2nd Regional Conference – Dredging, Beach Nourishment & Bird Conservation

Primer on Coastal Erosion And Habitat Creation

Timothy Kana Ph.D

DOWN AND OUT. What was a new of houses at Point O' Woods, waves and word vesterday for the shared by a sharebeet of the work westernapton

Source: Newsday 1962

Unrido and There is the dot does not be been donesed for the surging variest created a new 301.000 with constructorios minit. A domatic sequence of plotes on Back Page about late two frames run.

Source: U Mass Coastal Research Group

Photo by Kelsey Aerials 1978

Public Perceptions

- Coastal Erosion is:
- Inevitable
- Expensive to Manage
- Only A Problem Where
 There is Development

Myrtle Beach - Today 1984 @ **High Tide** 20-yr Cost To ICE CREAM **Restore &** SNACK BAR Maintain: \$20/foot/year.

Outline of Presentation

Fundamental Processes Scales of Change Barrier Island Evolution Erosion Signatures Implications For Wildlife Habitat

Storm Surge - 1978 Northeaster - Cape Cod Photo by Kelsey Aerial Photography

Frames of Reference

The Coast Evolves as a Function of: Tectonic Setting •Sea Level Position – epoch scale Sea Level Fluctuation – historical Sediment Supply Climate & Coastal Processes Waves Tides Currents Post-Storm Storm

Time/Space Scales: >1 million yrs/ 100s kilometers (hor) ~100,000 yrs / ~100 meters (vert) ~10,000 yrs / ~ 10 meters (vert) @ All Time Scales Millenium To Decadal **Processes** That Mold & Shape The Coast From Year to Year Weeks to Months Hours to Days

"Unless The Time Scale of Interest Is Specified, There Will Always Be Confusion and Disagreement Regarding Coastal Erosion!"

The Beach Cycle

Photos Courtesy: U of Mass Coastal Research Group & U of South Carolina Coastal Research Division

Storm Erosion vs Long-term Erosion Rates

What Is The Appropriate Erosion Rate And Time Period For Planning?

"Most developed shorelines are changing by less than 3 ft per year at decade to century time scales." Source: Dolan et al (1990).

Sea level Rise As A Cause Of Erosion

SLR @ 1 Ft Per Century (20th Century Rate) = ~30 Feet Of Beach Recession, or = ~ 0.3 Ft/Year Erosion Rate Therefore, SLR @ 2 - 3 Ft Per Century = ~ 0.6 - 1.0 Ft/Year Erosion

Barrier Island Types

Edingsville Beach SC

"Planter's" Cottages Abandoned by 1893

Century Erosion Rates: 10-15 ft/yr **Washover Barrier Island**

"A Low Sandy Island That Is Flooded Often By Storm Tides & Waves"

Typical Dimensions

Assume Average Erosion Rate = 5 ft/yr

Washover Barrier Island - 100 Years Erosion

"The Beaches Are Moving!" Kaufman & Pilkey, 1979

@ 5 ft/yr

Volume Erosion Rate: ~5 CY/ft/yr

50-Yr Loss: ~250 CY/ft

100-Yr Loss: ~500 CY/ft *Or, <u>~30 truckloads</u> of sand per ft of beach*

Core Banks NC

~50 Year Erosion Rate: 5 to 15 Ft/yr

N. Core Banks

Long-Term Average Annual Shoreline Change Study & Setback Factors

Updated Through 1998

Source: NC Div of Coastal Management (May 2003)

Are Washover Beaches Typical?

Beach Ridge Barrier Island

Many Barrier Islands Are >1000 ft - wide!

Assume Erosion Rate = 2 ft/yr

Beach Ridge Barrier Island - 100 Yrs Erosion

Volume Erosion Rate: ~2 CY/ft/yr

@ 2 ft/yr

50-Yr Loss: ~100 CY/ft

100-Yr Loss: ~200 CY/ft

Or, <u>~12 truckloads</u> of sand per ft of beach

Barrier Island Sections

Common Developed Barrier Island

Present Cost to Maintain Beach:

@ 2 CY/ft/yr
Erosion Rate =
~\$10-16/ft/yr

Washover Barrier Island

@ 10 CY/ft/yr
Erosion Rate =

~\$50-80/ft/yr

Directions Sand Moves

How Do We Know This?

Photos by T.W. Kana

Western Fire Island Evolution

Based On USACE 1958; Saville 1960

Spit Growth & Rotation

Megascale Geomorphic Model

Marsh-filled Lagoon

Washovers Infrequent

eg. Kiawah Island, SC Cape Litchfield, SC

No Rotation

Open Lagoon

Washovers Common Bulge

With Rotation

eg. Western Fire Island, NY Garden City, SC

Spit Growth & Rotation

Capt Sams Inlet SC

Debordieu Colony

Earlier Inlet

Present Inlet

Which Spit Is Likely To Create The Most Habitat for Least Terns?

Inlet Sand Trapping & Bypassing

Shoal Bypassing at Kiawah Island – 1970s to 1980s

Shoal Bypassing: The release of sand bars from inlet deltas due to changes in channel position and excess sediment supply.

Bypass Volumes: ~ 1 million cy This is why some beaches are healthy at century time scales!

Kiawah Island – Dec 1998

Shoal Bypassing at Kiawah Island – 1990s

KIAWAH ISLAND

Ocean Course

2004

Bypass Volumes:

> 5 million cy

2000

And Company of Carlow and Carlow

1999

1997

Focussed Erosion

Type of Habitat Some Threatened Birds Like

Dynamic Shoreline Unstable Large Sand Surplus Nearby Food Source No Predators

1860s Beach

1960s Beach

2003 Images

Captain Sams Inlet Relocation - 1983

New - Channel 150,000 cy to move channel

1,500,000 cy addedto Seabrook

Cost: \$300,000

1983 Inlet Relocation - Habitats

1983 - 1987 Habitat Changes

Habitat Type	Total Area	
	1983	1987
Original dunes	5.2	1.6
Closure dike (dune)		0.9
New dunes (by accretion)	0.8	3.0
Washover terraces	1.8	1.0
New beach		10.3
Intertidal bars	47.4	36.0
Subtidal (lagoon)	11.7	23.2
Totals	66.9	76.0

1983 Closure Dike

20 Hectare Marsh

New Barrier Beach

Habitats Created At Decadal Scales

Why Salt Marsh In Some Areas & Open Water Elsewhere?

Controls On Tidal Wetland Formation

Building Blocks:
Barrier Beach
Wetland Habitats function of
land elevation (w/res Sea Level)
flooding frequency (w/res Tide)

EPA Case Studies

Flooding frequency:

- High Marsh ~1%
- Low Marsh ~ 10%

Source: Kana & Baca 1988

Summary

 The Present Coast Is Dependent On A Balance Between SLR & Sediment Supply

There Are Many Site-specific
 Signatures Of Erosion

Conflicts Regarding Shoreline
 Management Arise Because Of
 Differing Time Frames Of Reference

 It Is Possible To Create Habitat Artificially And Thereby Accelerate or Decelerate Natural Processes In Some Cases, If Done With Care!

