pathways and Contaminants of Concern

#### Proceed to Tier II for relevant pathways






## Tier II - Screening




Effluent; Runoff; Leachate;

Volatiles (Henry's Law)



#### **Animal Uptake**



#### **Plant Uptake - PUP**

Diethylenetriamine-pentaacetic acid (DTPA) Extract





### **Tier II Outcomes**

#### Definitive

- WQC met with attainable dilutions/attenuation
- Volatilization exposures acceptable
- > Plant and animal uptake levels acceptable

#### Not definitive

- Contaminants present have no WQC
- Predicted dilution requirements high
- Predicted exposures potentially unacceptable
- Data or model inconsistency

Resolve specific issues with Tier III Testing and Evaluations





## **Tier III Testing**

- Effects Based Testing and Evaluations
  - Physical modeling of contaminant exposure effects
  - Chemical and Biological Tests
- Models for Mixing, Attenuation, Dispersion

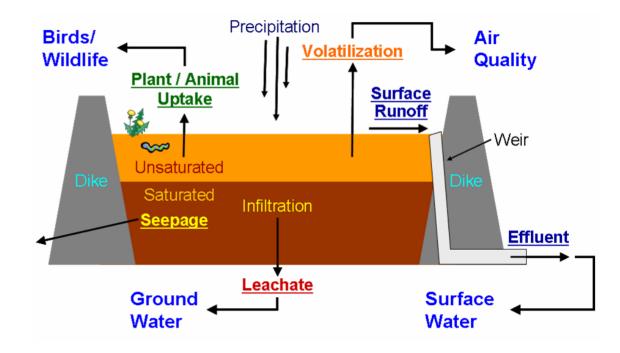
Tier III test results provide data for Tier IV Risk Assessments





## **Tier IV Case Specific Studies**

- Formal quantitative risk assessment
- Addresses specific, well-defined questions
- Rarely necessary for navigation dredging
- Useful if
  - Contamination is substantial
  - Decision-making information not otherwise available
  - The evaluation will provide essential information
- Unnecessary use of resources when
  - Merely a refinement of Tier III
  - Definitive determination unchanged






## **Up Next**

#### Pathway Evaluations

- > Effluent
- > Runoff
- Volatilization
- Leachate
- Biological







#### References

- USEPA/USACE 2004. "Evaluating Environmental Effects of Dredged Material Management Alternatives – A Technical Framework", EPA842-B-92-008 Revised May 2004, U.S. Environmental Protection Agency, Washington, D.C.
- US Army Corps of Engineers 2003. "Evaluation of Dredged Material Proposed for Disposal at Island, Nearshore, or Upland Confined Disposal Facilities — Testing Manual", ERDC/EL TR-03-1, Engineer Research and Development Center, Vicksburg, MS.
- Palermo and Wilson 2000. "Corps Of Engineers Role In Contaminated Sediment Management And Remediation", proceedings of Contaminated Sediments: Science, Law and Politics, the 8th Section Fall Meeting, American Bar Associate, Section of Environment, Energy, and Resources, New Orleans, Louisiana, September 20-24, 2000, U.S. Army Engineer Research and Development Center, Waterways Experiment Station, Vicksburg, MS



