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Motivation

“Hydrometeorological services in the United States are an
Enterprise effort. Therefore, effective incorporation of
uncertainty information will require a fundamental and
coordinated shift by all sectors of the Enterprise. Furthermore,
it will take time and perseverance to successfully make this
shift. As the Nation’s public weather service, NWS has the
responsibility to take a leading role in the transition to
widespread, effective incorporation of uncertainty information
into hydrometeorological prediction.”

— From finding 1 of 2006 NRC report “Completing the Forecast”




Ensemble forecasts: the backbone

Multiple simulations of the weather from slightly different
initial conditions, perhaps different forecast models
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Problem with current ensemble forecast systems

Forecasts may be biased and/or deficient in spread; probabilities are mis-estimated.
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— Unreliable forecasts
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NRC vision:
NWS to make all products
probabilistic. How?

* General option 1: Work harder at current
vision of developing hi-resolution models
and ensembles. Probabilistic products
based on these, perhaps QC’ed by
humans.



Models ARE improving dramatically,
and with them, ensemble forecasts.
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Still, a formidable list of
ensemble deficiencies ...

(a) Z500, Day 1 (b) T850, Day 1 (c) T2M, Day 1
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Ensembles are least useful for the variables we care the
most about, such as surface temperature and precipitation.

Much work still needed in: (1) methods for developing sets of initial
conditions; (2) ways of sampling the uncertainty due to forecast model
deficiencies; (3) development of better, higher-resolution NWP models.



Manually QC new probabilistic
products? Tough task.
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Different WFOs have
different ideas about what
corrections to make, leading
to discontinuities. Expect
probabilistic QC even
tougher.

In most circumstances, it
— may be a better use of
forecasters’ time to

focus on the shorter-range,
more severe-weather
problems.




NRC vision:
NWS to make all products
probabilistic. How?

* General option 2: Automated probabilistic
forecast products, or “Ensemble MOS?;
ensemble forecast system + computer-
based statistical post-processing using
‘reforecasts” (past forecasts from same
system used operationally).



NOAA's reforecast data set

Model: T62L28 NCEP GFS, circa 1998
Initial Conditions: NCEP-NCAR Reanalysis Il plus 7 +/- bred modes.

Duration: 15 days runs every day at 00Z from 19781101 to now.
(http.//www.cdc.noaa.gov/people/jeffrey.s.whitaker/refcst/week?2).

Data: Selected fields (winds, hgt, temp on 5 press levels, precip, t2m,
u10m, v10m, pwat, prmsl, rh700, heating). NCEP/NCAR reanalysis
verifying fields included (Web form to download at
http.//www.cdc.noaa.gov/reforecast).

Real-time probabilistic precipitation forecasts:
http://www.cdc.noaa.gov/reforecast/narr




ECMWEF’s reforecast data set

Model: 2005 version of ECMWF model; T255
resolution.

Initial Conditions: 15 members, ERA-40 analysis +
singular vectors

Dates of reforecasts: 1982-2001, Once-weekly
reforecasts from 01 Sep - 01 Dec, 14 total. So,
20"14 ensemble reforecasts = 280 samples.

Data sent to NOAA /ESRL : T, precip. ensemble
over most of North America, excluding Alaska.
Saved on 1-degree lat / lon grid. Forecasts to 10
days lead.



Good news: for some variables a few
prior forecasts are adequate to calibrate.

CRPSS
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Tougher news: for other problems such
as calibrating heavy precipitation, larger
training data sets are necessary.

Consider training with a short sample in a climatologically dry
region. How could you calibrate this latest forecast?

1—Day Ensemble—Mean Forecast and Observed Precipitation
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Boost sample size in statistical calibration by
compositing statistics over different locations?

A good idea, if done with care.
However, even nearby grid points may have different forecast errors.
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Panels (a) and (b) provide the cumulative density function (CDF) of 1-day forecasts of precipitation
for 1 January (CDFs determined from reforecast data and observations in Dec-Jan). Panel (a) is
for a location near Portland, Oregon, and panel (b) is in north central Oregon, east of the
Cascades. Panel (c) provides the implied function for a bias correction from the forecast amount to
a presumed observed amount. Note the very different corrections implied at two nearby locations.



Calibrating Week 2 and 6-10 day
probability forecasts

An example

of the operational
6-10 day temperature
forecast produced by
NCEP/CPC.




Probabilities
from raw
ensemble
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Observed Anomaly (°C)
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Calibration using a long data set
of observed and forecast anomalies
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~ Oregon, January 16 ’
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Example: floods causing
La Chonchita, CA mudslide, 12 Jan 2005

apcp initialized 2005010300

Upper Tercile Probs Percent Upper Tercile Probs Percent

week-2 forecast




Calibration of PQPF &
rare events

Want lots of old forecast cases that were similar to
today’s forecast. Then the difference between

the observed and forecast on those days can be used
to calibrate today’s forecast.

1—Day Ensemble—Mean Forecast and Observed Precipitation
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Producing a distribution of observed given forecast using analogs

24 Oct 1979

24 Oct 1996 25 Nov 1997
24-48h Forecas! t Analyzed 24-48h Forecas t Analyzed

24-48h F

24-48h Forecas: t Analyzed

26 Nov 2005

24—-48h Forecast Analyzed

24-48h Forecas

1 2.5 5 10 25 50
24—h Accumulated Precipitation (mm)

ed

On the left are old forecasts 24-dn Forseas - Anaiyze .
similar to today’s ensemble- o
mean forecast. For making
probabilistic forecasts,

form an ensemble from

the accompanying

analyzed weather on the
right-hand side.

24-48h Forecas nalyze 24-48h Forecas
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Producing a distribution of observed given forecast using analogs

24 Oct 1979 18 Nov 1979 25 Nov 1997

26 Nov 2005

24—48h Forecast Analyzed

. 1
4—h Accumulated Precipitation (mm)

On the left are old forecasts
similar to today’s ensemble-
mean forecast. For making
probabilistic forecasts,

form an ensemble from

the accompanying

analyzed weather on the
right-hand side.




Asymptotic behavior of
analog technique

* Q: What happens as correlation(F,O) — 0 ?
A: Ensemble of observed analogs becomes
random draw from climatology. “¢2

* Q: What happens as correlation(F,O) —» 1 ?
A: Ensemble of observed analogs looks just
like today’s forecast. Sharp, skillful forecasts &/



Brier Skill Score

Brier Skill Score

Ensemble Relative Frequency
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Verified over 25 years of forecasts;
skill scores use conventional

method of calculation which may
overestimate skill

(Hamill and Juras 2006, QJRMS, Oct).



Skill as function of location

JFM24 Analog Precip Fcst BSS (1979-2003)
Analog Prob Precip > 2.5mm Day 4

Brier Skill Score
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Skill Score

Skill Score

Comparison against NCEP
medium-range T126 ensemble, ca. 2002

(a) BSS of 2.5 mm, JFM 2002
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Analog Prob Precip > 90th Percentile
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Brier Skill Score

Effect of training sample size

(a) BSS of 2.5 mm forecasts (b) BSS of 25 mm forecasts
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colors of dots indicate which size analog ensemble
provided the largest amount of skill.



Real-time products
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Analog probability forecasts

Many forecast users desire reliable, skillful high-resolution ensemble predictions, perhaps for such applications
as probabilistic quantitative precipitation forecasting or hydrologic applications. Our reforecast dataset is
comparatively low resolution (T62, or about 250 km). However, by downscaling the forecasts through analog
techniques a high-resolution probabilistic forecast can be produced.

The basic idea is this: if we have a long time series of high-resolution analyses, then we can examine today
ensemble forecast, look back to our reforecasts and find days in the past where the old forecasts were similar to
the current forecast, and note the analyzed conditions associated with those forecasts. With knowledge of the
dates of the similar forecasts, we can collect an ensemble of high-resolution analyzed conditions. The
precipitation analyses used for this procedure are the 32-km grids from the North American Regional Reanalysis
, downscaled to 5-km resolution using the ‘mountain-mapper technique .

Analysis date: (format: yyyymmda)
Please input a date within last 90 days: 20061030 show today

Forecast day from Analysis date:[3 3]
Threshold | 10mm B
Above or Below | abovés ’

Get forecast plots | Get verification plots )

Choosing "Get verification plots" will give you a map of Brier Skill Score and a Reliability Diagram for forecasts from 1979-2004 for the
month, forecast lead time and threshold you have chosen.

If you use these products, and you would like to see them continue, please let me know how you use them and why.

U.S. Department of Commerce | National Oceani

Earth System Research Laboratory | Phys

| Sciences D

Current page: AffaAviwiv.coc.noaa. gavéeirecastfiar i10ex fisn




Probabilistic Calibrated
Tornado Forecasts?

 CAPE, CIN, shear are known useful
predictors of severe weather.

* Following the analog approach, can we:
— (1) Examine today’s forecast CAPE, shear

— (2) Find old cases with similar forecast
CAPE, shear

— (3) Determine probabilities from frequency
of tornado occurrence on dates with similar
forecast?



Our assumption: regional forecast biases would harm our
ability to find good analogs from location x for location vy,
l.e., to composite forecast data between locations

850 hPa May 15 Climo Mean Temp and Forecast Bias at 1 day lead




Technique for finding tornado forecast analogs
(1) For a given grid point, match today’s scaled ensemble mean fields
with past scaled forecast fields. (2) Find dates of n closest analog.

(3) Determine tornado frequency from percentage of n dates with tornadoes.

Shear / 25 ms!

(normalized so CAPE doesn't
. overwhelm shear)

-1
i CAPE /3000 J kg

1
2 CIN/500 J kg

blue dot: point to find analogs for
dots: points to match up

current forecasts with old ones.
Algorithm outputs: Note: can vary weights horizontally
1) Dates of n analogs
2) Numerical quantification of how
good the pattern match is for each of n.



First look”? Day-1 forecast not bad.

Observed F2+ Tornado Counts in 12—hour Window
Centered on 0000 UTC 27 Apr 1991

D N

Tornado Probabilities for
O1—day Forecast from 26 Apr 1991

Tornado probabilities
don’t extend back into
KS, but this was very
fast-moving system, and
by 00Z front had moved
through central KS.



Climatology of F2+ tornadoes

Climatological F2+ Tornado Probabilities,
15 Apr — 135 Jun
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Sfc—500 Shear (ms™") and LI 0000 UTC 27 Apr 1991

Observed

shear and LI

from NCEP-NCAR
reanalysis
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Sfc—500 Shear (ms™') and LI 0000 UTC 13 May 1980
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Observed F2+4+ Tornado Counts in 12—hour Window
Centered on 0000 UTC 10 May 1981
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Observed F2+ Tornado Counts in 12—hour Window

Centered on 0000 UTC 18 May 1981
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Observed F2+ Tornado Counts in 12—hour Window

Centered on 0000 UTC 12 May 1982
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Reliability and Skill
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What's the cause of low BSS?

Suppose we could simply

change contingency table
to enforce perfect reliability;
then BSS goes up to 0.27.

However, MOST of the
improvement is simply
changing the few cases
at 0.0 probability.

Our intuition is that in locations
where climo probability is ~0.0,
for days with high CAPE/shear,
it's tough to find other analog
days where tornadoes occurred.
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Other results

CIN ~ useful as predictor.
n=100 analogs much better than n=50.

Sfc-650 shear not as good a predictor
as Sfc-500 shear

No skill (yet) beyond day 2.



Possible ways to improve

« Rarity of events part of the problem; use F1+, not F2+. But
need stationary climatology.

Tornado Trends?
1000;“ T

3 Flo

F2+

Yearly Tornado Count
o
o

10

« We didn’t composite samples from different locations together,
given regional nature of biases. Possibly next time, do 2-step

procedure: (1) bias correct fields, (2) composite samples from
different locations when doing calibration.

« (et a next-generation reforecast data set!



Can we do both hi-res model development
and reforecasting, or a compromise?

» Alternative 1. Continue development of high-res. models. Do
reforecasting with inexpensive, low-res. model, so operations are
impacted minimally.

— Suppose operational T300, 60-layer, 50-member ensemble forecast
system.

— Reforecast T150, 40 layer, 5-member ensemble :
» Operational cost: 120x less

« 120 days of reforecasts for one day of operational forecast, so a 20-year
reforecast for the cost of 60 days of operational model forecasts.

 |If new reforecast model implemented once, say, every 4 years, minimal
impact to operations integrated over time.

« Alternative 2: Continue development of high-res. models. Do
reforecasting offline, on non-operational computer system.

— ~ $700K would buy a computer system that could do a T170L42, 5-
member reforecast out to 10 days in ~ 1 year wall time.



What's next for reforecasting?

« Growing interest from NWP centers worldwide

— ECMWEF exploring once-weekly ensemble
reforecasts (with my participation)
— Canadians planning 5-year ensemble reforecasts

— NCEP envisioning 1-member, real-time reforecast
for bias correction.

* Possibility that NOAA/ESRL may get money to
do a more complete, 2nd-generation reforecast

data set for NOAA.
« Being discussed in NOAA's strategic planning.



Research questions

« Given computational expense of reforecasts,
how do we best:

— Limit the number of reforecasts that we need to do
(fewer ensemble members, not every day, etc.)

— Can we do things like composite the data across
different locations to boost sample size?

— Do we need a new reanalysis every time we do a
new reforecast?

— Do the benefits of reforecasts propagate down to
users like hydrological forecasters?
* We welcome your thoughts and requirements
for next-generation reforecast system.
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Some other tests

Basic Technique Using Individual Members
Logistic Regression

(a) 2.5 mm (a) 2.5 mm
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Mixed results when probabilistic
forecasts generated using logistic
regression approach.

Worse skill when attempting
to fit individual members.



Other tests, continued

Basic Technique w. 2—m Temp and 10-m U&V Basic Technique Including Precipitable Water
(a) 2.5 mm (a) 2.5 mm
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Some skill improvement
in the summer when adding
precipitable water as predictor.

Worse skill when basing
analogs on precip/U/V/T fit.



Station Locations in CONUS

AN

Filled + unfilled dots: general verification
Filled: comparison against CPC operational




Analog example:
Day 4-6 heavy precipitation in California,
0000 UTC 29 December 1996 -
0000 UTC 1 January 1997

(A) T62 Prob P > 100mm (B) Analog Prob P > 100mm (C) NARR Analysis
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Bias, spread, and downscaling
corrections in analog technique

(a) Mt. Shasta, California

350:
%\300: L ens//
~ : *. /
- 250:- o Y
2 . ot //
g 200 % ,
< [ N %
o p
§’150— vt
I S A refcst —»
s
g{g %, analogs
o 4
z 50 /)?
/ :..0
0. AR T B I P T

0O 50 100 150 200 250 300 350
Reforecast Analog Amount (mm)

Can’t find any f
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But introduce large
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(b) Medford, Oregon
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Again, few close
reforecast
analogs. But
observed data
recognizes
overforecast bias.

(c) Olympic Range, Washington
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Here there are
close reforecast
analogs. Observed
data introduces
spread, increases
amount.



(a) Smoothed Rank Analog JFM 25mm (b) Logistic Regression JFM 25mm

1—Day Forecast 10 mbrs

1-Day Forecast
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(a) Smoothed Rank Analog JFM 25mm (b) Logistic Regression JFM 25mm

2-Day Forecast
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We compare here the smoothed
rank analog approach to the
logistic regression approach for
wintertime (JFM) data over the
northeast USA. The focus is
specifically on the 25-mm
threshold, i.e., the quality of
forecasting heavy-precipitation
events.

First, notice that maps of the
overall precipitation forecast skKill
are relatively similar, here for
day-1 and day-2 forecasts. The
logistic regression appears to be
slightly more skillful over New
England on day 1.



(a) Smoothed Rank Analo

(b) Logistic Regression

Pr(Precip > 25 mm), 1—-da ?cs’r, Pr(Precip > 25 mm), 1—day fcst,

0000 UTC 1993 03 1

0000 UTC 1993 03 1

(a) Smoothed Rank Analo
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(b) Logistic Regression

Pr(Precip > 25 mm), 1—da ?cs’r, Pr(Precip > 25 mm), 1—day fcst,

0000 UTC 1995 02 O

0000 UTC 1995 02 O
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Next, consider some
individual storms and their
forecasts. For record-setting
events like 1993’s “Storm of
the Century”, logistic
regression “extrapolates the
regression” and produces
much higher probabilities.
10-member rank analog
techniques produced much
lower probabilities, since
most if not all reforecast
analogs that were selected
inevitably had lower forecast
(and presumably analyzed)
precipitation amounts.



Finding analogs, cont'd: horizontal weighting

o5x5 arrays of shear, CAPE, CIN weighted by distance from center
grid point; controlled by e-folding distance

Sample Search Grid Locations

« E-folding of 7.5 grid points
0.867 0.915 0.931 0.915 0.867
0.915 0.965 0.982 0.965 0.915
0.931 0.982 1.000 0.982 0.931
0.915 0.965 0.982 0.965 0.915
0.867 0.915 0.931 0.915 0.867

« E-folding of 4.5 grid points
0.674 0.781 0.821 0.781 0.674
0.781 0.906 0.952 0.906 0.781
0.821 0.952 1.000 0.952 0.821

0.781 0.906 0.952 0.906 0.781 (Comparing skill using

0.674 0.781 0.821 0.781 0.674 many e-folding distances
 E-folding of 1.5 grid points this will indicate if the local

oo o1 information s of primary

orsontr e importance, or the

0.0290.108 0.169 0.108 0.029 |arger-sca|e pattern )



Observed F2+ Tornado Counts in 12—hour Window

Centered on 0000 UTC 13 May 1982
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Sfc—500 Shear (ms™') and LI 0000 UTC 4 May 1999
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Sfc—500 Shear (ms™") and LI 0000 UTC 14 May 1995

Observed F2+ Tornado Counts in 12—hour Window
Centered on 0000 UTC 14 May 1995
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Making probabilistic forecasts
from analogs

 Method 1: Use raw relative frequency of observed
tornado occurrence in n analogs

_l n'

ST

i=1

T, =1 if F2+ occurred,

P(T
() T;=0if no F2+ occurred

 Method 2: Use weighted relative frequency of
observed tornado occurrence in n analogs



