Palos Verdes Shelf Pilot Capping – Dredged Material Fate Modeling For Cap Placement

Joe Gailani, Steven Bratos, Billy Johnson, James Clausner U. S. Army Engineer Research and Development Center Coastal and Hydraulics Laboratory

PVS modeling Outline

• PV Site Description

Ĭwĭ

- STFATE and MDFATE Model Objectives
- MDFATE Input and Results
- STFATE Input and Results
- Summary/Conclusions

Placement Methods

- Conventional (point placement) Queen's Gate Sediments in LU and SU
- Spreading (cracked hull) All Borrow Material in LD

POS MODELING Objectives Pos Modeling Objectives Setematic capping process MDFATE Extent of single and multiple placement mounds Estimate required volumes (hopper & in-situ) to build cap Guidance on spacing and locations of single loads – monitoring plans

MDFATE Processes Modeled

- Predicts Mound geometry from multiple open water disposals
- Conventional and Spreading
- Uses modified versions of STFATE and LTFATE
- Time Scale Days to years (during & after disposal)

MDFATE Limitations

- STFATE process limitations
- Does not include resuspension
- 2D non spatially varying currents
- Model sensitivity to geotechnical parameters

MDFATE Simulations

- Predictive/Scoping
 - (Jan-June 00), > 50 Simulations
 - Vary GSD, Currents, Dredge Velocity
- Operations
 - Jul-Aug 00 (10 Simulations)
 - Some actual data, original void ratios

• Hindcast

- Mar 01 July 01 (>30 Simulations)
- Lack definitive full cap thickness LU

Sources of MDFATE Input

- ADISS position, duration, velocity,heading, load, draft
- Hopper Samples GSD, SG
- Cores In situ void ratio
- Currents ARESS, ADCP, ADCIRC
- Hindcast thickness SPI/Cores*

MDFATE Input Typical Values		
	LU and SU	LD
	(Queens Gate	(AIII
Variables	Conventional)	Spreading)
Load	1,000 cu m	1,200 cu m
Duration	3.5 - 4.5 minutes	7.5 minutes
Velocity	0.3 – 0.4 knots	2 knots
In situ Void Ratio	1.05*	0.75

MDFATE Modeling Summary

Conventional Placement

- Single loads, cap thickness underpredicted, extent good agreement, no currents
- Full (45 loads) thickness and extent, reasonable agreement with tidal currents
- Slope effects not well modeled
- Void Ratio is critical for good thickness predictions
- Spreading
 - Reasonable agreement on single load (no currents)
 - Reasonable agreement on multiple loads
- Additional sensitivity testing needed

STFATE Simulations

- Predictive/Scoping
 - (Jan-June 00), ~ 5 Simulations
 - Impact Velocities, Far Field Kelp Impacts

Hindcast

- Mar May 01 (>10 Simulations)
- Surge Velocity Comparisons
- Far Field Comparisons

Measured vs Predicted Surge Currents

ĨĦĬ

STFATE Modeling Summary

- STFATE surge speeds compared reasonably well to measured surge speeds
 - STFATE tends to under estimate with increasing distance from release
 - For steeper slope at SU agreement not as good
- Plume characteristics
 - Qualitative agreement
- Impact Velocity
 - Averaged 10 ft/s

PV Modeling- Summary

- MDFATE Reasonable agreement for mound thickness, good agreement on mound extent, volume losses still to be predicted
 - Lack of resuspension under predicts single load thickness
- STFATE Surge predictions agree well with measurements
 - Slope effects, >200 m not well predicted
- Insufficient data for quantitative far field plume comparisons