Chronic / Sublethal Bioassays

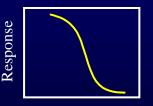
Tab N

Dr. Todd S. Bridges

KEY WORDS: Chronic Sublethal Toxicity, Neanthes, Leptocheirus, Hyalella, Chironomus

Why Chronic Sublethal Toxicity Tests?

- Required by Federal regulations
 - To address likelihood for longer-term impacts
 - Evaluate potential for sublethal effects
- Definitive method for evaluating marginally contaminated dredged material


Federal Regulations

• § 103 of MPRSA

- "Materials shall be deemed environmentally acceptable for ocean dumping only when...no significant undesirable effects will occur due either to chronic toxicity or to bioaccumulation..." [40 CFR § 227.6(c)(3)]
- "Materials...will not cause unreasonable acute or chronic toxicity or other sublethal adverse effects..." [40 CFR § 227.27(b)]
- § 404 (b) (1) of the Clean Water Act
 - "The permitting authority shall determine in writing the potential short-term or long-term effects..." [40 CFR § 230.11]

Acute vs. Chronic Toxicity

- Acute toxicity
 - Short-term exposure (hrs-days)
 - Adults
 - Lethality endpoint
 - Higher levels of contamination
- Chronic toxicity
 - Longer-term exposure (days-weeks)
 - Early life stages
 - Sublethal endpoints (growth, reproduction)
 - Lower levels of contamination

Dose/Exposure

Marine/Estuarine Tests Currently Under Development

- Neanthes arenaceodentata (28-day, survival, growth, >25 ‰)
- Polydora cornuta (14-day, survival, growth)
- Leptocheirus plumulosus (28-day, survival, growth, reproduction, 5-20 ‰)
- Mulinia lateralis (10-day, survival, growth,7-32 ‰)

Freshwater Tests Currently Under Development

- Chironomus tentans (10-day, survival, growth, <1‰)
- Chironomus tentans (>40-day, survival, growth, & reproduction, <1 ‰)
- Hyalella azteca (10 and 28-day, survival, growth, <1 ‰)
- Hyalella azteca (42-day, survival, growth, and reproduction, <1 ‰)

Selecting a Chronic Sublethal Test

Factors to consider:

- Ecologically relevant exposure scenario
- Representative test organism
- Adequate interpretive guidance
 - -Test endpoints
 - -Defined potential for non-contaminant effects

Ecologically Relevant Exposure Scenarios

- Water column exposure during open water disposal is most commonly a short-term event
 - Chronic elutriate tests are not relevant to evaluating the potential for water column effects
- Exposing a test organism to media it's unlikely to encounter in nature does not provide relevant toxicity data
 - Pore water tests with epifaunal/pelagic organisms are not appropriate for evaluating dredged material

Neanthes arenaceodentata

Natural history

- Marine polychaete (>20 ‰)
- Infaunal, 3-7 cm adult size
- Omnivorous deposit-feeder
- 12-week life cycle
- Sexes form monogamous pairs
- Male provides the parental care, female dies; direct development
- Adult worms are aggressive and territorial
- Distribution
 - Worldwide in shallow, sedimentary habitats
 - Sibling species have been identified

Neanthes Chronic Toxicity Test

Test Parameter

Age/size Test duration Salinity Exposure chamber Animals/beaker Reps/treatment Feeding

Endpoints Test acceptability

<u>Condition</u>

Emergent juveniles (<7 d) 28 d 20 - 35 ‰ 250-ml glass beaker 1 10 2 mg TetraMarin & 1 mg alfalfa 2x weekly Survival, growth (mg/day) >80% control survival

Leptocheirus plumulosus

Natural history

- Estuarine amphipod (5-20 ‰)
- Infaunal, U-shaped burrows
- 8-10 mm adult size
- Suspension and deposit feeder
- 4-week life cycle
- Females produce multiple broods
- Median life span about 4 months, females live longer than males
- Distribution
 - East coast U.S., Cape Cod to northern Florida

Leptocheirus Chronic Toxicity Test

Test Parameter

Age/size **Test Duration** Salinity Exposure chamber Animals/beaker Reps/treatment Feeding

Endpoints

Condition

250-600 µm (1-2 wks) 28 d 5-20 ‰ 1-L glass beaker 20

1.0 mg Tetramin/animal - 3x weekly (MWF)- first 2weeks; 2.0 mg/animal thereafter. Survival, growth, reproduction >80% control survival, repro. in all reps

Test acceptability Guidance manual: www.epa.gov/waterscience/cs/leptofact.html

5

SEPA Methods for Assessing Chronic Toxicity of Marine and Estuarine Sediment-associated Contaminants with the ng the irus plumulosus First Edition

<i>Leptocheirus</i> Comparison of Acute and Chronic Tests						
	10		28-d			
Compound	LC ₅₀	LOEC	LC ₅₀	LOEC		
DANT	55.9	81	67.2	81		
DDT	2.0	1.9	2.1	1.9		
PCB-29	177.2	240	145.6	120		
Lead	4.72	8	5.43	2		
Fluoranthene	75.0	55.0	70.3	15.9		

Hyalella azteca

- Natural history
 - Freshwater amphipod
 - Benthic, 3-7 mm adult size
 - Grazer and deposit-feeder
 - 5-wk life cycle, 1-yr life span
 - Amplexus, mate guarding
 - Females can produce multiple broods of 1-30 young
- Distribution
 - North and South America
 - Shallow, lentic and lotic systems

Hyalella Chronic Toxicity Test

Test Parameter

Age/size Test Duration Salinity Exposure chamber Animals/beaker Reps/treatment Feeding Renewal Endpoints Test acceptability

Condition

7-8 days old
42 d (10- and 28-d versions)
5 ‰
300-ml glass beaker
10
12
YCT, 1 ml daily (1800 mg/L stock)/beaker
2X daily

Survival, growth, reproduction >80% control survival on day 28

Chironomus tentans

- Natural history
 - Larvae of non-biting midge
 - 4 instars, 2-15 mm
 - Deposit feeder
 - 23- to 30-d life cycle
 - Pupation ~25 d old
 - Females produce 1 egg mass (500-1000 eggs) within 24 h of mating
 - Adult midges die within 7 d of emergence
- Distribution
 - Holarctic, common in mid-continental North America
 - Shallow lentic and lotic systems

Chironomus Chronic Toxicity Test

Test Parameter

Condition

Age/size Test Duration Salinity Exposure chamber Animals/beaker Reps/treatment Feeding Renewal Endpoints Test acceptability < 24-h-old larvae
50-65 d (10- and 20-d versions)
Fresh water
300-ml glass beaker
12
16
6 mg Tetrafin/beaker/d
2X daily
Survival, growth, reproduction
>70% cont. surv. at day 20, >0.6 mgdw/animal

What is the Ecological Meaning of Chronic and/or Sublethal Toxicity?

- The meaning of acute toxicity test results is prescriptively defined
 - e.g., 20% plus statistical significance
- The meaning of chronic toxicity test results is currently undefined
 - e.g., what does a 10% reduction in growth mean in terms of population viability?

Statutory Requirements

- The Marine Protection, Research and Sanctuaries Act of 1972, Section 102
 - Effects on "marine life including...changes in marine ecosystem diversity, productivity, and stability; and species and community population changes"
- The Clean Water Act of 1977, Section 404
 - Effects on "potential changes in marine ecosystem diversity, productivity, and stability, and ...species and community population dynamics"

Biochemistry- genotoxicity

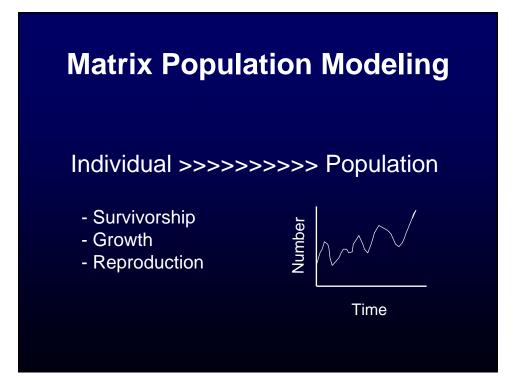
Fractability

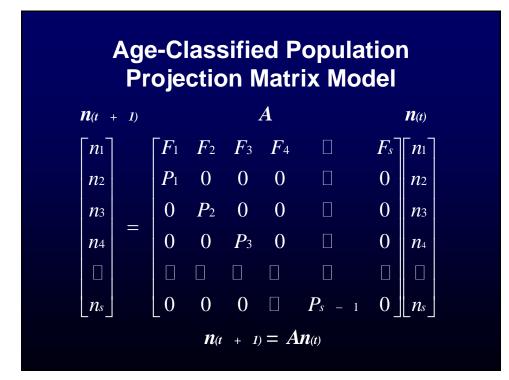
Development- fertilization, teratogenicity

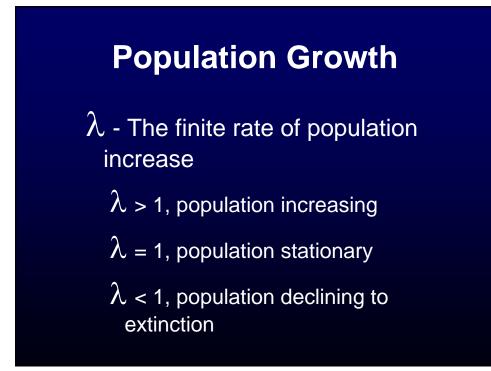
Histopathology- tumor formation

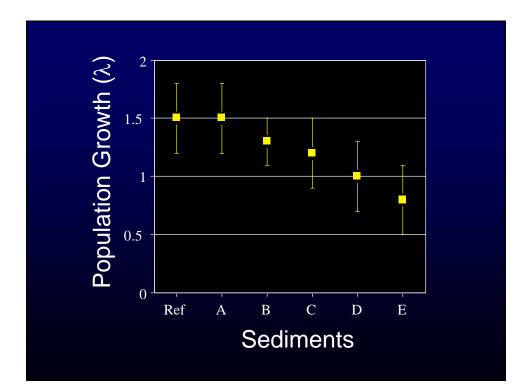
Life history- survival, growth, reproduction

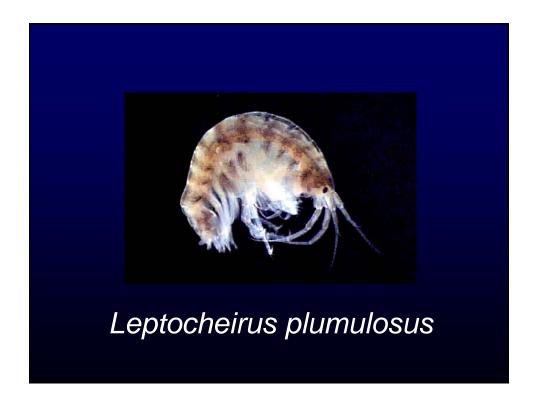
Population- extinction risk

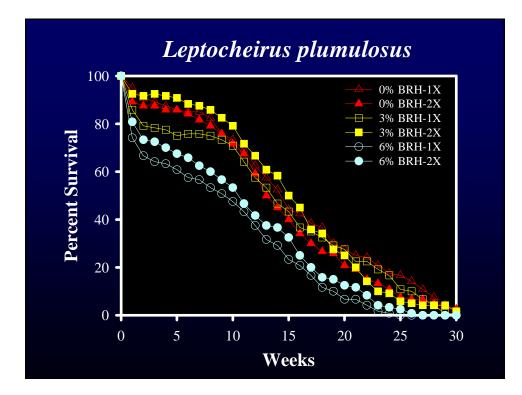

Community- structure

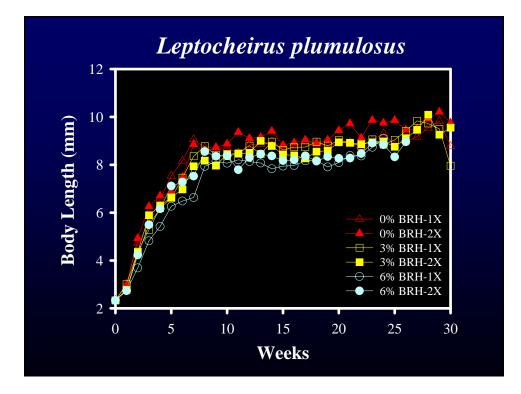

Ecosystem- function

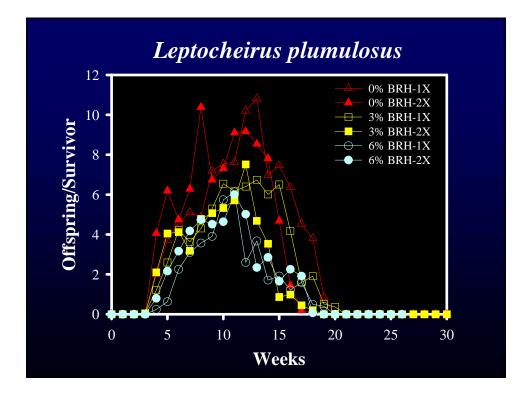

Ecological Relevance

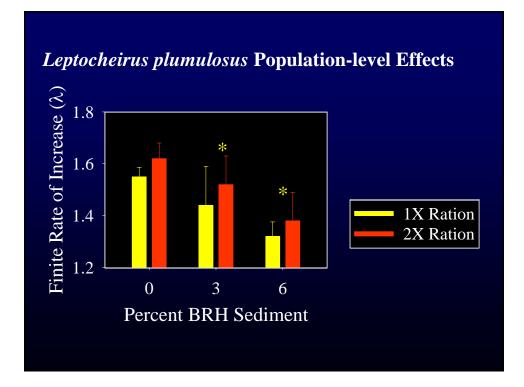

Evaluating Chronic Results: Integrating Effects

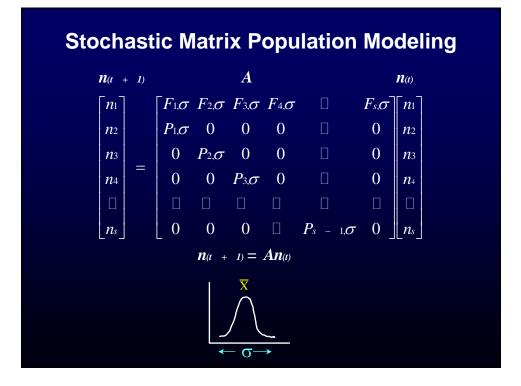

<u>Sediment</u>	<u>Survival</u>	<u>Growth</u>	<u>Reproduction</u>
1	X		
2	X	X	
3	X		X
4		X	
5			X

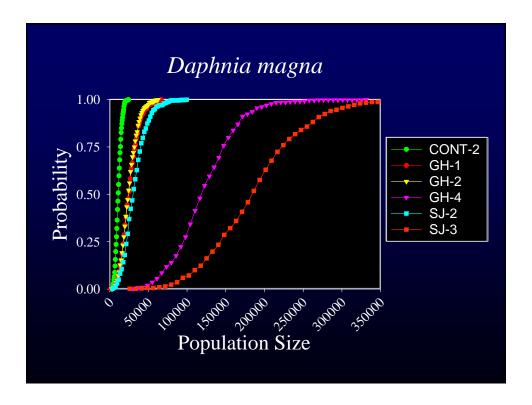












Is the Test Ready?

- Test development*
 - Rationale
 - Selection of test organism
 - Experimental/statistical design
 - Evaluation of "ruggedness
 - Field trials
 - Inter-laboratory studies
 - Interpretive guidance
 - Transition to multiple users
 - Verification/validation
 - Standard method development
 - Evaluation by user groups

*Dillon 1994

Why Use Chronic Tests?

- Direct means of assessing long-term exposures
 - Especially relevant to highly hydrophobic contaminants
- Exposures can be more representative of field conditions
 - i.e., longer than 10 days
- Sublethal endpoints are ecologically relevant
- Can provide greater discriminatory ability

Why Not Use Chronic Tests?

- They cost more
 - Which is better, using a chronic test or getting twice the spatial coverage with an acute test?
- They are more likely to fail to meet performance standards
 - Necessitating retesting
- They are not always more discriminating than acute tests
 - e.g., sublethal endpoint variability and role of feeding
- Disagreement on the ecological consequence of sublethal effects
- The influence of non-contaminant influences on endpoints is problematic

Conclusions

- Biological tests are a necessary, but not exclusive, element of sediment assessment
- Chronic toxicity tests offer utility
- t clean dor ranpcB's H9 Benthic
 - Need for process-level research
- Challenges confronting the use of chronic tests include establishing
 - The reliability of the tests
 - Interpretive guidance