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Abstract 

A hybrid ensemble transform Kalman filter (ETKF)-three dimensional variational 

(3DVAR) data assimilation system for the Weather Research and Forecasting (WRF) 

model is introduced. The system is based on the existing WRF 3DVAR. Unlike WRF 

3DVAR, which utilizes a simple, static covariance model to estimate the forecast-error 

statistics, the hybrid system combines ensemble covariances with the static covariances to 

estimate the complex, flow-dependent forecast-error statistics. Ensemble covariances are 

incorporated by using the extended control variable method during the variational 

minimization. The ensemble perturbations are maintained by the computationally 

efficient ETKF.  

As an initial attempt to test and understand the newly developed system, we 

conducted both an observing system simulation experiment (OSSE) under the perfect 

model assumption (Part I) and the real observation experiment (Part II).  In these pilot 

studies, the WRF model was run over the North America domain at a coarse-grid spacing 

(200 km) to emphasize synoptic scales, owing to limited computational resources and the 

large number of experiments conducted. In the Part I, simulated radiosonde wind and 

temperature observations were assimilated. The results demonstrated that the hybrid data 

assimilation method provided more accurate analyses than the 3DVAR.  The horizontal 

distributions of the errors demonstrated the hybrid analyses had larger improvements 

over data-sparse regions than data-dense regions.  It was also found that the ETKF 

ensemble spread in general agreed with the root-mean-square background forecast error 

for both the first- and second-order measures.  Given the coarse resolution, relatively 
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sparse observation network and perfect model assumption adopted in this part of the 

study, caution is warranted when extrapolating the results to operational applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4 

1. Introduction 

 The present three-dimensional variational (3DVAR) data assimilation system for 

the Weather Research and Forecast model (WRF), like many other operational 3DVAR 

systems (e.g., Parrish and Derber 1992; Courtier et al. 1998; Gauthier et al. 1998; Cohn et 

al. 1998, Lorenc et al. 2000), assumes that the background forecast-error covariances are 

static and nearly homogeneous and isotropic.  In reality, the background-error 

covariances may vary substantially depending on the flow of the day.  A four-

dimensional variational (4DVAR) data assimilation system for WRF implicitly includes a 

time-evolving covariance model through the evolution of initial errors under tangent 

linear dynamics (Lorenc 2003). However, the evolved, flow-dependent covariance model 

may still be limited by usage of a static covariance model at the beginning of each 

4DVAR cycle. 

 The ensemble Kalman filter (EnKF) provides an alternative to variational data 

assimilation systems.  In the EnKF, the background-error covariances are estimated from 

an ensemble of short-term forecasts. The presumed benefit of utilizing these ensemble-

based techniques is their ability to provide a flow-dependent estimate of the background-

error covariances.  Since the EnKF was described and tested by Evensen (1994) in an 

oceanographic application and by Houtekamer and Mitchell (1998) in the atmospheric 

application, ensemble Kalman filter techniques have been implemented in numerous 

studies with promising results.  These studies include OSSEs (e.g., Houtekamer and 

Mitchell 1998, 2001; Anderson 2001; Szunyogh et al. 2005; Torn et al. 2006) and 

experiments with real numerical weather prediction (NWP) models and observations 

(e.g., Houtekamer et al. 2005; Whitaker et al. 2008; Szunyogh et al. 2007).  Studies more 
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recently have included limited-area models resolving meso- and convective scales (e.g., 

Snyder and Zhang 2003; Dowell et al. 2004; Tong and Xue 2005; Meng and Zhang 2007; 

Liu et al. 2007; Dirren et al. 2007; Torn and Hakim 2008).  The EnKF has also been 

applied to the land surface (e.g. Reichle et al. 2002) and ocean models (e.g., Keppenne 

and Rienecker 2002).  For reviews of the ensemble-based data assimilation, please refer 

to Evensen (2003), Lorenc (2003), and Hamill (2006). 

The encouraging results in these studies suggest that if ensemble information is 

used in the variational data assimilation framework to augment the static background 

error covariance, analyses can be improved.  Hereafter, we call this method a hybrid 

ensemble-variational method, or more simply a “hybrid” scheme. Compared to the 

conventional ensemble-based data assimilation, a hybrid scheme may be attractive for the 

following reasons.  First, unlike conventional ensemble-based schemes, which adopt a 

framework that differs significantly from standard variational schemes, the hybrid 

schemes build upon with existing variational systems, and thus ensemble information can 

be incorporated relatively easily.  Second, hybrids have been shown with simple model 

experiments to be more robust than conventional ensemble data assimilation schemes 

when the ensemble size is small or the model error is large (Wang et al. 2007a; 2008 in 

preparation).   

Several studies have been conducted on the hybrid schemes. Studies by Hamill 

and Snyder (2000), Etherton and Bishop (2004), and Wang et al. (2007a) used simple 

models and simulated observations to suggest the effectiveness of incorporating 

ensembles in the 3DVAR to improve the analyses. Lorenc (2003) discussed how an 

ensemble-based covariance model could be adapted conveniently to the variational 
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framework by extending the control variables.  Two studies have adopted this framework 

for global data assimilation applications.  Barker (1999) tested this framework with a 

single member from an error breeding system using the UK Meteorological Office’s 

global 3DVAR and suggested substantial forecast improvement would be possible if 

more ensemble members were used.  Buehner (2005) tested the hybrid for the global 

3DVAR at the Canadian Meteorological Centre, using ensembles generated either by the 

EnKF or by performing an ensemble of 3DVAR analyses, each using a different 

background and observations perturbed according to observation error statistics.  His 

results showed modest forecast improvements and suggested revisiting the problem with 

increasing ensemble size.  The method of using an extended control variable to 

incorporate the ensemble in the variational framework (Lorenc 2003) and the method of 

directly combining the ensemble covariance with the static covariance (Hamill and 

Snyder 2000) were recently proved to be theoretically equivalent to each other by Wang 

et al. (2007b).  

 In this study, we developed a hybrid data assimilation system for the WRF model, 

based on the existing WRF 3DVAR system. The ensemble mean is updated by the hybrid 

scheme using the extended control variable method proposed by Lorenc (2003) to 

incorporate ensemble covariance information. The ensemble perturbations are generated 

by the ensemble transform Kalman filter (ETKF; Wang and Bishop 2003; Wang et al. 

2004; Wang et al. 2007a).  Therefore, like conventional ensemble-based data 

assimilation, such a system can automatically generate initial ensembles for the 

subsequent ensemble forecasts.  We chose to use the ETKF to generate the ensembles for 

the following reasons.  An early study by Wang and Bishop (2003) showed the ETKF can 
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provide ensemble perturbations that produce skillful ensemble forecasts while 

maintaining relatively inexpensive cost.  Recent studies by Wang et al. (2007a) using a 

simple model demonstrated that a hybrid data assimilation system using the ETKF 

ensembles provided analyses almost as accurate as the full EnKF with moderate 

ensemble sizes, and the hybrid provided analyses better than the EnKF with small 

ensemble sizes.  Also, the ETKF generates the ensemble perturbations in a less 

computationally expensive fashion since the update of the ensemble perturbations are 

performed in the low-dimensional ensemble subspace.  Since we use the ETKF to 

generate ensembles, we call such a system the “hybrid” ETKF-3DVAR system for WRF.  

In Part I of this two-part study, we test the new WRF hybrid ETKF-3DVAR 

system using an OSSE. In part II (Wang et al. 2008), we will test the system by 

assimilating real observations.  These studies are the first we are aware of that test the 

hybrid ETKF-3DVAR method for a limited-area NWP model.  As an initial attempt to 

test and understand the newly developed system and given the limited computational 

resources, the experiments were conducted at a reduced resolution (200 km) to emphasize 

synoptic scales, and a subset of observational network was assimilated.  Our results are 

thus not a direct analog to the operational regional scale applications where much finer 

resolution and denser observations are assimilated.  We hope that in future work we will 

be able to extend this research to higher-resolution simulations and more complete 

observation networks.   

 In section 2, we introduce the hybrid ETKF-3DVAR system. Section 3 describes 

how experiments are designed. Results comparing the WRF 3DVAR with the WRF 
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hybrid scheme will be presented in section 4.  Section 5 concludes and provides 

discussion.    

 

2. The Hybrid ETKF-3DVAR Scheme in WRF 

Figure 1 from Wang et al. (2007a) illustrates how the hybrid ETKF-3DVAR data 

assimilation cycle works. Suppose we start with an ensemble of K  background forecasts 

at time 
0
t .  The following four steps are then repeated for each data assimilation cycle: 1) 

Update the ensemble mean by the hybrid ensemble-3DVAR method. 2) Update the 

forecast perturbations using the ETKF. 3) Add the updated ensemble perturbations to the 

updated ensemble mean to generate K  initial ensemble members. 4) Make K  forecasts 

starting from the K  initial ensemble members forward to the next analysis time.  In the 

next two sub-sections, we will describe steps 1 and 2. 

 

a. Incorporating ensemble in WRF 3DVAR using extended control variables 

We briefly consider the update of the ensemble mean with observations using the 

hybrid method (the description of the method can also be found from Barker et al., in 

preparation). In the WRF hybrid ensemble-3DVAR system, flow-dependent ensemble 

covariances are incorporated in the variational minimization by extending control 

variables, following section 5 of Lorenc (2003).  We first introduce the terms generally 

used in the hybrid ensemble-3DVAR framework and then explain how it is applied 

within WRF 3DVAR. 

The analysis increment of the hybrid, denoted as x ' , is a sum of two terms, 

defined as 
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1
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k
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k
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K

! .                                           (1) 

The first term, x
1

' , in eq. (1) is the increment associated with the WRF 3DVAR static 

background covariance.  The second term is the increment associated with the flow-

dependent ensemble covariance. In the second term of eq. (1), x
k

e  is the kth ensemble 

perturbation normalized by K !1  where K  is the ensemble size, i.e.,  

                                               x
k

e
= x

k
! x( ) / K !1 .                                          (2) 

In eq. (2), x
k
 is the kth ensemble forecast and x  is the mean of the K -member ensemble 

forecasts.  The vectors a
k
, 
 k =1,L,K , denote the extended control variables for each 

ensemble member. The symbol  o  denotes the Schur product (element by element 

product) of the vectors a
k
 and x

k

e .  In other words, the second term of eq. (1) represents a 

local linear combination of ensemble perturbations.   The coefficient a
k
 for each member 

varies in space as discussed later, which determines the ensemble covariance localization 

scale (for the meaning of covariance localization see Hamill et al. 2001). 

 The analysis increment x '  is obtained by minimizing the following hybrid cost 

function  

               
J x

1

'
,a( ) = !

1
" J

1
+ !

2
" J

e
+ J

o

= !
1

1

2
x
1

'( )
T

B#1 x
1

'( ) + !2
1

2
a( )

T

A#1 a( ) +
1

2
yo' #Hx '( )

T

R#1 yo' #Hx '( )
.           (3) 

Compared to a normal 3DVAR cost function, a weighted sum of J
1
 and J

e
 terms in eq. 

(3) replaces the usual background term.  Next we describe each of the three terms in eq. 

(3). 
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In eq. (3), J
1
 is the traditional WRF 3DVAR background term associated with the 

static covariance B .  

In the term J
e
, a  is a vector formed by concatenating K  vectors a

k
, 
 k =1,L,K . 

In other words, 
 
a
T
= a

1

T
,a

2

T
,L,a

K

T( ) .  As in eq. (17) of Lorenc (2003), the extended 

control variables are constrained by a block-diagonal matrix A ,  

                                 

 

A =

S

S

O

S

!

"

#
#
#
#

$

%

&
&
&
&

.                                                       (4) 

Each of the K  blocks contains the same prescribed correlation matrix S , which 

constrains the spatial variation of a
k
.  In other words, A defines the spatial covariance, 

here spatial correlation (since variance is equal to one) of a , same as B  defines the 

spatial covariance of x
1

' .  

In eq. (3), J
o
 is the observation term.  As the traditional 3DVAR, 

y
o '
= y

o
! H x

b( ) is the innovation vector.  Here yo  denotes the observation, xb  is the 

background forecast, and H  is the nonlinear observation operator. In this study, the 

background forecast xb  is the ETKF ensemble mean forecast. H  is the linearized 

observation operator, and R  is the observation-error covariance.  

In eq. (3), there are two factors !
1
 and !

2
 that define the weights placed on the 

static background-error covariance and the ensemble covariance. To conserve the total 

background-error variance, !
1
 and !

2
 are constrained by  

                                                           1
!
1

+
1

!
2

=1 .                                               (5) 
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A similar constraint was applied in Hamill and Snyder (2000), Etherton and Bishop 

(2004) and Wang et al. (2007a).   

To further comprehend the hybrid system defined by eqs. (1) - (5), Wang et al. 

(2007b) explicitly proved that the solution from eqs. (1)-(5) is equivalent to the solution 

by minimizing a cost function where the background-error covariance was explicitly 

defined as a sum of the static covariance and the ensemble covariance with localization 

applied through Schur product, i.e.,  

    
 

J x '( ) =
1

2
x 'T

1

!
1

B +
1

!
2

Pe oS
"

#$
%

&'

(1

x ' +
1

2
yo' (Hx '( )

T

R(1 yo' (Hx '( ) ,            (6) 

where Pe  is the ensemble covariance defined as  

                                              Pe = x
k

e

k=1

K

! x
k

e( )
T

.                                                  (7) 

Wang et al. (2007b) also proved that given the covariance 
 
a
k
a
k( )

T

= S,    k = 1,L,K , the 

covariance of the second term in eq. (1) satisfies 
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Based on eqs. (6)-(8), effectively the correlation matrix in the second term of (3) 

performs covariance localization on the ensemble covariance. 

Practically, to effectively reduce the condition number during variational 

minimization (e.g., Lorenc et al. 2000), the J
1
 term in eq. (3) is pre-conditioned by a 

control variable transform relating the control variables (v
1
) and model space increments 

( x
1
), i.e., x

1

'
= U

1
v
1
, where the transform U

1
approximates the square root of the static 

covariance B .  In the hybrid system, the transform U
1
 is the same as in the WRF 
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3DVAR. For details, please refer to Barker et al. (2004).  Similarly, the J
e
 term is 

preconditioned by a transform a = U
2
v
2

, where the transform by U
2
 approximates the 

square root of the correlation matrix A .  This transform U
2
 is modeled using the simple 

recursive filter (Hayden and Purser 1995) in the WRF hybrid data assimilation system, 

different from Buenher (2005) where the correlation was modeled with a truncated 

spectral expansion.   

In order to reduce the extra cost of minimization due to the increased number of 

control variables, we chose to let each a
k
, 
 k =1,L,K , vary only in the horizontal.  In 

other words, the same 2-dimensional field of coefficients a
k
 was applied for all levels 

and all variables.  Thus, we only applied horizontal recursive filters to model the 

correlation matrix A .  As mentioned earlier, the correlation matrix A  determines the 

covariance localization to be applied to the ensemble. So in the current hybrid system, 

there is no vertical covariance localization. Nevertheless, as discussed in Buehner (2005) 

and Wang et al. (2007a), the use of the static covariance in eq. (3) in addition to the 

ensemble covariance helps to reduce the detrimental effects of the sampling error of the 

ensemble covariance on the analysis.  So, although there is no vertical localization 

through A , the static covariance B  can ameliorate the effects of sampling error in the 

vertical covariances estimated from the ensemble.   

The number of extended control variables in the current hybrid system is equal to 

the horizontal grid dimension (i.e., the number of grid points in the horizontal, I ! J ) of 

the model times the ensemble size K . The number of control variables in the traditional 

WRF 3DVAR cost function is equal to I ! J ! L
n

n=1

N

" , where N  is the number of types of 
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variables and L
n

 is the number of vertical levels for the nth  type of variable.  In the 

current WRF 3DVAR, there are 5 uncorrelated control variables (Barker et al. 2004), and 

therefore, N = 5 .  So, the additional number of control variables in the hybrid divided by 

the number of control variables of the traditional WRF 3DVAR is equal to K / L
n

n=1

5

! , or 

about 0.46 in the experiments considered in this study. 

 

b. The ETKF ensemble generation scheme 

We now consider the method for generating ensemble perturbations around the 

updated mean state.  The ETKF is used to update the forecast ensemble perturbations to 

produce the analysis perturbations. Denote Xe  as the matrix whose K  column vectors 

contain the K  vectors of ensemble member perturbations from the mean. Denote Xa  as 

the matrix of analysis perturbations, i.e., columns of Xa  contain K  analysis 

perturbations. The ETKF updates Xe  into Xa  through a transformation matrix.  The 

transformation matrix is derived within the ensemble perturbation subspace.   Assuming 

the covariance of the raw forecast ensemble perturbations were equal to the true forecast-

error covariance, the goal of the ETKF is to choose the transformation matrix so that the 

outer-product of the transformed perturbations were equal to true analysis error 

covariance.  The ETKF formulation used here (Wang et al. 2007a) is  

 
                               Xa

=! Xe
C "# + I( )

$1/2
C

T ,                                           (9) 
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where C contains the eigenvectors and Γ the eigenvalues of the K ! K  matrix 

X
e( )
T

H
T
R

!1
HX

e
/ K !1( ) , and I is the identity matrix. For more details on the derivation of 

eq. (9), please refer to Wang et al. (2007a) and references therein.   

In eq. (9), the scalar factor !  is an inflation factor, and the scalar factor !  accounts 

for the fraction of the forecast-error variance projected onto the ensemble subspace. Both 

factors are intended to ameliorate the systematic underestimate of the analysis-error variance 

by the ETKF because of the limited ensemble size. Wang et al. (2007a) provided details on 

how to estimate these two factors adaptively for each data assimilation cycle using the 

innovation statistics. Ultimately, we want to ensure that on average the background-error 

variance estimated from the spread of ensembles about the ensemble mean is consistent with 

the background-error variance estimated from the differences between the ensemble mean 

and the observations.  Mathematically, 

 

            
R!1/2 y

o
! H x( )( )"# $%

T

R!1/2 y
o
! H x( )( )"# $% &

tr R!1/2
H x

k( ) ! H x( )( )"# $% R
!1/2

H x
k( ) ! H x( )( )"# $%

T

k=1

K

' / K !1( ) + I
"

#
(

$

%
)

,         (10) 

 
where tr  denotes trace of a matrix.  For a derivation of eq. (10), please see Wang et al. 

(2007a). 

As discussed in Wang et al. (2007a), the estimation of the above two scalar factors is 

also subject to sampling errors due to the limited number of observations in the innovation 

vector and the limited ensemble size. Since this study only considers the radiosonde 

observations over North America and uses 50-member ensemble, we reduce sampling errors 

in the estimation of these two factors by taking the running mean of the previous 5 days’ 

values of the factors.  
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3. Experiment Design 

a. Model, observations, ensemble configurations and verification techniques 

As an initial attempt to test and understand the newly developed hybrid data 

assimilation system for WRF, we designed experiments that were relatively simple and 

manageable with our limited computational resources.  In this paper (Part I), we describe 

and report the OSSE. Results for the real-observation experiments are reported in Part II 

(Wang et al. 2008).  

Experiments were performed running the WRF model (Skamarock et al. 2005), 

on a domain covering North America and the surrounding oceans (Fig. 1), the same as 

the ongoing WRF EnKF experiments (Caya et al. 2004). We ran WRF with a 200-km 

grid spacing on a 45x45 horizontal grid with 27 vertical levels and a model top at 50 hPa.  

The coarse grid spacing was chosen so that a large number of experiments could be 

conducted to find optimal tunable parameters (see sections 3b and 3c and experiment 

design in Wang et al. 2008) using the limited computational resources available. 

Simulated observations of radiosonde temperature, and u- and v- wind 

components were generated by adding random noise to the WRF nature run (the “truth”).  

The positions and vertical sampling rate of the radiosondes were obtained from the 

operational observation dataset at the National Centers for Environmental Prediction 

(NCEP)1.  Figure 1 shows a snapshot of the horizontal distribution of the radiosondes.  

Simulated observations were generated up to 100 hPa. The observation-error covariance 

Rwas assumed to be diagonal. The observation errors were obtained from the 

                                                
1 See http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc for the 
operational observation dataset. 
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operational observation dataset at NCEP.  The vertical profile of the observation errors is 

shown in Fig. 2.  The random noise that was used to generate simulated observations was 

drawn from a Gaussian distribution with zero mean and standard deviation equal to the 

observation errors. 

The simulation started at 0000 UTC 1 January 2003 and lasted for four weeks. 

The observations were assimilated every 12 hours for four weeks, beginning 1200 UTC 1 

January 20032.  Initial and lateral boundary conditions (LBCs) for the nature run and for 

the ensemble were constrained following Caya et al. (2004).  The initial condition and the 

LBCs for the nature run were obtained by adding perturbations to the NCEP “Final” 

analysis (FNL, https://dss.ucar.edu/datazone/dsszone/ds083.2). The perturbations were 

drawn from a multivariate normal distribution whose covariance was from WRF 3DVAR 

NCEP background-error covariances, following Torn et al. (2006).  The structure of the 

WRF 3DVAR NCEP background-error covariances is similar to that described in Wu et 

al. (2002). We ran 50-member ETKF ensembles. The ensemble at 0000 UTC 1 January 

and the ensemble of LBCs during the 4 weeks were generated by superposing 50 

perturbations to the NCEP FNL analysis for the appropriate date.  As for the nature run, 

these perturbations were drawn from a multivariate normal distribution, having the same 

covariance as the one used to generate the nature run. This procedure assumed the 

uncertainty in the LBCs for the 4-week period and the uncertainty in the IC at the very 

beginning of the cycle were perfectly represented by the ensembles because the true state, 

by construction, was drawn from the same distribution as the ensembles.  Figure 3 shows 

the spread (“uncertainty”) of the 50-member initial ensembles as a function of model 

                                                
2 For the OSSE, the dates were defined from the dates in the NCEP FNL analysis, which 
were used to start the data assimilation cycle and define the subsequent LBCs. 
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grids in latitudinal direction at 0000 UTC 1 January.  The lateral boundary width in this 

study is 5 model grids. The magnitude of the spread at the boundaries in Fig. 3 also 

shows the uncertainty of the LBCs from 50 random perturbations. 

For the 3DVAR experiment, the background forecast at 1200 UTC 1 January 

2003 was taken from the ensemble mean at that time to ensure that both assimilation 

schemes start with the same first guess.  The LBCs for the 3DVAR experiment, were 

from the NCEP FNL analysis.  

We chose the verification region to be the inner quarter of the total domain (Fig. 

1) to minimize artifacts from the lateral boundaries. The analyses and forecasts were 

verified against the “truth” (WRF nature run). The statistics were collected after the first 

5 days for all horizontal and vertical grids in the verification domain. 

 

b. Tuning the 3DVAR static background-error covariance  

Since the default WRF 3DVAR NCEP background-error covariance may not 

represent the optimal static background-error covariance for the 3DVAR OSSE 

experiment with the perfect model assumption and simplified observation network, we 

constructed a new static background-error covariance using the 12-hour ETKF ensemble 

forecasts that corresponded to the OSSE experiment setting. We ran the ETKF ensemble 

forecasts every 12 hours for 4 weeks. The ensemble-mean forecast for the ETKF was 

updated by the WRF 3DVAR assimilating the simulated observations using the default 

background-error covariance. We then discarded the first 5 days and re-calculated the 

static background-error covariance B  using the remaining 12-hour ETKF ensemble 

forecasts. In constructing B , linear balance between mass and wind fields and horizontal 
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homogenous error covariances were assumed.  For details on calculating the static 

covariance for WRF 3DVAR, please refer to Skamarock et al. (2005, Chapter 9).  Then 

we re-ran the OSSE 3DVAR experiment using the newly generated B . As shown in 

Table 1, the analyses generated by the 3DVAR with this tuned static covariance were 

more accurate than using the default WRF 3DVAR NCEP background-error covariance. 

We also performed several other experiments to determine the sensitivity of 

3DVAR analysis to the B  produced by other inputs.  We reproduced B  using a 2-week 

period of ETKF forecasts instead of a 4-week period.  The root-mean-square (rms) error 

of the 3DVAR analysis was not sensitive to this.  Since for the OSSE, the true state was 

available and thus the error was known, we also calculated a new static covariance using 

the known 12-hour forecast error samples for the four-week period.  The rms error of the 

3DVAR analysis using this new B  was similar to that using the B  generated by the 

ETKF ensemble. Consequently, in the following 3DVAR and hybrid data assimilation 

experiments, we used the tuned static background covariance generated by the 4-week 

ETKF ensemble.    

 

c. Weighting factors and ensemble covariance localization scales  

There are two tunable parameters in the hybrid that may affect the performance of 

the hybrid (eq. 3). One is the weighting factor that determines the relative influence of the 

static covariance and the ensemble covariance during the analysis. The other is the 

ensemble covariance localization scale. In the following hybrid experiments, we tried 5 

different values for the weighting factor !
1
, 1 / !

1
=1.0, 0.8, 0.5, 0.2, 0. A value of 

1 / !
1
=1.0  indicated that all weight was placed on the static covariance; a value of 
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1 / !
1
= 0.5  indicated that the static covariance and ensemble covariance used equal 

weights.  

As discussed in section 2a, the correlation matrix A  (which determines the 

horizontal localization for the ensemble covariance) is modeled by using a recursive filter 

(Hayden and Purser 1995). The correlation length scale of the recursive filter (S ) 

determines the degree to which the ensemble covariance was localized. We tried four 

different values for S , S = 250, 500, 1000  and 1500 km .  If iterated repeatedly, the 

recursive filter approximates a Gaussian-shaped response and the length scale S  

corresponds to an e-folding distance of S
e

= 2 2S = 707, 1414, 2828, 4242 km of the 

Gaussian response function (Barker et al. 2003). For each of the four weighting factors 

1 / !
1

= 0.8, 0.5, 0.2, 0. , the four different values of correlation length scales were tried. 

 

4. Results 

a. Examples of flow-dependent increments 

 Figure 4 provides two examples showing that the ETKF ensemble can provide 

flow-dependent estimates of the background-error covariance and that the extended 

control variable method can utilize such information to provide flow-dependent analysis 

increments. Figure 4 shows the 850 hPa temperature increments from the assimilation of 

a single 850 hPa temperature observation that was 1 K warmer than the background 

forecast. A weighting factor of 1 / !
1

= 0.  and a covariance localization scale of  

S
e

= 2 2S = 2000 km  were used in both cases.  

The first case corresponds to the ETKF ensemble at 0000 UTC 14 January 2003.  

The observation location was in the middle of a region with a strong temperature 
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gradient.  Positive increments of temperature were elongated along the isotherms while 

negative increments were located in the western part of the cold pool.  The dipole-shaped 

increment suggested a more negative tilt to the analyzed thermal trough.  In this first 

case, the ETKF ensemble primarily indicated uncertainty in the forecasting of the 

position and orientation of the baroclinic zone.   

The second case corresponds to the ETKF ensemble at 0000 UTC 24 January 

2003. In this case, the baroclinic zone had passed to the south and east of the observation 

location, and the simulated observation was again 1 K warmer than the background 

forecast.  There was a positive increment in the cold air around the observation and 

negative increment in the warm air to the east. The dipole-shaped increment in this case 

suggested the observation should weaken the baroclinic zone east of the observation. In 

contrast to the first case, in the second case, the ETKF ensemble indicated a disagreement 

on the strength of the baroclinic zone among ensemble members.  Note also that the 

second case also demonstrated that the ETKF ensemble covariance indicated that it was 

appropriate to extrapolate the observation information into the relative data void in the 

western Atlantic.  Also note that the magnitude of maximum increment was smaller in 

the second case than the first case.  

In summary, the ETKF ensemble estimated flow-dependent structure and 

magnitude of the background error covariance. In both cases, the new hybrid assimilation 

system included these flow-dependent covariances during the minimization and thus 

produced flow-dependent analysis increments. 

  

b.  Verification of the analyses and forecasts 
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In this section, we evaluate the characteristics of the analysis and forecast errors 

for the hybrid and the 3DVAR experiments. The analyses and forecasts were verified 

against the truth (the WRF nature run) for all model horizontal and vertical grids within 

the verification region. Table 2 shows the root-mean-square (rms) analysis error for wind 

(defined as the square root of the mean squared zonal plus meridional wind errors; same 

is used for all wind verification) and potential temperature. The rms analysis error for the 

hybrid is shown as a function of the weighting coefficient 1 / !
1
 and the localization 

scales S
e
.  As shown in Table 2, for most of the combinations of  1 / !

1
 and S

e
, the 

hybrid analysis was more accurate than the 3DVAR, except for the combinations of  

small 1 / !
1
and relatively large S

e
.  The optimal parameters were 1 / !

1
= 0.2 , 

S
e

=1414 km  for the wind, and 1 / !
1
= 0.5 , S

e
=1414 km  for the potential temperature. 

The best-performing hybrid analyses improved upon the 3DVAR analyses by 20.6% and 

14.7% for the wind and the potential temperature, respectively.  For all other variables of 

WRF, the hybrid analyses were also more accurate than the 3DVAR (not shown). 

In Table 2, the difference between the 3DVAR and 1 / !
1
=1.0  experiments was 

that the background forecast for the former was from the single control forecast, whereas 

for the latter it was from the ETKF ensemble-mean forecast. The improvement of the 

analyses for the 1 / !
1
=1.0  experiment over the 3DVAR experiment was presumably 

because the background forecast from the ensemble mean was more accurate than the 

single control forecast.  

Examining the columns of Table 2, for each localization scale, as 1 / !
1
 decreased 

from 1.0 (i.e., more weight on the ensemble covariance), the rms analysis error first 

decreased and then increased.  In general, the value of the optimal 1 / !
1
 decreased with 
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decreasing covariance localization scale.  For example, for wind, the optimal 1 / !
1
 

decreased from 0.5 to 0.2 as S
e
decreased from 2828 - 4242 km to 707 – 1414 km.   

Compared to 1 / !
1
=1.0 , the improvement of the hybrid analysis as 1 / !

1
 started to 

decrease demonstrated the improvement of the analysis through incorporating the flow-

dependent ETKF ensemble covariance.  For some localization scales, when further 

reducing 1 / !
1
 after it reached the optimal value, the analysis became worse than the 

analysis for 1 / !
1
=1.0 . The value of 1 / !

1
 that produced a worse analysis than 

1 / !
1
=1.0  decreased with decreasing localization scales. 

Examining the rows of Table 2, with increasing weighting factor,1 / !
1
 (i.e., 

increasing weight on the static covariance), the rms analysis error of the hybrid became 

less sensitive to the ensemble covariance localization scales.  As discussed in Buehner 

(2005) and Wang et al. (2007a), this was because the hybridization of the static 

covariance already served to ameliorate the detrimental effects of the sampling error in 

the ensemble covariance.  Also note that in general, as 1 / !
1
 decreased (i.e.. more weight 

on the ensemble covariance), the optimal localization scale decreased (i.e., tighter 

localization).  Corresponding results for the 12-hour forecasts show similar variations of 

the errors with respect to S
e
 and 1 / !

1
. 

Consider the horizontal (Fig. 5) distribution of the improvement of the hybrid 

analysis over the 3DVAR analysis.  Corresponding plots for the 12-hour forecasts show 

qualitatively similar results.  The hybrid with the weighting factor 1 !
1
= 0.2 and the 

localization scale S
e

=1414 km  was used. Figure 5 shows the horizontal distribution of 

the difference between the hybrid rms analysis error and the 3DVAR rms analysis error 

for the wind over the verification domain. For each scheme, we first calculated the rms 
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analysis error averaged over all levels in the verification domain and then plotted the 

error of the 3DVAR minus the error of the hybrid. Positive values in Fig. 5 indicate that 

the hybrid analysis was more accurate than the 3DVAR analysis. The rms analysis error 

of the hybrid was smaller than the 3DVAR throughout the domain. The hybrid had larger 

improvement near the data sparse regions, such as the western Atlantic, Gulf of Mexico 

and eastern Pacific. We also found that the improvement of the hybrid over 3DVAR was 

in general larger over western part of the continent than the eastern part. Probably this is 

because the western continent is immediately downstream of eastern Pacific, where there 

are no radiosonde observations. The relatively large improvement of the analysis over the 

eastern Pacific produced relatively large forecast improvement, and thus relatively large 

analysis improvement downstream. These results are consistent with previous studies in 

Hamill and Snyder (2000) and Whitaker et al. (2004; 2008), who showed that the flow-

dependent ensemble background error covariances have the largest impact over and 

downstream of where the observational network is sparse.  

Blue lines in Fig. 6 shows the rms analysis errors of the hybrid and the 3DVAR as 

a function of model levels. For both the hybrid and the 3DVAR, the rms error peaked at 

about 300 hPa for wind and 200 hPa for potential temperature, and then increased again 

in the lower stratosphere. The improvement of the hybrid (solid) over the 3DVAR 

(dotted) was nearly uniform except near the model top, where the improvement of the 

hybrid was much smaller than at lower levels. To understand why the analysis error was 

large near the model top and why the improvement of the hybrid was small at the model 

top, we conducted extra diagnostics and experiments. 
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We first calculated the time-averaged and domain-averaged vertical correlation of 

the 12-hour forecast error between the model top level (level 27) and other levels.  The 

correlation decreased quickly from 1.0 at level 27 to 0.16 at level 24 (about 100 hPa) for 

wind and to 0.1 at level 24 for potential temperature.  The correlation then decreased to 

nearly zero at level 21 (about 180 hPa).  

The observations were below 100 hPa in the study.  The weak correlation between 

the model uppermost levels and the observation levels clearly has the potential to lead to 

relatively larger errors at the uppermost model levels. We have confirmed this through 

experiments with observations extended to 50 hPa.  These revealed significantly reduced 

errors (by more than 50% at level 27) at the model top for both the hybrid and the 

3DVAR.  Significant improvement of the hybrid over the 3DVAR was also found even at 

the model top, consistent with the performance of the hybrid at lower levels (not shown). 

In the hybrid system, the linear combination of the static covariance B  with the 

ensemble covariance ameliorates but does not remove the effect of the sampling errors of 

the vertical error correlation estimated by the ensemble.  The weak correlation between 

the model uppermost levels and the levels below 100 hPa has the potential to increase the 

detrimental effects of sampling errors in the hybrid, since for fixed ensemble size, 

expected errors in the sample estimate of a correlation are largest when the correlation is 

small.  We hypothesize that the small improvement of the hybrid relative to the 3DVAR 

at the model top shown in Fig. 6 was due to the sampling errors.  To test this hypothesis, 

we conducted another hybrid experiment with the ensemble size increased from 50 to 

100. The corresponding profile of the rms analysis error is shown in Fig. 6 as the black 

line.  The improvements from the larger ensemble (and its reduced sampling error) were 
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largest at the model top.  With the larger ensemble, the hybrid also significantly improved 

on the 3DVAR even at the uppermost levels. 

 Figure 6 also shows the rms forecast errors at 12-hour (red lines) and 24-hour 

(green lines) lead times.  As the analysis, the hybrid forecast is more accurate than the 

3DVAR forecasts nearly uniformly below level 25.  The hybrid 12-hour forecast is even 

more accurate than the 3DVAR analysis below level 15.  Note that since the same LBCs 

were used to run the forecasts for both the hybrid and the 3DVAR, with increasing 

forecast lead times the influence of the LBCs becomes more dominant over the 

verification region and the difference of the forecasts between the hybrid and the 3DVAR 

becomes smaller.  Plotting the forecast errors separately over the western part and the 

eastern part of the verification domain shows that the differences of the forecast errors 

between the hybrid and the 3DVAR starts to diminish earlier over the western part than 

the eastern part (not shown), which verifies this hypothesis.      

 

c. Verification of the ETKF ensemble spread 

 In this section, we compare the 12-hour ETKF ensemble forecast spread to the 12-

hour background forecast errors to see how well the ensemble spread estimated the 

magnitude of the background forecast errors.  The results shown below correspond to the 

hybrid experiment with 1 !
1
= 0.2  and S

e
=1414 km . 

 As mentioned in section 2b, the ETKF employs two tunable factors, the inflation 

factor (! ), and the factor (! ) that estimates the fraction of the first-guess (ensemble 

mean) error variance projected onto the ensemble subspace, in the ETKF.  These factors 

are intended to ameliorate the systematic underestimate on the error variance by the 
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ETKF due to the limited ensemble size.  Both factors were determined adaptively in the 

ETKF.  Figure 7 shows the factors !  and !  during the 4-week data assimilation period.  

The factors started to converge to constant values after 5 days (10 cycles).  The average 

values after day 5 for !  and !  were 3.4 and 28.7% respectively. 

 To evaluate how well the ensemble spread performs as an estimate of forecast 

errors, Fig. 8 shows the vertical profile of the 12-hour ensemble spread versus the rms 

error of the 12-hour background forecast for wind and potential temperature.  For each 

model level, the spread and rms error were averaged over all grid points within the 

verification domain over the verification period. The ETKF ensemble spread in general 

agreed with the first-guess rms error, except at the top levels where the ensemble spread 

was systematically smaller than the first guess error.  As discussed in section 2b, the 

adaptive inflation factor for the ETKF was determined by the innovations over all 

observations. Therefore, it only ensured that over the observation space, the ensemble 

spread on average agreed with the first-guess error.  The relatively large discrepancy of 

the spread and the first guess error at the top levels may be because the lack of 

observation above 100 hPa in this experiment.  For the experiment where observations 

were extended to the top model level, the corresponding plot (not shown) shows that the 

magnitude of the spread and that of the first guess error were about the same at the model 

top levels. Note that the adaptive inflation factor used in this study had the same value for 

all model grids and variables, which will not ensure matching of the spread and the first-

guess error for each level and each variable.  For future work, we may explore and apply 

the inflation factor so that it is not only adaptive in time but also adaptive in space 

(Anderson 2007).  
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Comparing the ensemble spread to the rms first-guess error averaged over all grid 

points on a level like in Fig. 8 provides a first-order measurement of the relationship of 

the spread and the error at that level. Next we consider a second-order measure, namely 

whether the ETKF spread can distinguish large background forecast error from small 

background forecast error. For example, Fig. 9 shows that for the first-order measure, the 

ETKF spread agreed with the rms background error at model level 17 (~330 hPa).  To 

provide second-order measure for that level, we used a method similar to that used in 

Majumdar et al. (2002) and Wang et al. (2007a). We first produced a scatterplot where 

the ordinate and abscissa of each point were the squared first-guess error and the 

ensemble variance for a particular variable of interest, respectively. We collected samples 

over all grid points at level 17 over the verification domain and all times. We then 

divided these points into equally populated bins, arranged in order of increasing ensemble 

variance.  Next, we averaged the squared forecast error and ensemble variance separately 

for each bin.  Note that as discussed in Wang and Bishop (2003), comparing a squared 

first-guess error with the ensemble variance does not make sense since the former is a 

random draw from the latter if the ensemble variance is perfect.   In other words, we need 

to average the squared first-guess error first before comparing it with the ensemble 

variance.  We then plotted the square roots of the averaged squared forecast error against 

the square roots of the averaged ensemble variance. The connecting curve described the 

relationship between the ensemble spread and the rms forecast error. Fig. 9 shows such 

curve for the wind and potential temperature, where we used 12 bins.  Results using 3 

bins are smoother than that shown in Fig. 9.  The curve in Fig. 9 closely aligned with the 

45-degree line, which means the ETKF ensemble spread can distinguish large 
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background errors from small background errors and thus make quantitative predictions 

of the expected background errors.  In order to see if the result is statistically significant, 

we randomly picked half of the samples and plotted the same curve ten times.  Thus in 

each bin we collected 10 pairs of square roots of averaged squared first guess errors and 

the averaged ensemble covariance. We then calculated the standard deviations from these 

ten samples in each bin.  The bars in Fig. 9 shows the plus and minus three standard 

deviations with respect to both axes.  This test suggested that the conclusion that the 

ETKF ensemble spread can well predict the expected forecast errors is statistically 

robust.     

  

5. Conclusions and Discussions   

 In this study, we introduced a new hybrid ETKF-3DVAR data assimilation 

method developed for WRF. The system was built based on the existing WRF 3DVAR. 

In the hybrid system, the background-error statistics were estimated from a combination 

of the traditional static covariance with the flow-dependent ensemble covariance.  

Specifically, the ensemble covariance was included in the variational update through 

extending control variables.  At each data assimilation time, the deviations of the 

ensemble members about the mean were updated by the computationally efficient ETKF.  

 As a pilot study on the WRF ETKF-3DVAR hybrid data assimilation system, in 

this Part I we conducted an identical-twin OSSE experiment with a coarse grid spacing 

(200 km) and a relatively sparse network of simulated radiosonde wind and temperature 

observations in a region around the North America. (The accompanying Part II discusses 

real-data experiments).  The hybrid provided ~ 15-20% more accurate analyses than the 
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3DVAR. The horizontal distribution of the rms analysis error showed that the 

improvement of the hybrid over the 3DVAR was larger over data-sparse regions than 

over data-dense regions.  We also found that the ETKF ensemble spread in general was 

consistent with the rms first guess error in both the first-order and the second-order 

measurements. 

The benefit of the hybrid may be diminished in real-world implementations with 

imperfect models and a denser observation network.   Since an ensemble of simulations 

with an imperfect forecast model will not be able to describe the error covariances due to 

model error and the current state of the art method to account for model error in the 

ensembles may not be effective, the positive impact of ensemble may thus diminish (Part 

II). Also, several previous studies have shown that as observation density increases, the 

impact of the flow-dependent covariances is diminished (Hamill and Snyder 2000; 

Whitaker et al. 2004, 2008).   

Our choice of a coarse grid spacing in this study emphasized the synoptic scales. 

The real-world regional scale application adopts a much finer resolution. As grid spacing 

is refined and mesoscale features are resolved, it is possible that these mesoscale features, 

which are more sensitive to the details of imperfect model parameterizations, may not be 

handled as well as the synoptic scales.  On the other hand, increasing resolution may 

reduce the model error for synoptic scales and thus improve the ensemble covariance and 

the analysis of the hybrid.   Also note that the hybrid may demonstrate its advantage in 

meso-scales because meso-scales are relatively poorly observed compared to large scales, 

and they do not exhibit as strongly the balances assumed by the 3DVAR covariance 

model.  Therefore, cautions need to be taken to extrapolate the results of this study to a 
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more realistic context.  Parameters such as the weighting coefficients and the localization 

length scale may need to be retuned.  

A hybrid formulation using the ETKF has some appealing characteristics.  The 

hybrid is straightforward to implement in the framework of operational variational 

schemes. It may be more robust than conventional ensemble filters when the ensemble 

size is small or when the model error is large.  The computational expense of the 

ensemble update step using the ETKF is much more efficient than the conventional 

ensemble-based data assimilation schemes.   Conceptually, there is no reason why a 

4DVAR system could not be hybridized with an ETKF ensemble.  

If one needs to run ensemble forecasts anyway, the only extra cost of the hybrid 

results only form the analysis procedure.  The hybrid formulation proposed here 

produced a modest increase in computational expense from the extension of the control 

variables in the variational minimization.  In the current experiments, with this 50-

member ensemble hybrid and horizontal covariance localization, the number of control 

variables was increased by 46% relative to 3DVAR.   The computational expense of 

minimization for the hybrid was about twice that of 3DVAR.  Here, to minimize the 

computational expense, the extended control variables in the current system did not apply 

localization for the vertical covariance estimated by the ensemble (the effect of the 

sampling error of the vertical covariance estimated by the ensemble was somewhat 

ameliorated by the static covariance).  It is unclear how much the hybrid filter accuracy 

will improve with vertical covariance localization through extended control variables.  It 

may be possible to include the vertical covariance localization at modest expense through 

one of several possible techniques.  These include modeling the vertical correlation using 



 31 

truncated EOFs, similar to the vertical transform in the current WRF 3DVAR (Barker et 

al. 2004), or to use the extended control variables on a coarser grid.  Other improvement 

in the efficiency of the hybrid may be possible through further optimization.  
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Table Captions 

 

TABLE 1. Root mean square error of the analysis of the 3DVAR experiments with the 

default background error covariance and the tuned static background error covariance 

that was generated by the ETKF ensemble. 

 

TABLE 2. Root mean square error (rms) of the wind and potential temperature analyses 

of the hybrid with various combinations of the weighing coefficients 1 !
1

 and the 

covariance localization scales S
e
. Please see text for the definition of 1 !

1
 and S

e
.  

Numbers in the parentheses indicate the percentage improvement relative to the 3DVAR 

with tuned static covariance.  The smallest rms errors are highlighted.  For 1 !
1
=1.0 , 

experiments do not depend on S
e
. 
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Figure Captions 

 

Figure 1. The WRF domain (full grid), the verification region (inner box), and a snapshot 

of radiosonde network at 1200 UTC 8 January 2003 (black dots).  

 

Figure 2. Vertical profile of the errors of observations for wind (dashed) and temperature 

(solid). 

 

Figure 3. Zonally averaged spread of 50 random perturbations drawn from the WRF 

3DVAR NCEP background error covariance for (a) wind ( U
2
+V

2 ) and (b) potential 

temperature. 

 

Figure 4. 850 hPa temperature increment by assimilating a single observation of 850 hPa 

temperature at the black dot using localized ETKF ensemble covariance only. The 

observation was 1 degree warmer than the background forecast. Thin black contours are 

850 hPa temperature from -21 to 15 degrees with contour interval of 3 degrees. The thick 

black contours are the temperature increments with a 0.04 degrees contour interval. (a) a 

case from 0000 UTC 14 January 2003. (b) a case from 0000 UTC 24 January 2003. 

 

Figure 5. The difference of the root-mean-square vertically averaged wind analysis error 

between the hybrid (ensemble size 50, 1 / !
1
= 0.2 , and S

e
=1414km ) and the 3DVAR 

for the verification domain. Positive values mean the hybrid analysis was more accurate 

than the 3DVAR. 
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Figure 6. Vertical profiles (as a function of model eta levels) of the analysis errors (blue), 

12-hour (red) and 24-hour (green) forecast errors for the 3DVAR (dotted) and the hybrid 

with ensemble size 50, 1 / !
1
= 0.2 , and S

e
=1414km (solid). The analysis error for the 

hybrid with ensemble size 100, 1 / !
1
= 0.2 , and S

e
=1414km is in black. (a) wind. (b) 

potential temperature. The pressure on the right axis was calculated from the eta values, 

model top pressure of 50 hPa and approximated surface pressure of 1000 hPa.    

 

Figure 7. The inflation factor (! ) and the factor (! ) of percentage projection of the first 

guess error variance onto the ensemble subspace for the ETKF in the hybrid experiment 

with 1 / !
1
= 0.2  and S

e
=1414km . 

 

Figure 8. The ETKF ensemble spread (dotted) and the rms first guess error (solid) as a 

function of model levels for the hybrid with simulated observation up to 100 hPa, 

ensemble size 50, 1 / !
1
= 0.2 , and S

e
=1414km . (a) wind. (b) potential temperature.  

 

Figure 9. Second-order measure (see details in the text) of the skill of the ETKF ensemble 

spread for model level 17 of Fig. 8. (a) wind, (b) potential temperature.  

 

 

 
 
 
 
 
 



 41 

 
 
TABLE 1. Root mean square error of the analysis of the 3DVAR experiments with the 
default background error covariance and the tuned static background error covariance 
that was generated by the ETKF ensemble. 
 
 Wind ( U

2
+V

2 ,ms!1 ) ! ( k ) 
Default 3DVAR 1.936  0.846 
Tuned   3DVAR 1.648 0.770 
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TABLE 2. Root mean square error (rms) of the wind and potential temperature analyses 
of the hybrid with various combinations of the weighing coefficients 1 !

1
 and the 

covariance localization scales S
e
. Please see text for the definition of 1 !

1
 and S

e
.  

Numbers in the parentheses indicate the percentage improvement relative to the 3DVAR 
with tuned static covariance.  The smallest rms errors are highlighted.  For 1 !

1
=1.0 , 

experiments do not depend on S
e
. 

 
Wind (ms!1 ) S

e
= 4242 km  2828 km  1414 km  707 km  

1 !
1
=1.0  1.546 (6.2) ⎯ ⎯ ⎯ 

          0.8  1.412 (14.3) 1.399 (15.1) 1.401 (15.0) 1.443 (12.4) 
          0.5  1.378 (16.4) 1.331 (19.2) 1.340 (18.7) 1.392 (15.6) 
          0.2  1.398 (15.2) 1.359 (17.6) 1.309 (20.6) 1.377 (16.4) 
          0.0  1.679 (-1.9) 1.594 (3.3) 1.450 (12.0) 1.460 (11.4) 
 
 
 
Pot. Temp. (K ) S

e
= 4242 km  2828 km  1414 km  707 km  

1 !
1
=1.0  0.713 (7.4) ⎯ ⎯ ⎯ 

          0.8  0.692 (10.2) 0.682 (11.5) 0.665 (13.7) 0.676 (12.2) 
          0.5  0.726 (5.7) 0.685 (11.0) 0.657 (14.7) 0.671 (12.9) 
          0.2  0.788 (-2.3) 0.756 (1.8) 0.675 (12.4) 0.674 (12.5) 
          0.0  0.954 (-23.9) 0.921 (-19.6) 0.795 (-3.3) 0.734 (4.7) 
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Figure 1. The WRF domain (full grid), the verification region (inner box), and a snapshot 
of radiosonde network at 1200 UTC 8 January 2003 (black dots).  
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Figure 2. Vertical profile of the errors of observations for wind (dashed) and temperature 
(solid). 
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Figure 3. Zonally averaged spread of 50 random perturbations drawn from the WRF 
3DVAR NCEP background error covariance for (a) wind ( U

2
+V

2 ) and (b) potential 
temperature.    
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Figure 4. 850 hPa temperature increment by assimilating a single observation of 850 hPa 
temperature at the black dot using localized ETKF ensemble covariance only. The 
observation was 1 degree warmer than the background forecast. Thin black contours are 
850 hPa temperature from -21 to 15 degrees with contour interval of 3 degrees. The thick 
black contours are the temperature increments with a 0.04 degrees contour interval. (a) a 
case at 0000 UTC 14 January 2003. (b) a case at 0000 UTC 24 January 2003. 
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Figure 5. The difference of the root-mean-square vertically averaged wind analysis error 
between the hybrid (ensemble size 50, 1 / !

1
= 0.2 , and S

e
=1414km ) and the 3DVAR 

for the verification domain. Positive values mean the hybrid analysis was more accurate 
than the 3DVAR. 
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Figure 6. Vertical profiles (as a function of model eta levels) of the analysis errors (blue), 
12-hour (red) and 24-hour (green) forecast errors for the 3DVAR (dotted) and the hybrid 
with ensemble size 50, 1 / !

1
= 0.2 , and S

e
=1414km (solid). The analysis error for the 

hybrid with ensemble size 100, 1 / !
1
= 0.2 , and S

e
=1414km is in black. (a) wind. (b) 

potential temperature. The pressure on the right axis was calculated from the eta values, 
model top pressure of 50 hPa and approximated surface pressure of 1000 hPa.    
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Figure 7. The inflation factor (! ) and the factor (! ) of percentage projection of the first 
guess error variance onto the ensemble subspace for the ETKF in the hybrid experiment 
with 1 / !

1
= 0.2  and S

e
=1414km . 
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Figure 8. The ETKF ensemble spread (dotted) and the rms first guess error (solid) as a 
function of model levels for the hybrid with simulated observation up to 100 hPa, 
ensemble size 50, 1 / !

1
= 0.2 , and S

e
=1414km . (a) wind, (b) potential temperature.  
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Figure 9. Second-order measure (see details in the text) of the skill of the ETKF ensemble 
spread for model level 17 of Fig. 8. (a) wind, (b) potential temperature.  


