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Abstract 

 A hybrid analysis scheme is compared with an ensemble square root filter 

(EnSRF) analysis scheme in the presence of model errors, as a follow-up to a previous 

perfect-model comparison.  In the hybrid scheme, the ensemble perturbations are updated 

by the ensemble transform Kalman filter (ETKF) and the ensemble mean is updated with 

a hybridized ensemble and static background-error covariance.  The experiments were 

conducted with a two-layer primitive equation model. The true state was a T127 

simulation.  Data assimilation experiments were conducted at T31 resolution, 

assimilating imperfect observations drawn from the T127 nature run. By design, the 

magnitude of the truncation error was large, which provided a test on the ability of both 

schemes to deal with model error.  Additive noise was used to parameterize model errors 

in the background ensemble for both schemes.  In the first set of experiments, additive 

noise was drawn from a large inventory of historical forecast errors and in the second set 

of experiments, it was drawn from a large inventory of differences between forecasts and 

analyses.  The static covariance was computed correspondingly from the two inventories. 

The hybrid analysis was statistically significantly more accurate than the EnSRF 

analysis.  The improvement of the hybrid over the EnSRF was smaller when differences 

of forecasts and analyses were used to form the random noise and the static covariance.  

The EnSRF analysis was more sensitive to the size of the ensemble than the hybrid.  A 

series of tests were conducted to understand why the EnSRF performed worse than the 

hybrid. It was shown that the inferior performance of the EnSRF was likely due to the 

sampling error in the estimation of the model-error covariance in the mean update and the 

less balanced EnSRF initial conditions due to the extra localizations used in the EnSRF.   
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1. Introduction 

 The idea of incorporating ensemble covariances into three-dimensional variational 

(3DVAR) data assimilation systems, hereafter called hybrid data assimilation schemes, 

has been a subject of a number of recent papers (e.g., Hamill and Snyder 2000, Lorenc 

2003, Etherton and Bishop 2004, Buehner 2005, Wang et al. 2007ab, Wang et al. 

2008ab).  Compared to 3DVAR schemes that utilize stationary background error 

covariances (e.g., Parrish and Derber 1992; Courtier et al. 1998; Gauthier et al. 1998; 

Cohn et al. 1998), the presumed benefits of the hybrid schemes are their ability to provide 

flow-dependent estimates of the background-error covariances so that the observations 

and the background are more appropriately weighted during the assimilation.  Previous 

studies ranging from simple model tests (e.g., Hamill and Snyder 2000, Etherton and 

Bishop 2004, Wang et al 2007a) to real Numerical Weather Prediction (NWP) model 

tests (e.g., Buehner 2005, Wang et al. 2008ab) have demonstrated superior data 

assimilation performance of the hybrid method relative to 3DVAR. 

 Another framework of using ensembles in data assimilation is the ensemble 

Kalman filter (EnKF) based approach.  Numerous studies have been conducted on this 

approach and encouraging results have also been found (Evensen 1994; Houtekamer and 

Mitchell 1998, 2001; Anderson 2001; Szunyogh et al. 2005; Torn et al. 2006; 

Houtekamer et al. 2005, 2008; Whitaker et al. 2008; Szunyogh et al. 2007; Miyoshi et al. 

2007; Snyder and Zhang 2003; Dowell et al. 2004; Tong and Xue 2005; Meng and Zhang 

2008; Liu et al. 2007; Dirren et al. 2007; Reichle et al. 2002; Keppenne and Rienecker 

2002; Yang et al. 2008).  For reviews please see Evensen 2003, Lorenc 2003, Hamill 

2006, and Ehrendorfer 2007.  A natural question one would ask is: how does the hybrid 
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compare to the EnKF?  Previous studies on the hybrid (e.g., Lorenc 2003, Buehner 2005, 

Wang et al. 2007ab, Wang et al. 2008ab) discussed that unlike the EnKF that adopts a 

framework completely different from the long- existing operational variational scheme, 

one advantage of the hybrid scheme is that it can be implemented with minor changes to 

the existing variational codes.  However, there have not been many published studies 

focusing on directly comparing the performance of the hybrid and the EnKF-based 

approaches and on understanding their underlying differences.  Recent work by Wang et 

al. (2007a) directly compared the hybrid with the ensemble generated by the ensemble 

transform Kalman filter (ETKF; Wang and Bishop 2003; Wang et al. 2004; Wang et al. 

2007a) and the ensemble square-root filter (EnSRF; Whitaker and Hamill 2002), one of 

the well-tested EnKF-based approaches, using a primitive equation, two-layer model with 

a perfect-model assumption. They found that the hybrid was more accurate than the 

EnSRF when the ensemble size was small.  However, to better simulate realistic NWP 

applications, the effect of model errors must be considered.  How then, does the hybrid 

compare to the EnSRF in the presence of model error?  What are the underlying reasons 

for differences in their performances? These are the questions we seek to answer in this 

paper. 

 As a follow up to Wang et al. (2007a), we compare the two schemes using the 

same global primitive equation two-layer model but with model errors.  As in Hamill and 

Whitaker (2005), we examine a relatively simple source of model error, the errors 

introduced by the truncation of the forecast model.   With this relatively simple 

experiment setting, it will be easier to discern fundamental differences of the two 
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schemes in the presence of one type of model error, which will be beneficial to future 

work of comparing the two schemes with real NWP models and observations. 

 The hybrid and the EnSRF schemes will be described in section 2.  Section 3 

provides a description on the experiment design. Section 4 describes the results and tests 

conducted to understand the difference of the two schemes. Section 5 concludes the 

paper. 

 

2. The hybrid and the EnSRF data assimilation methods 

 

a. The hybrid scheme 

 Figure 1 of Wang et al. (2007a) describes in general how the hybrid data 

assimilation cycle works.  Compared to the perfect-model experiment from Wang et al. 

(2007a), the main difference in the current application of the hybrid scheme is the 

representation of model error in the ensemble update, which will be specified later in this 

section.  

 We first consider the update of the mean in the hybrid method. The ensemble-

mean forecast b
x  is updated by observations y  to obtain the ensemble-mean analysis a

x  

using 

                                      
   
x

a
= x

b
+ P

b
H

T
H P

b
H

T
+ R( )

! 1

y ! H x
b( ) ,                          (1) 

where H  is the observation operator mapping from the model state variables to the 

observed variables, here presumed linear; R  is the observation-error covariance matrix; 

and Pb  is the background error covariance.  As in Wang et al. (2007a), PbHT  and 

HP
b
H

T are formed by 
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where PeHT  and HPeHT are calculated from the K  ETKF ensemble forecast 

perturbations (x
k

e ' , 
 k =1,L,K ).  Note in the second terms of eq. (2) and (3), covariance 

localization was applied through Schur product  o  between a correlation matrix and the 

raw ensemble covariance (Hamill et al. 2001, Houtekamer and Mitchell 2001). 

Horizontal localization by using Gaspari and Cohn’s (1999) locally supported, 

approximately Gaussian-shaped function is used to form the correlation matrices.  As in 

Wang et al. (2007a), the static covariance HBHT  and BHT  are formed from a large 

inventory of historical forecast errors over many separate times (see section 3b). 

Following Etherton and Bishop (2004) and Wang et al. (2007a), a rescaling factor f  was 

used to rescale the static covariance matrix so that the total variance of the rescaled 

covariance matrix was equal to the total forecast-error variance in the observation space 

(under the norm of trace R!1/2
HP

t
H

T
R

!1/2( ) ). As in eq. (21) of Wang et al. (2007a), the 

rescaling factor f  was determined dynamically.  The user-tunable factor ! , 0 !" !1 , 

determines the relative weights placed on the static and the ensemble covariances.  As 

discussed later, an inflation factor was applied so that the ETKF ensemble forecast 

variance was equal to the total forecast error variance in the observation space also.  

Designed this way, the weighting factor !  preserves the total variance (e.g., Etherton and 

Bishop 2004).  Note that although we updated the mean using the classic optimum 

interpolation formula (Schlatter 1975), under the current experiment design, it will 
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provide the same solution as if we had updated the mean state in a 3D variational 

framework (Daley 1991; Wang et al. 2007b). 

We now consider the method for updating perturbations around the mean state.  

The ensemble perturbations are updated by the ETKF. The ETKF transforms the matrix 

of background ensemble perturbations Xb , whose columns contain K  background 

ensemble perturbations, x
k

'b , 
 k =1,L,K , into a matrix of analysis perturbations Xa , 

whose columns contain K  analysis perturbations, a

k

'
x , 

 k =1,L,K .  The transformation 

happens through the post-multiplication by the matrix T , that is, 

                                                        Xa
= X

b
T .                                                      (4) 

The latest ETKF formulation (Wang et al. 2007a) is  

                               Xa
=!Xb

C "# + I( )
$1/2
C

T ,                                           (5) 

where C contains the eigenvectors and Γ the eigenvalues of the K ! K  matrix 

X
b( )

T

H
T
R

!1
HX

b
/ K , and I is the identity matrix. For more details on the derivation of eq. 

(5), please refer to Wang et al. (2007a) and references therein. The scalar factor !  is the 

inflation factor and the scalar factor !  is the fraction of the forecast-error variance projected 

onto the ensemble subspace. Both factors aim to ameliorate the systematic underestimate on 

the analysis-error variance by the ETKF due to the limited ensemble size. Wang et al. 

(2007a) provided details on how to estimate these two factors adaptively for each data 

assimilation cycle using the innovation statistics. The goal of !  is to ensure that the variance 

of the ensemble forecast initialized from the analysis perturbations Xa  in eq. (5) is consistent 

with the true background-error variance in the observation space (under the norm of 

trace R
!1/2
HP

t
H

T
R

!1/2( ) ). 
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 Unlike the perfect-model experiment (Wang et al. 2007a) where background 

ensemble perturbation Xb  is formed only from the ETKF ensemble forecasts, in this 

imperfect-model experiment, following Hamill and Whitaker (2005), we account for the 

model error in Xb  using the additive noise method. The background ensemble 

perturbation  Xb  (x
k

'b , 
 k =1,L,K .) is constructed as 

 

                                           xk
'b
= 1!"( )xk

' e
+ " f ek ,                                               (6) 

where x
k

' e  is the ensemble forecast perturbation generated from analysis ensemble 

updated by the ETKF method, and e
k
 is a random sample drawn from the large inventory 

of the historical forecast errors that form the static covariance B , which will be described 

in section 3b.  Note that x
k

' e  is used to compute PeHT  and HPeHT in eq. (2) and (3). 

Therefore, the relative weight of the ETKF perturbation and the random perturbation in 

the background ensemble perturbation is consistent with the weight of the ETKF 

ensemble covariance and the static covariance in the background error covariance used to 

update the mean (eqs. 2 and 3).   Also note that in eq. (6), we adopted random noise 

consistent with the static covariance B , which is similar to Houtekamer et al. (2005, 

2008) where random noise drawn from the 3DVAR static covariance was used to 

parameterize model errors.  In practice, such random perturbations are easy to obtain.   

To test the background ensemble perturbation in eq. 6, Fig. 1b shows the rms 

background error and the ensemble spread as a function of latitude for an experiment 

with the hybrid scheme (! = 0.4  and localization scale = 15000 km). As a comparison, 

another experiment where no additive noise was applied and thus a global constant 
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inflation was used to parameterize model error is shown in Fig. 1a. Consistent with the 

findings in Hamill and Whitaker (2005), with a globally constant inflation, the 

background ensemble spread was abnormally large in the tropics, whereas using the 

additive noise method the background ensemble spread better matched the latitudinal 

variation of the background errors.  As explained by Hamill and Whitaker (2005), the 

actual growth of model error depends on the dynamics and grows more rapidly in the 

midlatitudes. While the constant inflation uniformly expanded the spread, the additive 

noise has larger magnitude in the mid-latitude (not shown). 

 

b. The EnSRF analysis scheme 

As opposed to the hybrid, which assimilates observations simultaneously, the 

EnSRF serially assimilates observations. The ensemble perturbations updated by the 

previous observations are used to model the background-error covariance for assimilating 

the next observation; for details see Whitaker and Hamill (2002).  Similarly, the updated 

mean from the assimilation of the previous observation is used as the prior state for the 

assimilation of the next observation.  The EnSRF update equations for assimilating the ith 

single observation y
i
 are as follows: 

 

                                                xa = x
b
+ Ki yi ! Hix

b( ) ,                                            (7) 

                                                   
 
x
k

'a
= I ! %K

i
H

i( )xk
'b
" .                                                (8) 

Note that here H
i
 maps the state vector to the ith observation space. In eq. (7), K

i
 is the 

Kalman gain modified by the covariance localization, 
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As in the hybrid, horizontal localization utilizes the approximately Gaussian-shaped 

function of Gaspari and Cohn (1999). 
 
%K
i
 in eq. (8) is called the “reduced” Kalman gain 

matrix (Whitaker and Hamill 2002).  For serial assimilation,  

                                      
 

%K
i
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i
P
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H

i
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i
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As in the ETKF, an adaptive inflation !  is used to ensure that the variance of the ensemble 

forecast initialized from the analysis perturbations x 'a  in eq. (8) is consistent with the true 

background forecast error variance in the observation space. 

We also use additive noise to account for model error in the background ensemble 

perturbations x
k

'b  in the EnSRF (eq. 8).  For the purpose of a parallel comparison with the 

hybrid, the background ensemble perturbation in the EnSRF is constructed the same as 

that in the hybrid (eq. 6), and in this case x
k

' e  is the kth the ensemble forecast perturbation 

generated from ensemble forecasts initialized by the analysis ensemble updated by the 

EnSRF method.  Figure 1c also illustrates that with the additive noise method, the 

background ensemble spread for the EnSRF also can represent the latitudinal variation of 

the background forecast errors.  

 

3. Experiment design 

 

a. Model, model error, observations, ensemble configuration and verification methods 

In this study, we ran a dry, global, two-layer primitive equation model (Zou et al. 

1993). It was previously used in Hamill et al. (2001), Hamill and Whitaker (2005), and 
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Wang et al. (2007a) for ensemble data assimilation experiments in both perfect-model 

and imperfect-model contexts.  The model is spectral, and the model state vector includes 

coefficients of vorticity and divergence at two levels and coefficients of two layer 

thicknesses 
1

!"  and 
2

!" , where !  is the Exner function. There is a simple, zonal 

wavenumber 2 terrain. The model is forced by Newtonian relaxation to a prescribed 

interface Exner function. A fourth order Runge-Kutta scheme is used for numerical 

integration, and 8
!  hyperdiffusion is used.  The parameters chosen are the same as in 

Hamill and Whitaker (2005).   

We assume the “true” atmospheric state is described by the forecast dynamics at 

T127 resolution. All data assimilation experiments were conducted at T31 resolution.  In 

other words, we assume our data assimilation and forecast system is only able to resolve 

scales T31 and larger. The short-term model error in T31 resolution is thus due to the 

lack of representation of the interaction with the unresolved scales. Please see Hamill and 

Whitaker (2005) for detailed descriptions on the characteristics of the model and model 

errors due to unresolved scales.  Also as discussed in Hamill and Whitaker (2005), this 

setup was designed to produce large model errors so as to provide a stringent test on the 

ability of the two schemes to deal with model errors.  Model errors here are dominated by 

random rather than systematic component. 

Observations of interface !  and surface !  were taken at a set of nearly equally 

spaced locations on a spherical geodesic grid (Fig. 2 of Wang et al. 2007a). The 362 

observations of each consisted of the T127 true state plus errors drawn from a distribution 

with zero mean and standard deviation of 8.75 11 !! KJkg  for interface !  and 0.875 

11 !! KJkg  for surface ! , respectively, the same values used in Wang et al. 2007a.  



 12 

Observation errors were constructed to be independent spatially and temporally, and 

observations were assimilated every 24h. 

Following Hamill and Whitaker (2005), we first ran both systems with 200 

ensemble members. Then to study the sensitivity of each scheme to ensemble sizes we 

ran 50 members. The ensemble was initialized with random draws from the model 

climatology. The data assimilation was conducted for a150-day period, and the error 

statistics were evaluated over the last 100 days.  The statistical significance of the 

following results test was evaluated with a paired sample t-test with the temporal 

correlation of the data taken into account (Wilks 2006, p.455). 

 

b. Formation of static background error covariance and inventory of random noise 

In the first set of experiment, the static background-error covariance B  was 

formed and the random noise e
k
 was drawn from a large inventory of historical forecast 

errors over many separate times.  We call this the “forecast minus truth” inventory. 

Following Wang et al. (2007a), an iterative procedure was taken to construct such an 

inventory to form the static covariance B  that produced the smallest analysis errors.  In 

the final iteration, 6541 samples of 24-h forecast errors were collected. The static 

background error covariance matrix B  was then constructed by directly calculating the 

covariance of this large inventory of the forecast error samples. The 4th column of Table 

1 shows the rms analysis error of the experiment where we ran a single-member forecast 

and analysis cycle using only the static covariance obtained from the last iteration. We 

denote this experiment “3DVAR” since it used a static covariance like 3DVAR. Note that 

the static covariance and the random noise were generated from the same inventory, 
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which will provide a clean comparison and thus reveal the fundamental differences of the 

hybrid and the EnSRF schemes. These results are presented in section 4a and 4b. 

As discussed in Wang et al. (2007a), the static covariance produced by the above 

method is likely to be much better than the static covariances formulated for operational 

3DVAR.  The random noise inventory where parameterized model error is drawn is also 

not obtainable since in reality the true state can never be known.  The 3DVAR, hybrid 

and EnSRF data assimilation schemes may benefit differently from these assumptions. To 

answer this question, we form another random noise inventory where we use the analysis 

to estimate the truth.  In other words, instead of collecting the forecast errors (forecast 

minus truth), we collect the differences between the forecast and the corresponding 

analysis and calculate the static covariance from the new inventory.  We call this the 

“forecast minus analysis” inventory, which can be more realistically obtained. Results of 

the second set of experiments using this new inventory of random noise and new static 

covariance are described in section 4c. 

 

4. Results  

  

a. Analysis errors with the static covariance and random noise formed from forecast 

minus truth inventory 

 We first examine the analysis errors of the different DA schemes using the static 

covariance and random noise formed from the forecast minus truth inventory described in 

section 3b.  Figure 2 shows the root-mean square analysis errors in the kinetic energy 

(KE), upper layer Exner function thickness (!"
2
) and surface Exner function (!

s
) norms 
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for the hybrid and the EnSRF schemes as functions of the localization scale and the 

weighting factor for 200-member ensembles.  The EnSRF was more sensitive to the 

localization scales than the hybrid.  The best-performing hybrid and EnSRF from Fig. 2 

are summarized in Table 1. It is shown that the best-performing hybrid was statistically 

significantly better than the best-performing EnSRF.  The hybrid improved upon the 

EnSRF by 7%, 5% and 16% for the kinetic energy, upper layer Exner function thickness 

and surface Exner function norms respectively.   

To measure the sensitivity of the rms analysis errors of the hybrid and EnSRF 

with respect to the ensemble size, we also ran both schemes with 50-member ensembles. 

The results of best-performing hybrid and EnSRF with 50-member ensembles are 

summarized in the lower panel of Table 1. The best-performing hybrid was still 

statistically significantly better than the best-performing EnSRF. The relative 

improvement of the hybrid over EnSRF running 50-member ensembles was 11%, 9% and 

31% for the three norms, which is larger than running 200-member ensembles.  The rms 

analysis error of the best performing 50-member hybrid was comparable or even smaller 

than that of the best-performing 200-member EnSRF. These results indicate the hybrid is 

less sensitive to the ensemble size than the EnSRF, consistent with Wang et al. (2007a). 

The hybrid running 200-member and 50-member ensembles both outperformed 

the “3DVAR” for all three norms considered.  The 200-member EnSRF outperformed 

3DVAR except for the !
s
 norm, which is different from Hamill and Whitaker (2005) 

where the EnSRF was better than the 3DVAR for all three norms. The differences of the 

current experiment design and that of the Hamill and Whitaker (2005) are that (1) Hamill 

and Whitaker (2005) did not assimilate!
s
 observations, and probably more importantly 
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(2) Hamill and Whitaker (2005)’s static covariance for 3DVAR was formed from 200 

historical forecast errors with covariance localization whereas the static covariance here 

was formed iteratively from 6941 historical forecast errors with no localization.  The 50-

member EnSRF did not outperform the “3DVAR”. 

 

b. Why is the hybrid better than the EnSRF?  

 The source of parameterized model errors is the same in both the ensemble mean 

and ensemble perturbation updates for the hybrid and the EnSRF.  The superior 

performance of the hybrid over the EnSRF shown above must then arise from algorithmic 

differences between the two schemes.  Although the assumption made in forming the 

random noise inventory and also the static covariance is not realistic since we assumed 

we knew the truth, this set of experiment still offers opportunities for understanding the 

underlying differences between the two schemes. In this section, we describe experiments 

designed to elucidate which of the differences between the hybrid and EnSRF algorithms 

contributed to the better analysis in the hybrid than the EnSRF as shown in section 4a. 

 

1) Effect of differences in the ensemble perturbation update 

One difference between the hybrid and the EnSRF is in the update of the 

ensemble perturbations. On the one hand, the ETKF ensemble perturbations have 

superior balance since the update of the perturbations does not involve covariance 

localization.  On the other hand, due to the global nature of the ETKF, the ETKF 

perturbations will do a poorer job of resolving the spatial inhomogeniety of the error 

covariance (Wang and Bishop 2003). To understand if the differences in ensemble 
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perturbation update were an important factor in making the hybrid analysis more accurate 

than the EnSRF, we replace the ensemble perturbation update in the EnSRF by the ETKF 

method while still using the EnSRF to obtain the ensemble mean analyses.  The results 

are summarized in Table 2.  It was found that with the ETKF updating the ensemble 

perturbations, the analysis was no better than using the EnSRF to update the ensemble 

perturbations.  Note that in Table 2, in the only case where the EnSRF analysis (!"
2
 

norm for 50-member ensemble) was inferior, the difference between the EnSRF and the 

hybrid was not statistically significant.   

 

2) Effect of sampling error in the estimation of model-error covariance when updating 

the mean 

 We then used a single-observation test to understand the difference of the two 

methods in updating the ensemble mean.  Figure 3 shows the increment by assimilating a 

single second layer thickness (!"
2
) observation located at (47N, 108W) that was 

3 J  kg
!1

 K
!1  smaller than the background forecast.  Fig. 3a shows the increment of the 

hybrid with a weighting coefficient of 0.4 and a localization scale of 15000 km.  Note 

such combination of the weighting coefficient and the localization scale produced the 

best hybrid analyses. The flow-dependent ensemble (x
k

e ' ) was from the 24-hour ensemble 

forecast at the 123th cycle of the best-performing 200-member hybrid experiment.  The 

exact same flow-dependent ensemble was used in the single-observation experiment for 

the EnSRF in order to understand the difference in the update of the ensemble mean.  

Since the best-performing 200-member EnSRF for the !"
2
 norm was using the 5000 km 

localization and a weighting coefficient of 0.4, in the following, we first compared the 
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hybrid increment with the EnSRF increment using these parameters (Fig. 3b).  Then we 

further compared the increment of the hybrid with the increment of the EnSRF adopting 

the same localization scale and weighting coefficient as the hybrid (Fig. 4). Comparing 

Fig. 3a and Fig. 3b shows that the length scale of the EnSRF increment was shorter than 

that of the hybrid. Since the hybrid analysis was more accurate, Fig. 3a and 3b thus 

suggest observational influence that appeared to be physically important in the hybrid 

was missing by the EnSRF.  When the localization scale was increased to 15000 km, the 

same used in the flow-dependent ensemble part in the hybrid, the EnSRF increment 

appeared more similar to that of the hybrid.  Further examination, however, reveals (Fig. 

4) the difference of increments between the hybrid and the EnSRF with 15000 km 

localization scale.  Figure 4 shows that the difference was in relatively small spatial scale 

and the magnitude was about one tenth of the increment.  The EnSRF appeared to have 

noisier increment at longer distance from the observation. Since the inputs for the flow-

dependent part of the ensemble and the localization scales applied were the same for the 

hybrid and the EnSRF, the difference shown in Fig. 4 were thus due to the treatment of 

model error when updating the mean.    

 From eqs. (1)-(3) and (6), (7), and (9), when updating the mean, the hybrid used a 

static covariance model to represent the model error, whereas the EnSRF used a limited 

sample drawn from the static covariance and then applied a covariance localization to 

that sample covariance.  To reveal the differences in the two treatments of model errors, 

we plot (Fig. 5) the spatial correlation of the static covariance (that was built from a large 

sample of perturbations as described in section 3b) and the correlation of limited (200) 

samples drawn from the static covariance.  Fig. 5 shows that applying a localization scale 
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of 15000 km, the sampling error is hardly corrected, which presumably explains the 

difference in Fig. 4.   Figure 5 also shows that although applying a localization of 5000 

km can reduce the sampling error at the long distance, it degrades the correlation at 

shorter distances.   

  

3) Effect of serial and simultaneous updates 

Another difference in the update of the mean is that the EnSRF used serial 

assimilation of observations whereas the hybrid assimilates observations simultaneously.  

If the observation error is uncorrelated and no covariance localization applied, the serial 

update and the simultaneous update are equivalent. However, a serial update with the 

same Gaspari-Cohen (1999) localization function applied when assimilating each 

observation is not equivalent to the simultaneous update when the same localization 

function is applied for the covariance once (Ehrendorfer 2007).  To test if simultaneous 

update contributed to the better performance of the hybrid, we ran a few more 

experiments. In one experiment, at each assimilation time, we randomly picked 200 

samples from the random perturbation inventory, and conducted the assimilation using 

the serial EnSRF with localization.  In the second experiment, at each assimilation time 

we first computed the covariance using the same 200 samples and then apply the same 

localization on this sample covariance. We then simultaneously assimilated all 

observations. Localization scales of 5000 km and 15000 km were tried. The rms analysis 

errors of the experiments are shown in Table 3.  We found that for both localizations 

scales, the simultaneous update performed no better than the serial update.  Note that for 

the only case where the simultaneous update appears to be a little better (!"
2
 norm and 
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15000 km localization), the difference is not statistically significant.  Table 3 also shows 

that with less severe localization, the difference between the simultaneous and serial 

updates becomes smaller.  We also tried several localization scales between 5000 km and 

15000 km and the conclusion was the same. 

 

4) Initial condition balance 

Spurious imbalances between the mass and momentum fields in the analysis 

increments can produce gravity wave noise and thus reduce the accuracy of the forecast 

and analysis.  The mean absolute tendency of surface pressure is a useful diagnostics of 

the amount of imbalance for an analysis produced by a data assimilation scheme.  For the 

two-layer model, the surface Exner function !
s
 is the quantity analogous to the surface 

pressure.  To examine !
s
 tendency, we re-ran forecasts from the ensemble-mean analysis 

up to 24-h lead, producing output every hour.  We then calculated the hourly !
s
 

tendency. Figure 6 shows the globally averaged absolute hourly !
s
 tendency for all 

analysis times and all hourly tendency snapshots during the 24-h forecast period. The 

EnSRF has larger !
s
 tendency value than the hybrid, which suggests the EnSRF 

ensemble-mean analyses were less balanced.  The result for the truth run is also shown in 

Fig. 6 as a comparison. 

As discussed in Lorenc (2003), covariance localization can damage the wind-

mass balance.  Compared to the hybrid, the EnSRF has two extra covariance 

localizations: one resides in ensemble perturbation update, and the other resides in the 

localization of the covariance of the random noise that is used to parameterize the model 

error.  These extra covariance localizations thus can make the EnSRF analyses less 
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balanced than the hybrid analyses. Experiments in section 4b1) suggested the superior 

balance of the ETKF perturbations may be compensated by its lack of local resolution of 

the error covariances.   However, the extra covariance localization applied to the model-

error covariance in the EnSRF, but not in the hybrid, can lead to larger analysis errors in 

the EnSRF.  

 

c. Sensitivity to the type of samples used to form the static covariance and random sample 

inventory 

  

 In the previous experiments, the static covariance and the random noise that was 

used to parameterize model error were both constructed based on a large inventory of 

historical forecast error where we assumed we knew the true atmospheric state, the 

“forecast minus truth” inventory.  In other words, we assumed that the climatological 

distribution of the true forecast error is known. Of course the truth is unknown.  The 

“3DVAR”, the hybrid and the EnSRF may profit to a different extent from such 

assumptions.   

To test this hypothesis, we now consider assimilation results using the “forecast 

minus analysis” inventory discussed in section 3b.  The model error was then 

parameterized by drawing random noise from this new inventory and the static 

covariance was also recalculated from this new inventory. We then re-ran the “3DVAR”, 

the hybrid and the EnSRF experiments.  The best-performing results for the hybrid and 

the EnSRF with 200-member ensembles are summarized in Table 4.  As expected, 

3DVAR, hybrid and the EnSRF all performed worse (compared with results in Table 1).  
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The relative improvements of the hybrid and EnSRF over the 3DVAR were both larger. 

This result together with that in section 3a demonstrated the reliability of the hybrid since 

it outperformed 3DVAR no matter how the static covariance was formed.  The hybrid 

still performed statistically significantly better than the EnSRF.  The absolute and relative 

improvements of the hybrid over the EnSRF were smaller though. 

  Results from sections 4a and 4b suggested the inferior performance of the EnSRF 

relative to the hybrid was due to the sampling error in the model-error parameterization 

of the EnSRF when updating the mean.  However, when the random noise was drawn 

from the more realistic forecast minus analysis inventory, sampling error in model-error 

parameterization became less of a factor.  

 

5. Conclusions and Discussions 

 

 As a follow-up to the perfect-model study of Wang et al. (2007a), we compared 

the skill of the hybrid and the EnSRF analysis schemes using an observation-system 

simulation experiment in the presence of truncation model error.  A two-layer global 

primitive equation model was used.  The true state was a T127 nature run. The data 

assimilation was performed at T31 resolution. A simplified observation network was 

assumed and imperfect observations were created by adding random noise to the nature 

run. In the hybrid scheme, the ensemble perturbations are updated by the ETKF and the 

ensemble mean is updated with a hybridized ensemble and static background-error 

covariance.   In the background ensembles of the hybrid and the EnSRF, the model error 

was parameterized using additive noise method.  To test the sensitivity of the 
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performances of the data assimilation schemes to the sources of additive noise, in the first 

set of experiments, the additive noise was drawn from a large inventory of historical 

forecast errors and in the second set of experiments, it was drawn from a more realistic 

inventory of differences between forecasts and analyses. The static covariance was 

formed from these inventories accordingly.   

 The results demonstrated that the hybrid analysis was statistically significantly 

more accurate than the EnSRF analysis.  The EnSRF was more sensitive to the ensemble 

size than the hybrid.  Series of tests revealed that the less accurate analyses from the 

EnSRF were probably due to the sampling error in model error parameterization during 

the mean update, as well as the less balanced initial conditions due to the extra covariance 

localization used in the EnSRF.  However, the relative improvement of the hybrid over 

the EnSRF was smaller when the parameterized model error and the static covariance 

were generated from a more realistic inventory of differences between forecasts and 

analyses rather than from an inventory of historical forecast errors.  Since by design the 

magnitude of the model error in this experiment is large (Hamill and Whitaker 2005), this 

result suggests that the advantage of the hybrid over the EnSRF may become smaller if 

we lack of an accurate specification of model error. 

The simulated observational network is much simpler, and more uniform than the 

real observing network.  The number of observations relative to the number of degrees of 

the model is also very likely to be different from the real world.  Also model errors in full 

numerical weather prediction models can be caused by many other factors other than 

truncation error.  In the future when both the EnSRF and the hybrid are maturing with the 
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real NWP models, a direct comparison of the EnSRF and hybrid with an operational 

NWP setting should be conducted.   

The encouraging results of the hybrid as compared with the 3DVAR and the 

EnSRF in this study and the fact that the hybrid is straightforward to implement in an 

operational variational system strongly suggest that the hybrid should be considered as a 

candidate for operational data assimilation. The relative merit of the hybrid is also a 

function of the quality of the 3DVAR scheme. Advanced 3DVAR schemes feature error 

correlation length scales tuned by carefully designed ensemble experiments and 

sophisticated balance constraints. Hence designers of ensemble data assimilation schemes 

who have easy access to advanced 3DVAR schemes may find the hybrid more appealing. 

As discussed in Buenher (2005), Wang et al. (2007ab; 2008ab), and Zhang et al. 

(2008) the idea of combining ensemble covariance with static covariance can be extended 

to the four-dimensional variational (4DVAR) framework.  The incorporation of the 

ensemble covariance may improve the initial background error covariance and thus 

improve the 4DVAR analysis. 
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Table captions 

TABLE 1. Rms errors in kinetic energy norm (KE, units m s
!1 ), upper layer Exner 

function thickness norm (!"
2
, units J  kg

!1
 K

!1 ) and surface Exner function norm (!
s
, 

units J  kg
!1

 K
!1 ) for the analyses of the hybrid, EnSRF and 3DVAR. Upper panel is for 

200-member ensembles and lower panel is for 50-member ensembles. Only the best 

performing hybrid and EnSRF are shown.  The 4th column shows the absolute and 

relative improvement of the hybrid over the EnSRF. The last column is the confidence 

level at which the rms errors of the Hybrid and EnSRF are different. 

 

TABLE 2. Rms errors in kinetic energy norm (KE, units m s
!1 ), upper layer Exner 

function thickness norm (!"
2
, units J  kg

!1
 K

!1 ) and surface Exner function norm (!
s
, 

units J  kg
!1

 K
!1 ) for the analyses updated by the EnSRF scheme and the mixed EnSRF-

ETKF scheme (ensemble updated by the ETKF and ensemble mean updated by the 

EnSRF).  Localization scale of 5000 km and weighting coefficient of 0.4 were used.  

Both 50-member and 200-member ensemble runs were tried. 

 

TABLE 3. RMS analysis errors for the experiments where 200 random samples were 

used to build the background error covariance. In “serial” experiment, the observations 

are assimilated serially with a fixed localization applied for each observation.  In 

“simultaneous” experiment, observations are assimilated simultaneously with the 

localization applied for the covariance before assimilation. Both 5000 km and 15000 km 

localizations were tried.  
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TABLE 4.  Same as Table 1 except using the newly constructed random noise inventory 

and static covariance 
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Figure captions 

 

Fig. 1 Zonally averaged RMS first guess second layer meridional wind error (solid) and 

background ensemble spread (dotted) as a function of latitude, for (a) Hybrid with 

weighting coefficient of 0.4, localization scale of 15000 km and no additive error; (b) as 

(a) but with additive error to parameterize model error in the background ensemble; (c) 

EnSRF with weighting coefficient of 0.4, localization scale of 5000 km, and with additive 

error to parameterize model error in the background ensemble. 

 

Fig. 2 RMS analysis error for the kinetic energy (KE), second layer thickness (!"
2
) and 

surface Exner function (!
s
) norms as a function of localization scales and weighting 

coefficients for the hybrid (solid thin), EnSRF (solid thick) and 3DVAR (dashed).  The 

weighing coefficients tried are 0.2, 0.4, 0.6 and 0.8.  For the hybrid, for each of weighting 

coefficients, localization scales of 5000 km, 15000 km and 25000 km were tried.  For the 

EnSRF, for each of weighting coefficients, localization scales of 3000 km, 5000 km, 

15000 km and 25000 km were tried.  

 

Fig. 3 A snapshot (at the 123rd analysis cycle) of ensemble mean upper-layer thickness 

(!"
2
) increment for a single !3Jkg!1

K
!1  !"

2
 observation increment located at the black 

dot.  The black lines are the contours of the background !"
2
.  The color in (a) is the 

increments ( Jkg!1
K

!1 ) for the hybrid with weighting coefficient of 0.4 and localization 

scale of 15000 km; and the color in (b) is that of the EnSRF with weighting coefficient of 

0.4 and localization scale of 5000 km. 
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Fig. 4 Same as Fig. 3, except that the colors scale now emphasizes small values.  (a) is 

the same as (a) in Fig. 3, except using the new color scale. (b) is for the EnSRF with 

weighting coefficient of 0.4 and localization scale of 15000 km;  (c) is the difference in 

the increments between (b) and (a). 

 

Fig. 5 Spatially lagged correlation along 45o N  latitude of the second layer thickness 

(!"
2
) as a function of zonal distance for the static correlation (thick solid), correlation 

from two sets of 200-member random samples (thin solid), 200-member sample 

correlation with 5000 km localization (dash-dotted) and 15000 km localization (dotted). 

(a) and (b) are for the first and second sets of 200-member random samples. 

 

Fig. 6 Mean absolute surface Exner function (!
s
) tendency ( Jkg!1

K
!1
h
!1 ) averaged 

globally, over the subsequent twenty-three 1-h forecast period and over all time. White 

bar is for the hybrid with weighting coefficient of 0.4 and localization scale of 15000 km.  

Black bars are for the EnSRF with weighting coefficient of 0.4 and localization scales of 

5000 km and 15000 km. The grey bar is for the truth run. 
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TABLE 1. Rms errors in kinetic energy norm (KE, units m s
!1 ), upper layer Exner 

function thickness norm (!"
2
, units J  kg

!1
 K

!1 ) and surface Exner function norm (!
s
, 

units J  kg
!1

 K
!1 ) for the analyses of the hybrid, EnSRF and 3DVAR. Upper panel is for 

200-member ensembles and lower panel is for 50-member ensembles. Only the best 
performing hybrid and EnSRF are shown.  The 4th column shows the absolute and 
relative improvement of the hybrid over the EnSRF. The last column is the confidence 
level at which the rms errors of the Hybrid and EnSRF are different. 
 
 
200-member Hybrid  EnSRF EnSRF-

Hybrid 
3DVAR Confidence 

level 
KE 3.938  4.237  0.299 (7%) 4.509 > 99% 
!"

2
 5.997  6.317  0.32 (5%) 6.631 > 99% 

!
s
 0.341  0.404  0.063 (16%) 0.379 > 99% 

 
 
50-member Hybrid EnSRF EnSRF-

Hybrid 
3DVAR Confidence 

level 
KE 4.153 4.671  0.518 (11%) 4.509 > 99% 
!"

2
 6.192  6.826  0.634 (9%) 6.631 > 99% 

!
s
 0.355  0.515  0.16 (31%) 0.379 > 99% 
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TABLE 2. Rms errors in kinetic energy norm (KE, units m s
!1 ), upper layer Exner 

function thickness norm (!"
2
, units J  kg

!1
 K

!1 ) and surface Exner function norm (!
s
, 

units J  kg
!1

 K
!1 ) for the analyses updated by the EnSRF scheme and the mixed EnSRF-

ETKF scheme (ensemble updated by the ETKF and ensemble mean updated by the 
EnSRF).  Localization scale of 5000 km and weighting coefficient of 0.4 were used.  
Both 50-member and 200-member ensemble runs were tried. 
 
200 member  EnSRF Mixed EnSRF-ETKF 
KE 4.237 4.312 
!"

2
 6.317 6.339 

!
s
 0.448 0.460 

 
50 member  EnSRF Mixed EnSRF-ETKF 
KE 4.671 4.709 
!"

2
 6.826 6.799 (<80% confidence) 

!
s
 0.515 0.563 
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TABLE 3. RMS analysis errors for the experiments where 200 random samples were 
used to build the background error covariance. In “serial” experiment, the observations 
are assimilated serially with a fixed localization applied for each observation.  In 
“simultaneous” experiment, observations are assimilated simultaneously with the 
localization applied for the covariance before assimilation. Both 5000 km and 15000 km 
localizations were tried.  
 
5000 km localization Serial Simultaneous 
KE 5.04 5.25 
!"

2
 7.29 7.46 

!
s
 0.50 0.59 

 
15000 km localization Serial Simultaneous 
KE 5.28 5.31 
!"

2
 7.70 7.69(<90% confidence) 

!
s
 0.48 0.50 
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TABLE 4. Same as Table 1 except using the newly constructed random noise inventory 
and static covariance. 
 
200-member Hybrid EnSRF EnSRF-

Hybrid 
3DVAR Confidence level 

KE 4.140  4.378  0.238 (5%) 5.129 > 99% 
!"

2
 6.257  6.459  0.202 (3%) 7.318 > 99% 

!
s
 0.379  0.412  0.033 (7%) 0.457 > 99% 
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Fig. 1 Zonally averaged RMS first guess second layer meridional wind error (solid) and 
background ensemble spread (dotted) as a function of latitude, for (a) Hybrid with 
weighting coefficient of 0.4, localization scale of 15000 km and no additive error; (b) as 
(a) but with additive error to parameterize model error in the background ensemble; (c) 
EnSRF with weighting coefficient of 0.4, localization scale of 5000 km, and with additive 
error to parameterize model error in the background ensemble. 
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Fig. 2 RMS analysis error for the kinetic energy (KE), second layer thickness (!"

2
) and 

surface Exner function (!
s
) norms as a function of localization scales and weighting 

coefficients for the Hybrid (solid thin), EnSRF (solid thick) and 3DVAR (dashed).  The 
weighing coefficients tried are 0.2, 0.4, 0.6 and 0.8.  For the hybrid, for each of weighting 
coefficients, localization scales of 5000 km, 15000 km and 25000 km were tried.  For the 
EnSRF, for each of weighting coefficients, localization scales of 3000 km, 5000 km, 
15000 km and 25000 km were tried.  
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Fig. 3 A snapshot (at the 123rd analysis cycle) of ensemble mean upper-layer thickness 
(!"

2
) increment for a single !3Jkg!1

K
!1  !"

2
 observation increment located at the black 

dot.  The black lines are the contours of the background !"
2
.  The color in (a) is the 

increments ( Jkg!1
K

!1 ) for the hybrid with weighting coefficient of 0.4 and localization 
scale of 15000 km; and the color in (b) is that of the EnSRF with weighting coefficient of 
0.4 and localization scale of 5000 km. 
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Fig. 4 Same as Fig. 3, except that the colors scale now emphasizes small values.  (a) is 
the same as (a) in Fig. 3, except using the new color scale. (b) is for the EnSRF with 
weighting coefficient of 0.4 and localization scale of 15000 km;  (c) is the difference in 
the increments between (b) and (a). 
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Fig. 5  Spatially lagged correlation along 45o N  latitude of the second layer thickness 
(!"

2
) as a function of zonal distance for the static correlation (thick solid), correlation 

from two sets of 200-member random samples (thin solid), 200-member sample 
correlation with 5000 km localization (dash-dotted) and 15000 km localization (dotted). 
(a) and (b) are for the first and second sets of 200-member random samples. 
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Fig. 6 Mean absolute surface Exner function (!

s
) tendency ( Jkg!1

K
!1
h
!1 ) averaged 

globally, over the subsequent twenty-three 1-h forecast period and over all time. White 
bar is for the hybrid with weighting coefficient of 0.4 and localization scale of 15000 km.  
Black bars are for the EnSRF with weighting coefficient of 0.4 and localization scales of 
5000 km and 15000 km. The grey bar is for the truth run. 


