Benthic Evaluations

Tab L

Dr. GUILHERME LOTUFO

guilherme.lotufo@erdc.usace.army.mil

KEY WORDS: Theoretical Bioaccumulation Potential (TBP), Biota Sediment Accumulation Factor (BSAF) Sediment Toxicity and Bioaccumulation Testing

Benthic Evaluations

Evaluation of potential adverse environmental impact from open water disposal of dredged material

- Potential for direct toxicity to benthic organisms
- Potential for bioaccumulation and movement of contaminants through food chain

Benthic Evaluations

Approach

- Tiered process (I IV) as far as necessary to make a factual determination
- Factual determination
 - A determination of the potential <u>short-term</u> and <u>long-term</u> effects of a proposed discharge of dredged or fill material on the physical, chemical, and biological components of the aquatic environment.

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Benthic Evaluations

Reference Sediment

- Should reflect conditions at disposal site in absence of disposal activity (as practicable as possible)
- Characteristics considered
 - Sediment grain size
 - Sediment organic content
 - Relatively free of contaminants

Tier II: Predicting Bioaccumulation

TBP

Theoretical Bioaccumulation Potential

An estimate of the steady-state concentration of non-polar organic chemicals in organisms exposed to contaminated sediment

Tier II:

Predicting Bioaccumulation

TBP is

- A model-derived estimate
- Good only for non-polar (hydrophobic) organics
 PAHs, PCBs, Dioxins, Chlorinated pesticides
- Used as a screening tool to determine if bioaccumulation testing is warranted

BSAF: Theoretical VS Empirical Values

Theoretical BSAFs:

- Values of 1.7 and 4 have been proposed
- Factors not accounted for: bioavailability, metabolism, feeding behavior, etc.
- Likely protective, but not predictive

Empirical BSAFs:

- Derived from laboratory exposed or field-collected organisms
- May not represent steady-state values
- Accuracy depends on the quality of analytical chemistry

BSAF database http://el.erdc.usace.army.mil/bsaf

Tier II: Predicting Bioaccumulation

Statistically compare TBP in DM and REF

- Bioaccumulation not predicted (DM < REF) -Proceed to Tier III
 - -Toxicity testing is required
- Bioaccumulation predicted (DM > REF) –Proceed to Tier III
 - -Toxicity and bioaccumulation testing is required
 - -Seek other disposal alternatives
 - -Abandon project

Tier III: Biological Testing

- **1. Evaluate toxicity of DM to benthic organisms**
- 2. Evaluate bioaccumulation of contaminants in benthic organisms exposed to DM

Tier III: Toxicity Test

- Short-term exposure (typically 10 days)
- Measure survival
- At least two species of organisms tested
- No feeding (in most cases)
- Minimum 5 replicates/ treatment
- Test validity based on >90% survival in control sediment

Tier III: Toxicity Test

Toxicity Test Species

- Species representing three life history strategies (burrowing organism, deposit feeder, and filter feeder)
- If only two different species are used, they should together cover the three life history strategies

Tier III: Toxicity Test

Selection of Toxicity Test Species

Other factors to consider:

- High responsiveness to contaminants
- Low responsiveness to non-contaminant effects (e.g., grain size)
- Standardized protocol
- Ecologically relevant (e.g., infaunal)
- Availability (e.g, amenable to culturing)

Required to utilize at least one benchmark species

Commonly Used Test Species

Marine/Estuarine

Species	Group	Users
Ampelisca abdita	Amphipod	Many
Leptocheirus plumulosus	Amphipod	Many
Euhastorius estuarius	Amphipod	Many
Rhepoxinius abronius	Amphipod	Many
Neanthes arenaceodentata	Polychaete	Few
Panope generosa	Clam	Few
Nereis virens	Polychaete	Few
Palaemonetes sp.	Grass shrimp	Few
Grandidierela japonia	Amphipod	Few

Commonly Used Test Species Freshwater

Species	Group	Users
Hyalella azteca	Amphipod	Many
Chironomus tentans or C. riparius	Midge	Many
Hexagenia limbata	Mayfly	Few
Lumbriculus variegatus	Oligochaete worm	Few
Tubifex tubifex	Oligochaete worm	Few

Tier III: Toxicity Test

Potential Non-Contaminant Factors

- Sediment grain size
- Salinity
- Ammonia / Sulfide toxicity
- Nutrition

Tier III: Toxicity Test

Toxicity Test Evaluation

- Mortality in dredged material is 10% greater than reference (20% for amphipods), and
- Statistically different from reference?
- If No, material is not predicted to be toxic
- If Yes, material is predicted to be toxic

Benthic Toxicity Tests Issues and Concerns

- Near-bottom invertebrates, such as mysids, may not be adequately exposed to sediment. They were much less responsive to contaminated sediments than burrowing amphipods in a comparative study.
- Higher responsiveness of chronic *Leptocheirus* test (lethal and sublethal endpoints) is uncertain.
- Few non-amphipod chronic/sublethal whole sediment tests are available and their relative responsiveness is uncertain.

Stay away from porewater tests!

<section-header><section-header><section-header><text><text><list-item><list-item><list-item>

Tier III: Bioaccumulation Test

Test Design

- 28-day exposure
- No feeding

- Measure tissue concentration at conclusion of exposure
- Must have 2 different species

Selection of Bioaccumulation Test Species

Desirable characteristics:

- Sediment ingester
- Infaunal
- Tolerant of contamination
- Adequate biomass
- Inefficient metabolizers
- Easily collected or cultured

DDT Bioaccumulation – Time to Steady State

TSS₉₅ = Time for 95% steady-state (2.99/K_e)

Organism	TSS ₉₅ (days)
Leptocheirus (amphipod, adults)	6
Leptocheirus (amphipod, juveniles)	2
<i>Hyalella</i> (amphipod, juveniles)	7
<i>Neanthes</i> (polychaete, males)	10
Neanthes (polychaete, females)	41
<i>Nereis</i> (polychaete, adults)	85
<i>Macoma</i> (bivalve, adults)	108

Tier III: Bioaccumulation Test

Conclusion of Exposure

- Collect all remaining/surviving organisms from exposure chambers
- Allow organisms to purge gut content
- Conduct chemical analysis of tissues

Evaluation of Bioaccumulation Data

Concentration of contaminant in organism exposed to dredged material exceed FDA action levels?

- If Yes, bioaccumulation is predicted to be adverse
- If No, Is concentration of contaminant in organism exposed to dredged material greater than reference?

Evaluation of Bioaccumulation Data

|--|

Methylmercury	1.0 ppm
Chlordane	0.3 ppm
Chlordecone	0.3 ppm
DDT + DDE	5 ppm
Dieldrin + Aldrin	0.3 ppm
Heptachlor + Heptachlor Epoxide	0.3 ppm
Mirex	0.1 ppm

¹ Updates obtained by contacting FDA, Center for Food Safety and Applied Nutrition, HFF-326, 200 C Street, S.W., Washington, D.C. 10204; 202-205-5251 http://vm.cfsan.fda.gov/~lrd/fdaact.html

Evaluation of Bioaccumulation Data

Concentration of contaminant in organism exposed to dredged material greater than reference?

If Yes, consider

- Number of species tested
- Number of contaminants > reference
- Magnitude of bioaccumulation
- Toxicological importance
- Biomagnification potential
- Comparison to background
- Compare with critical body residues (CBRs)

If No, bioaccumulation is not predicted to be adverse

Benthic Bioaccumulation Tests Issues and Concerns

- Recently developed micro-method for extraction and analysis requires smaller tissue mass.
- Test species with high biotransformation ability, such as *Nereis virens*, not suitable for assessing bioaccumulation of PAHs.
- For high k_{ow} compounds, time for steady state typically longer than 28 days for large invertebrates (e.g. *Macoma*), but typically shorter in small invertebrates.
- Studies should conducted to determine whether Leptocheirus and Ampelisca are adequate bioaccumulation test species.

Benthic Bioaccumulation Tests Issues and Concerns

Bioaccumulation data for heavy metals is difficult to interpret

- Bioavailability complex, influenced by different processes (binding to acid-volatile sulfide and organic carbon, complexation by ligands, oxidation).
- Essential (Fe, Cu, Zn) vs non-essential metals (Hg, Pb, Cd, U).
- High potential for detoxification (metallothioneins, granules).
- Extremely diverse mechanisms of toxicity.
- Concentration at site of toxic action not necessarily related to wholebody accumulation due to sequestration mechanism, therefore, difficult to predict effects from whole-body concentration.

Tier IV: Case-Specific Studies

- Chronic sublethal tests
- Steady-state bioaccumulation
- Risk assessment

Benthic Evaluations

Conclusions

- Evaluate for potential of DM to cause adverse effects on benthic organisms
- Evaluate for potential of DM to contain contaminants that can bioaccumulate to concentrations at which adverse effects to environment can potentially occur
- Follow tiered process only as far as necessary to make a factual determination