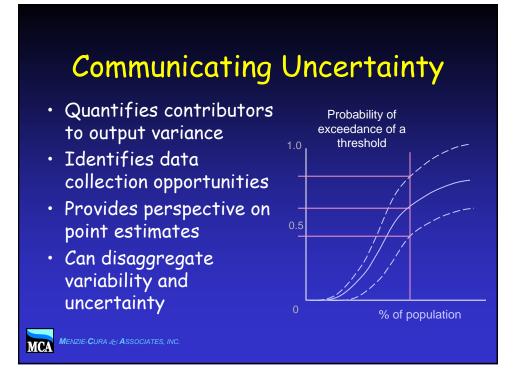
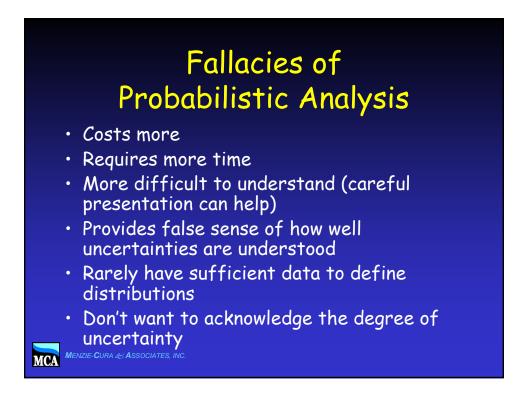
Uncertainty Analysis as an Aid rather than a Hindrance to Decisionmaking


Katherine von Stackelberg Menzie-Cura & Associates, Inc. <u>kvon@menziecura.com</u> MENZIE-CURA & ASSOCIATES, INC. 781.782.6146

MCA

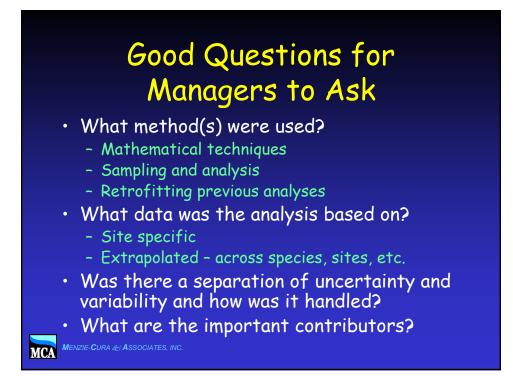
<section-header><section-header><list-item><list-item><text>



- Models need only be sufficiently accurate to facilitate correct decisions
- Effective use of models requires:
 - Knowledge of potential inaccuracies
 - Characterization of uncertainties
 - Specification of criteria to evaluate model performance

Different Audiences Require Different Approaches

- General public
 - May not understand technical details
 - May have preconceived ideas
- Decisionmakers
 - May understand statistics but are not statisticians
 - Want to know the "bottom line" so what do I do with this information?



A Probabilistic Means to an End

- Quantifying uncertainty
 Other methods available
- Quantifying variability
 - Distribution of PCBs within a population
- Example from the Hudson River
 - Human health risk assessment
 - Ecological risk assessment
 Population-level effects
 - Most efficient means of organizing the available data given quality, quantity, and considering management goals

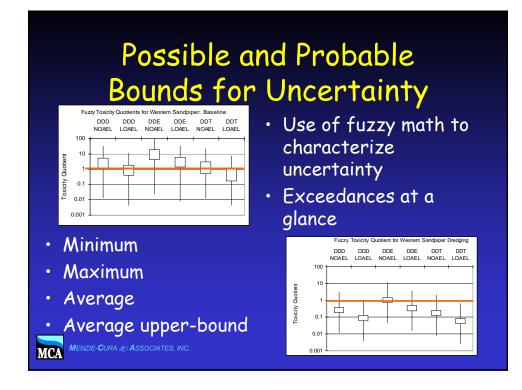
IENZIE-CURA & ASSOCIATES, II

MCA

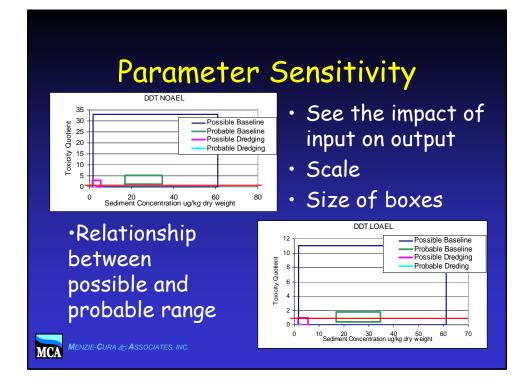
Strategies for Understanding Uncertainty

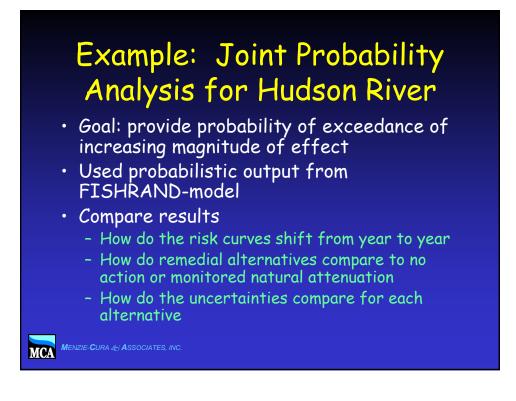
- Look to previous analyses
- · Break open the models review results
- Good understanding and evaluation of available data
- Tiered approaches
 Don't start with 2-D probabilistic
- Reasonable to collapse back to a "bright line" with a context

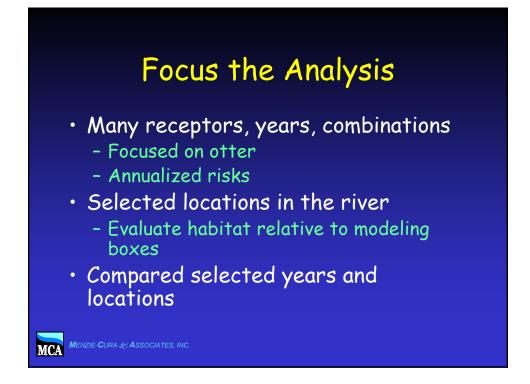
MCA MENZIE-CURA & ASSOCIATES, INC.

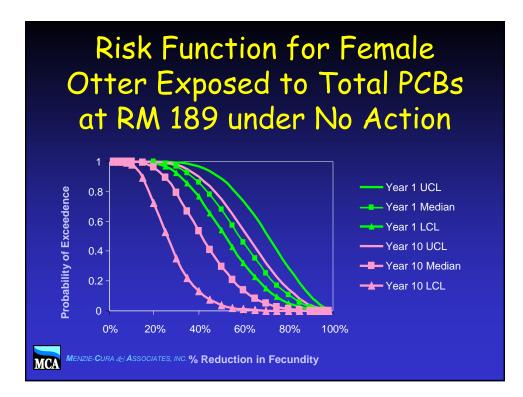

Example: Evaluation of Open-Water Disposal of Dredged Material

- Moss Landing Harbor, California
- Assemble available data
 - First cut at risks
 - Identify uncertainties, data needs
- Provide a framework for backcalculating threshold levels in sediment or benthos


MENZIE-CURA & ASSOCIATES, INC.


MCA





Interpretative Matrix					
 Use possible range to express 	Average Case (lower bound of the probable range)	Upper Bound Average Case (upper bound of the probable range)	Maximum Case (upper bound of		Confidenc Level
confidence	N \leq 1 and L \leq 1	N \leq 1 and L \leq 1	N ≤1 and L ≤1	NSR	High
• Use probable range	$N \le 1$ and $L \le 1$ $N \le 1$ and $L \le 1$	N ≤1 and L ≤ 1 N ≤1 and L ≤ 1	N> 1 and L ≤1 N> 1 and L> 1	NSR NSR	High Moderate
to determine	$N \le 1$ and $L \le 1$	N > 1 and L \leq 1	N> 1 and L \leq 1	NSR	Moderate
potential for risk	N ≤1 and L ≤ 1 N ≤1 and L ≤ 1	N > 1 and L ≤ 1 N > 1 and L > 1	N > 1 and L> 1 N > 1 and L > 1	NSR NSR	Moderate Low
	N > 1 and L ≤ 1	N > 1 and L ≤ 1	N > 1 and L \leq 1	Potential Risk	
LOAELs evaluated separately	N > 1 and L ≤ 1 N > 1 and L ≤ 1 N > 1 and L > 1	N > 1 and L \leq 1 N > 1 and L > 1	N > 1 and L > 1	Potential Risk Potential Risk	Moderate High
 NOAELs and LOAELs evaluated 	N > 1 and $L \le 1$	N > 1 and L \leq 1	N > 1 and L > 1	Potential Risk	Moder

Knowing What We Don't Know

- Insights from the bioaccumulation modeling literature
- Insights from sensitivity analyses conducted by modelers themselves
- Bioaccumulative compounds
 - Log K_{ow}
 - Percent lipid
 - Total organic carbon or BSAF
 - Partitioning in water column

Some of the Challenges

- How to best characterize exposures and work with spatial and temporal scales
- Expected value, upper bound, lower bound for receptor-year-location-alternative
 - Many, many results to compare!
 - Visualizing the results can be difficult
- Risk communication
 - Decisionmakers
 - Stakeholders

