Application of Risk Assessment in the Evaluation of Dredged Material

Tab ODR. TODD S. BRIDGES

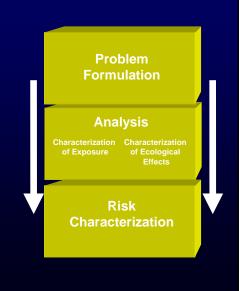
KEY WORDS: Tier IV, Bioaccumulation, Ecological Risk Assessment, Human Health Risk Assessment

Ecological Risk Assessment

What is Ecological Risk Assessment?

"The process that evaluates the likelihood that adverse ecological effects may occur or are occurring as a result of exposure to one or more stressors."

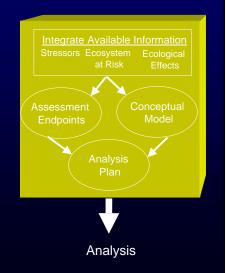
(USEPA 1992)


Existing Guidance

- U.S. Environmental Protection Agency (USEPA). (1989). Risk Assessment Guidance for Superfund, Volume 1 – Human Health Evaluation Manual, Part A, Interim Final. EPA/540/1-89/0002. Publication 9285.7-01A. Office of Emergency and Remedial Response, Washington, D.C. <u>http://www.epa.gov/superfund/programs/risk/tooltrad.htm#gdec</u>
- U. S. Environmental Protection Agency. (USEPA). (1997a). Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments (interim final). Environmental Response Team, Edison, NJ. <u>http://www.epa.gov/superfund/programs/risk/tooltrad.htm#gdec</u>
- United States Environmental Protection Agency (USEPA). (1998). Guidelines for Ecological Risk Assessment. USEPA EPA/630/R095/002F 01 APRIL 1998. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, DC, 175 pp. <u>http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=12460</u>
- U.S. Army Corps of Engineers. 1999. Risk Assessment Handbook Volume I: Human Health Evaluation. EM 200-1-4 <u>http://www.usace.army.mil/inet/usace-docs/eng-manuals/em200-1-4/toc.htm</u>
- U.S. Army Corps of Engineers. 1996. Risk Assessment Handbook Volume II: Environmental Evaluation. EM 200-1-4 <u>http://www.usace.army.mil/inet/usacedocs/eng-manuals/em200-1-4vol2/</u>
- Cura, J.J., Heiger-Bernays, W., Bridges, T.S., and D.W. Moore. (1999). Ecological and human health risk assessment guidance for aquatic environments. Technical Report DOER-4, US Army Corps of Engineers, Engineer Research and Development Center, Dredging Operations and Environmental Research Program, December. http://el.erdc.usace.army.mil/dots/doer/pdf/trdoer4.pdf

Ecological Risk Assessment

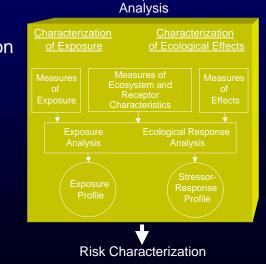
Components of ERA


- Problem Formulation
- Analysis
 - Characterization of Exposure
 - Characterization of Ecological Effects
- Risk Characterization

Ecological Risk Assessment

Problem Formulation

- Why is risk assessment being performed?
 - Screening-level activities
 - Identification of stressors, the ecosystem, and potential effects
- Assessment endpoints
- Development of conceptual model
 - Risk hypotheses
- Analysis plan
 - Study design, data needs
 - Selection of measures

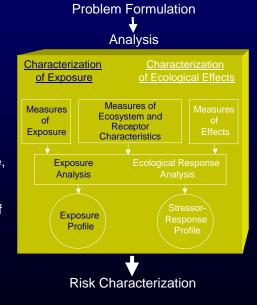


Problem Formulation

Ecological Risk Assessment

Analysis

 Technical evaluation of data to reach conclusions about the relationship between stressors and ecological effects

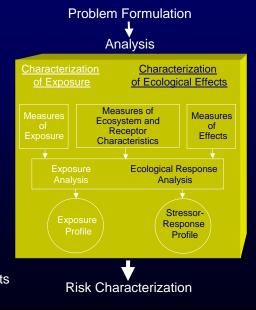

Problem Formulation

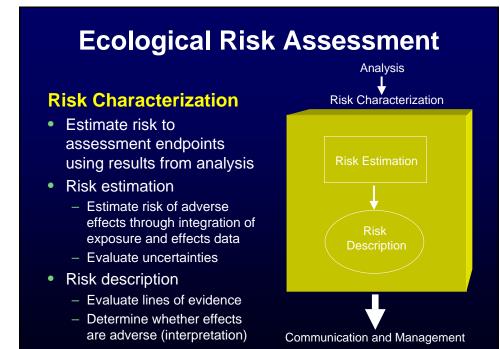
Ecological Risk Assessment

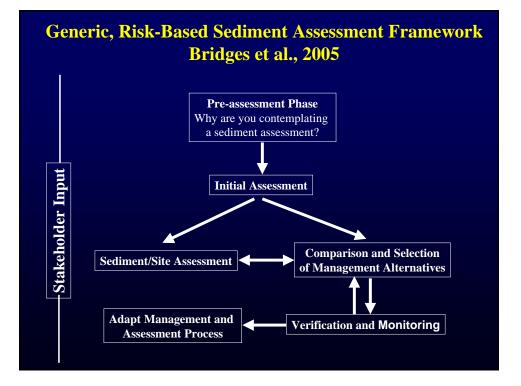
Analysis

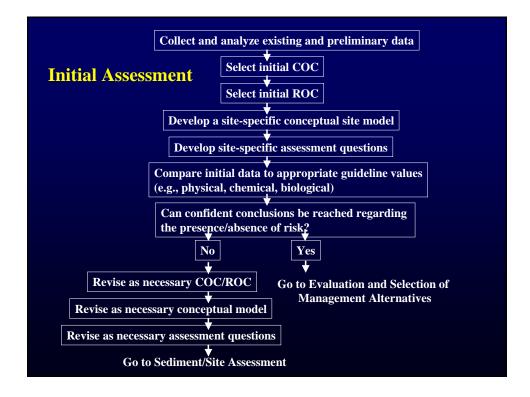
Characterization of Exposure

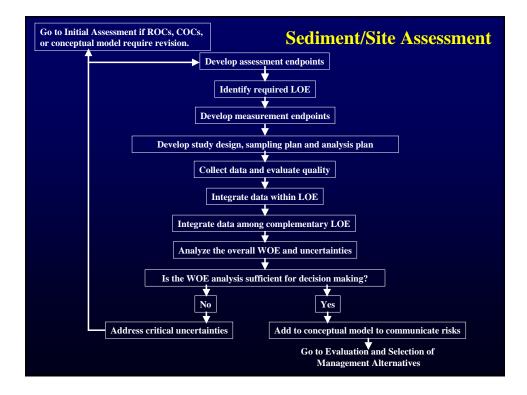
- Describe contact between stressors and receptors
- Exposure analysis
 - Describe source, release, temporal and spatial distribution of stressor, and extent and pattern of contact with receptors
- Exposure profile
 - Narrative and numerical description

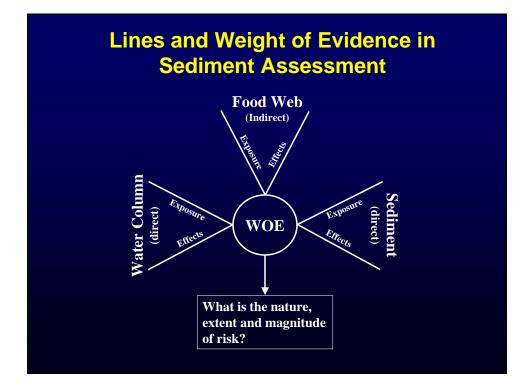


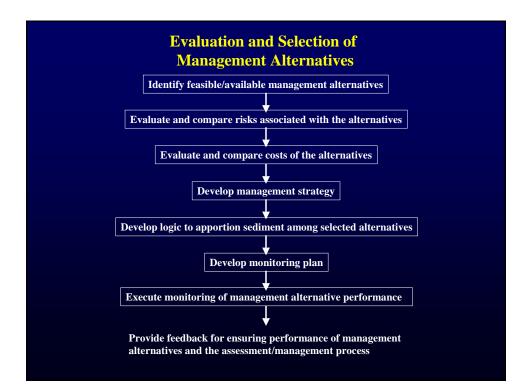

Ecological Risk Assessment


Analysis


Characterization of Ecological Effects


- Linking stressor with effect
- Ecological response analysis
 - Determine relationship between stressor levels and ecological effects
 - Evaluate likelihood that effects are or will occur
 - Link measures of effects with assessment endpoints





<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Screening Sediments Using Sediment Quality Guidelines (SQG)

- SQG: Collective term for values used to differentiate sediment contaminant concentrations of little concern from those predicted to have adverse biological effects
 - Mechanistically derived
 - Empirically derived

SQG Derivation Methods

- Mechanistic Derivation Methods
 - Equilibrium Partitioning (EqP) sediment:water partitioning of organics to predict concentrations above which effects are expected based on surface water quality criteria
 - Simultaneously Extracted Metals/Acid Volatile Sulfides (SEM/AVS) - sediment:water partitioning of metals (Cd, Cu, Hg, Ni, Pb, and Zn) to predict concentrations below which effects are not expected

SQG Derivation Methods

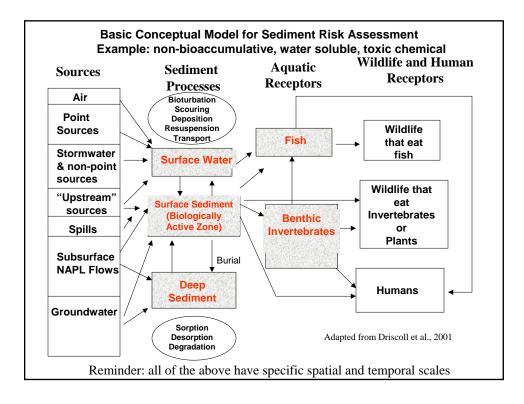
Empirically Derived Methods

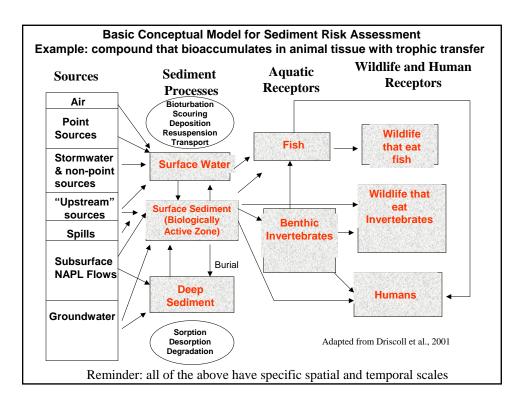
- Apparent Effects Threshold (AET) sediment contaminant concentration above which the biological response of concern was always observed in the data set from which the values were derived
- Effects Range Low/Effects Range Median (ERL/ERM)- statistical analysis of sediment chemical concentrations with biological responses using only "effect" data
- Threshold Effects Level/Probable Effects Level (TEL/PEL) - statistical analysis of sediment chemical concentrations with biological responses using "effect" and "no effect" data

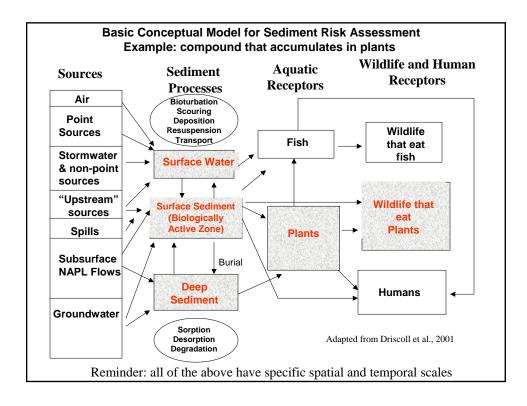
SQG Uncertainties

- Analysis limited to chemicals for which you have SQGs
- SQGs do not address interactions of chemicals
- SQGs do not address concerns due to bioaccumulation and trophic transfer
- SQGs developed for one environment have no relevance for other environments
- Reliability of EqP and SEM/AVS has not been quantified
- False negative and positive rates can be high
 - ~10% probability of toxicity when below <u>all</u> ERLs (Long et al. 1998)
 - Of 239 samples that exceeded at least one ERM, only 38% were toxic to amphipods (O'Connor et al. 1998)

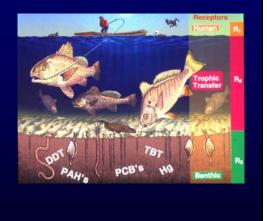
SQG "Do's and Do not's"


SQGs <u>do</u>:


- Help determine the need for additional evaluation of the likelihood for <u>effects</u>
- Focus scope of additional study (e.g., reduce # of COC, ROC, or pathways to be considered in baseline assessment)
- SQGs <u>do not</u> provide quantitative estimates of risk
 - Error rates can be large
 - Some pathways not considered, e.g., bioaccumulation
- SQGs are not suitable for use as remedial targets or cleanup standards.


Conceptual Models

- Narrative and/or graphic descriptions of predicted relationships between ecological components and stressors in a system
 - Defines problem
 - Guides technical and managerial approach to the problem
 - Basis for developing risk hypotheses
- The completeness and accuracy of a risk assessment are dependent on the thoroughness of problem formulation and conceptual model development



Assessing Exposure

- Direct exposure to sediment-dwelling organisms
- Direct exposure to organisms in the water column
- Indirect exposure through trophic transfer of contaminants
 - Human receptors
 - Ecological receptors

TrophicTrace

- Microsoft[®] Excel Add-In and stand alone v.
- Steady-state bioaccumulation model based on Gobas (1993 and 1995) for organics

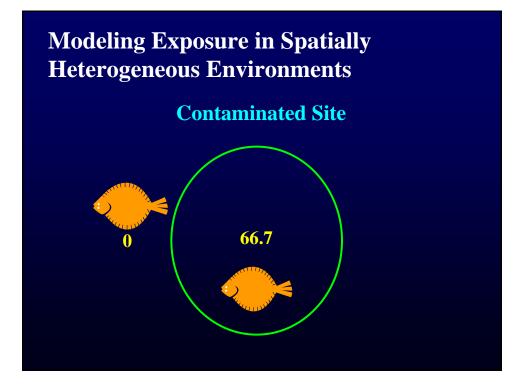
TrophicTrace

 Image: A state of the stat

- Uptake and trophic transfer of inorganics are modeled using empirical BCFs or Trophic Transfer Factors (TTF)
- Default sediment-driven food web can be edited

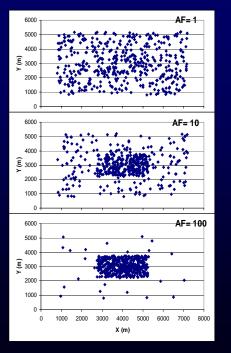
TrophicTrace

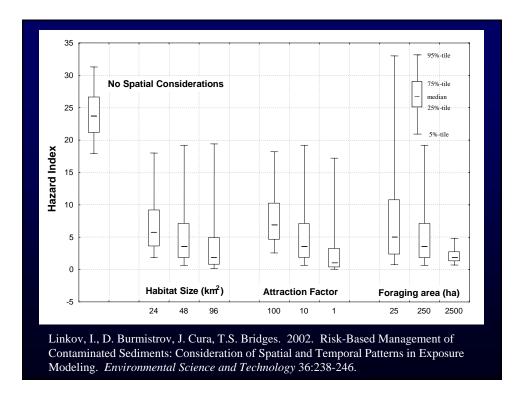
- Calculates cancer risk and hazard indices for humans via fish ingestion
- Can calculate risks to ecological receptors, e.g., fish, osprey, bald eagle, mink, and otter

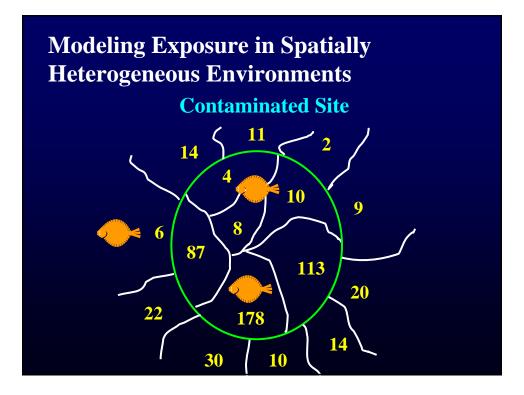


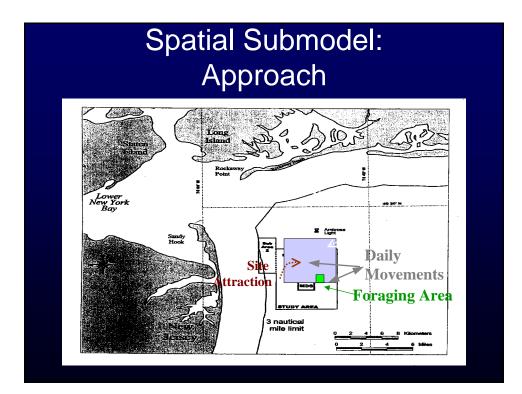
- Designed as flexible tool that can be customized for region/site-specific use
- http://el.erdc.usace.army.mil/trophictrace/index.html

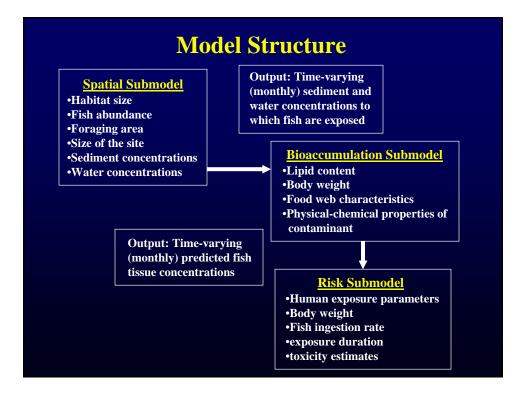
Spatial/Temporal Scales of Predicting Far-field Impacts

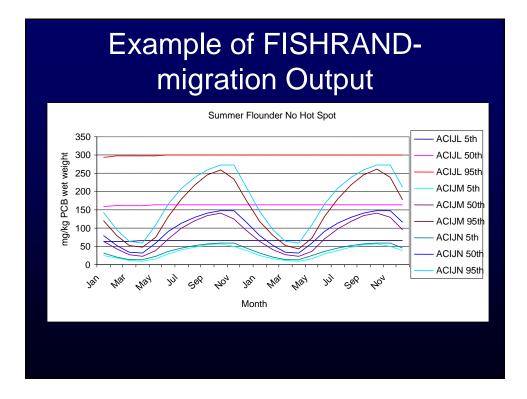

- Contaminant concentration varies over space/time at sites
- Animals spend variable amounts of time in or around sites
- Exposure estimates must include spatial/temporal variables





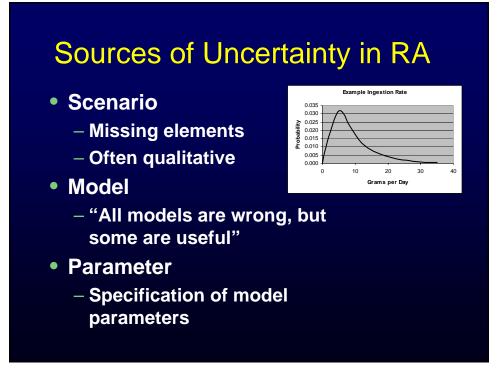

Spatial Issues in Exposure Assessment


- Disposal sites are relatively small (3.75 km²)
- Fish mobility varies among species
 - Many recreational and commercial species range over large areas
- Do disposal sites attract fish?
 - How will this affect exposure?

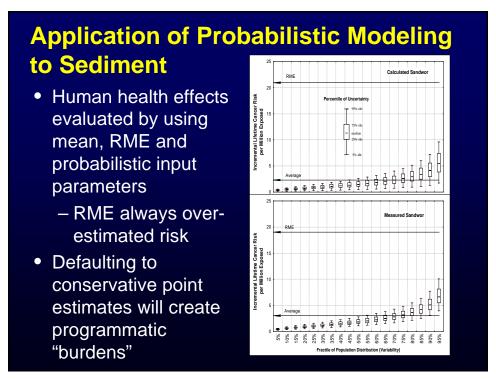


Sources of Uncertainty in Aquatic Systems

- Sediments are part of a complex, dynamic system
 - Water and sediment move
 - Gradients are steep
 - Species are highly mobile
 - Food webs can be complex

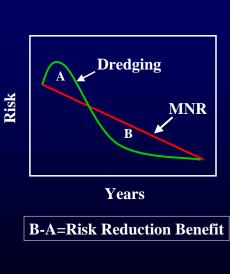


Uncertainty: "The state of being in doubt"


- Uncertainty due to incertitude or ignorance
 - Can collect more data/information
- Uncertainty due to variability
 - Known population heterogeneity
 - Cannot be reduced only better understood
- Both important consider separately when possible

"Teach yourself to work in uncertainty" Bernard Malamud

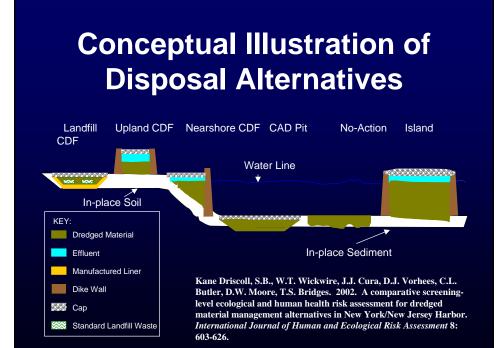
Uncertainty in Sediment Assessments


- Vorhees, D.J., K. von Stackelberg, S.K. Driscoll and T.S. Bridges. 2002. Evaluation of sources of uncertainty to improve dredged material evaluations for open water disposal, *Human and Ecological Risk Assessment* 8(2):369-389
- von Stackelberg, K., D. Burmistrov, D. Vorhees, T.S. Bridges, I. Linkov. 2002. Importance of uncertainty and variability to predicted risks from trophic transfer of PCBs in dredged sediments. *Risk Analysis* 22: 499-512.
- Linkov, I, K. von Stackelberg, D. Burmistrov, T.S. Bridges. 2001. Ecological risk assessment: uncertainty and variability from trophic transfer in management of contaminated dredged sediments. *The Science of the Total Environment* 274: 255-269.

Risk Characterization and Management

- Value of comparative approaches

 NAS report
- Risks and uncertainties exist for each management alternative
 - There is no zero-risk option



Case Study: NY/NJ Harbor

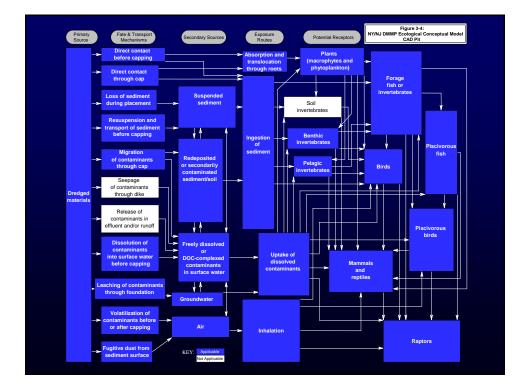
Issues

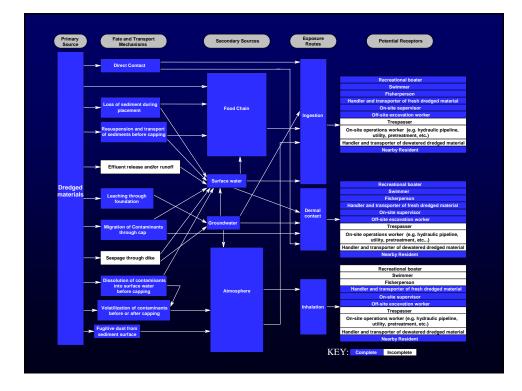
- Harbor among most polluted in U.S.
- >10⁶ yd³ fail regional criteria for ocean disposal
- Existing disposal site closed 1 Sep. 97
- Proposed deepening

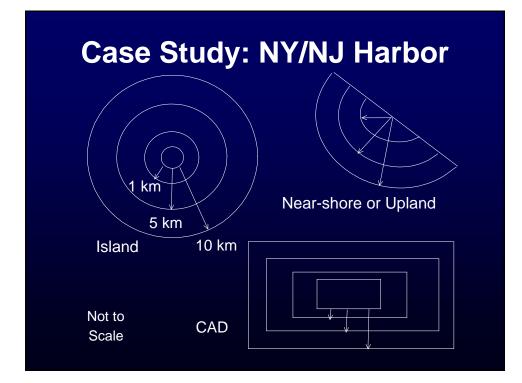
Design and Operation Features: Capacity Duration Size (10⁶ cu yd) (yr) (acres) CAD 5 25 300 Island 100 1200 20 Near-shore 3 120 6 Upland 120 3 6 Landfill 120 3 6

Assessment Endpoints

• Reproducing populations of benthic invertebrates, fish, and birds


Ecological Receptors of Concern


- Benthic invertebrates Polychaete worm (Nereis virens) & Clam (Macoma nasuta)
- Forage Fish Sand lance (Ammodytes americanus)
- Piscivorous Fish Black sea bass (Centropristis striata)
- Foraging Birds Spotted sandpiper (Actitus macularia)
- Piscivorous Bird Osprey (Pandion haliaetus)


Case Study: NY/NJ Harbor

Human Receptors of Concern

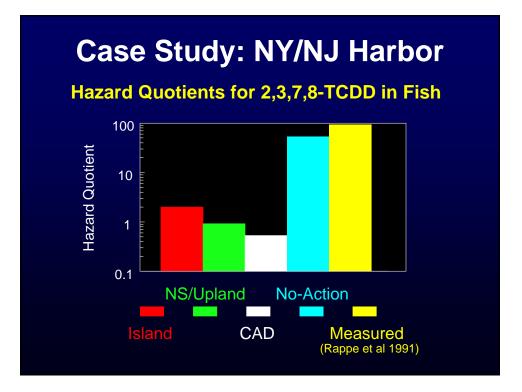
- Fishermen
- On-site worker
- Handler and transporter of dredged material

Characterization of Exposure

- Use 28-d bioaccumulation data for polychaete worm, *N. virens*
- Estimate steady-state tissue concentration for *N. virens*
- For bioaccumulative organics, model trophic transfer to fish (Gobas Model)
- Use food chain multiplier (30) to estimate tissue residue in eggs of fish-eating birds

Characterization of Exposure (Cont.)

- Gobas Aquatic Food Chain Model (1993):
 - Uses mass transfer coefficients (i.e. gill uptake rate constant) to describe uptake of chemical from water and food, elimination by excretion, and dilution by growth
 - Predicts steady-state concentrations of nonmetabolized hydrophobic organic chemicals (not used for PAHs or metals) in forage and piscivorous fish


Case Study: NY/NJ Harbor

Characterization of Exposure (Cont.)

- Exposure to higher trophic level organisms estimated as:
 - Daily dietary dose to birds (mg chemical/kg BW*day)
 - Tissue concentration in fish and osprey egg (mg chemical/kg BW)

Characterization of Effects

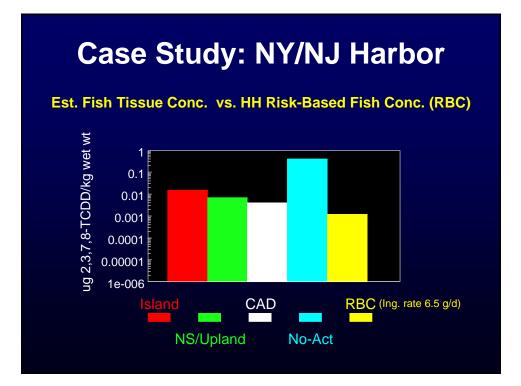
- Toxicity to benthic invertebrates (Sum PAH, Narcosis)
- Higher trophic levels (fish, birds)
 - Dioxin toxic equivalents (TEQs)
 - Tissue-based values from literature & databases (ERED)

Human Health Exposure Assessment

- Identify exposed populations
- Delineate complete exposure pathways
- Determine fate and transport mechanisms
- Estimate exposure point concentrations
- Calculate contaminant intake for receptors in complete exposure pathways

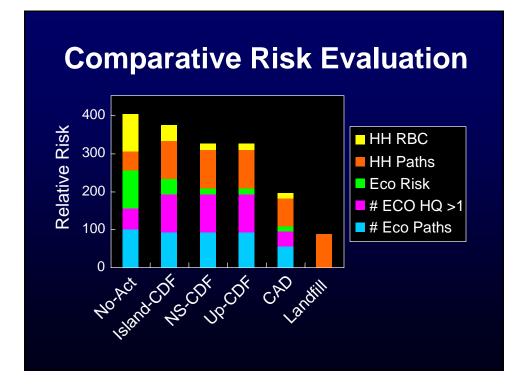
Case Study: NY/NJ Harbor

Human Health Toxicity Assessment


- Toxicity factors:
 - Non-cancer threshold (RfD or Reference Dose)
 - Cancer probability (CSF or Cancer Slope Factor)
 - Absorption factors
 - Special cases: TEFs (PAHS, Dioxins, Furans), Lead and Arsenic
 - Data Sources: IRIS, HEAST, Literature

Human Health Risk Characterization

- Integration of exposure assessment and toxicity assessment into a quantitative estimate of risk
- Non-cancer hazard quotient
- Cancer risk
- Risk-based concentrations


Case Study: NY/NJ Harbor

<u>Receptor</u>	<u>Non-Cancer</u> <u>Hazard Index</u>	Cancer Risk
Barge Operator	7 x 10 ⁻¹	4 x 10 ⁻⁵
Site Worker – CDF	3 x 10 ⁻¹	1 x 10 ⁻⁵
Site Worker - Landfill	4 x 10 ⁻¹	3 x 10 ⁻⁴

Comparative Risk Evaluation Criteria

- Ratio of Area/ Capacity (acres/ 10⁶ cu yd)
- Ratio of Duration/ Capacity (years/ 10⁶ cu yd)
- Number of Complete Ecological Exposure Pathways
- Number of Ecological Hazard Quotients > 1
- Magnitude of Ecological Hazard Quotients
- Number of Complete HH Exposure Pathways
- Ratio of Conc. of COCs in Fish/Risk-based Conc.

Uncertainties of Screening Level Approach

- Conservative bias in screening level approach
 - Examines most contaminated sediments
 - Steady-state exposure model may overestimate exposure
 - Assessment estimates risk to individual ecological receptors, not populations
- Design features (i.e. size and capacity) and site selection not finalized
- Performance of alternative as designed

Conclusions

- Relative risk to ecological receptors and fishermen:
 - No-Action > Island > NS/Upland CDF > CAD > Landfill
- Design and operation features of each alternative must be incorporated into site-specific conceptual models and exposure scenarios
- Comparative risk assessments should consider both magnitude of risk and spatial scale over which risk occurs

Conclusions

- Comparative assessment will increase the quality of decisions
- Sediment risk assessments must be supported by a thorough uncertainty analysis

• Effective regulatory implementation of riskbased approaches will require a degree of routinization