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Seismic waves

Faulting

USGS
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We had a session on sources, this session focuses on the waves that result from the earthquake



Homogeneous Earth

If the Earth had constant velocity the wave paths would 
be very simple. 
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If the Earth had constant velocity the wave paths would be very simple. 



Structure in the Earth results in complicated paths
Lowrie, 1997, fig 3.69

Bolt, 2004, fig 6.3

USGS
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However, the Earth has a more complicated structure, as covered in an early lecture. The changes in velocity result in refraction and reflection of the seismic energy. So the ray paths through the Earth are complicated.



Snell’s Law
Fermat’s Principle
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θ2 sin θ1 / sin θ2 = n21
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Water

Rays
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Refraction is described by Snell’s Law, which relates the angle of the ray either side of a velocity change to the velocity contrast. Refraction is something we’ve all seen, for example the way a stick appears to bend when partially immersed in water is an illusion caused by refraction of light.
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When velocity increases with depth within the Earth the rays a refracted back towards the Earth’s surface (left hand example), when the velocity decreases within the earth the rays are refracted away from the surface (right hand example).
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With several layers of increasing velocity this effect is repeated. The time taken for the ray to travel from the source to the receiver is the sum of the distance traveled in each layer multiplied by the velocity of that layer. If we have a number of recording stations in a simple patch of ground and we plot the time of arrival against the distance from the source we create a plot like the one on the right. In a constant velocity layer the time taken is proportional to the distance traveled and the graph is a straight line (giving the velocity of the layer). We investigate the structure of the earth using this – by recording the arrival times at many locations we can create a plot similar to the one on the right (but more complicated) and use this to try and calculate the velocity structure of the earth.



Andrija Mohorovicic (1857-1936)

Found seismic discontinuity at 30 km 
depth in the Kupa Valley (Croatia). 

Mohorovicic discontinuity or ‘Moho’

Boundary between crust and mantle

The Moho

The Moho
The Moho

Copywrite Tasa Graphic Arts
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Mohorovicic found a very sharp change in velocity within the earth in Croatia, which was later shown to occur everywhere at varying depths (average of about 40 km under the continents and ~7 km below the seabed under the oceans). The velocity change is interpreted to happen at the change from crustal material to mantle material and is known as the Moho after Mohorovicic. 
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Deeper in the Earth the ray paths through the mantle are relatively simple. There are a few changes associated with the 410 and 660 km discontinuities, but nothing compared to the deeper earth.
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Because the outer core is liquid it has no S waves (we’ll come to this later) and the P waves are slower, so the ray the enters in the inner core bends away from the surface, deeper into the earth.



Forward Branch

Backward Branch
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Steeper incident rays are less affected and so we end up with deeper ray paths arriving nearer the source.



Forward Branch

Backward Branch

Forward Branch

Shadow Zone
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We then have another short forward branch. However, no direct P energy arrives in a zone ~105-~143 degrees from the source – the shadow zone.
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1912 Gutenberg observed shadow zone 105o to 143o

・
 

1939 Jeffreys fixed depth of core at 2898 km
(using PcP)
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The time-distance plots through the mantle show this complexity. 



PcP

Core Reflections
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Presentation Notes
PcP is an example of a reflection. 



P Mantle P

S Mantle S

K Outer core P

I Inner core P

c Reflection 
from the outer 
core

i Reflection 
from the inner 
core

diff Diffracted 
arrival

IASP91, Kennett and Engdahl, 1991
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There are many possible ray paths all have been observed. Phases are named using the path through the Earth.



Aspects of Waves not Explained by Ray Theory

・
 

Different types of waves (P, S)
・

 
Surface Waves

・
 

Static Displacements
・

 
Frequency content

Seismic Waves
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So far we’ve talk about ray paths and time-distance plots, but we haven’t talked about these other aspects



Wave Equation
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1-D wave equation

c = propagation speed

This is the equation that explains the 
waves on a spring: constant velocity 
wave propagation, no mass transfer, 
different from circulation eq.
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The general equation for a wave in one-dimension. Solving this equation tells us about the waves.



1-D Wave Equation
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simplest solution is in one-dimension. 



Wave Period and Wavelength

Velocity 6 km/s

x

t

wavelength

period

Space

Time

period 50 s
frequency = 1/period= 0.02 hz

Velocity = Wavelength / Period

wavelength 300 km



Body waves
（P・S）

0.01 to 50 sec 50 m to 500 km

Surface waves 10 to 350 sec 30 to 1000 km

Free Oscillations 350 to 3600 sec 1000 to 10000 km

Static Displacements -

Period Wavelength
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Near-field Terms (Static Displacements)

Far-field Terms (P, S Waves)
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The solution gets very complicated in 3D, but this solution explains mathematically the static displacements at the fault and the properties of the waves that travel away from the focus.



Bei-Fung Bridge near Fung-Yan city, 1999 Chi-Chi, Taiwan earthquake

Near-field terms

・
 

Static displacements

・
 

Only significant close to the fault 

・
 

Source of tsunamis
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Static displacements are the permanent changes in position of the ground that happen at and near the fault.

This waterfall was generated by static displacement associated with the 1999 Chi-Chi earthquake.



Static displacements

Co-seismic deformation
of 2003 Tokachi-oki
Earthquake (M8.0)
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Static displacements can be recorded by GPS and used to provide information on the rupture.



Generation of Tsunami 
from Near-field Term

UNESCO-IOC 
(Great waves)

Presenter
Presentation Notes
Tsunamis are caused by static displacements. The wave is generated because the water is displaced. In the case of large ocean-wide destructive tsunamis the cause is normally the sudden movement of the upper plate in a subduction zone system as centuries of built-up strain are removed in a major thrust earthquake.



Far-field Terms

・
 

Propagating Waves

・
 

No net displacement

・
 

P waves

・
 

S waves
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The far-field terms of the wave equation tell us about the propagating waves. This figure shows the particle motion for P and S waves. 



surface waves
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Copyright 2004.  L. Braile. 
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Surface waves happen as a result of the dramatic change in properties between the solid earth and the atmosphere and are confined to the outer layers of the Earth. Love waves are horizontal shear waves and Rayleigh waves have an elliptical motion like wind waves in the sea.



January 26, 2001 Gujarat, India Earthquake (Mw7.7)

Recorded in Japan at a distance of 57o  (6300 km)

Love Waves

vertical

radial

transverse

Rayleigh Waves
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On a 3-component seismometer we can separate out the Love and Rayleigh waves as a result of their different particle motion. The Love waves arrive earlier.



Amplitude and Intensity

Seismic waves loose 
amplitude with distance 
traveled - attenuation

A(t)  = A0

 

e -ω0t/2Q

So the amplitude of the 
waves depends on distance 
from the earthquake. 
Therefore unlike magnitude 
intensity is not a single 
number.



I    Barely felt   
II  Felt by only few people 
III Felt noticeably, standing autos rock slightly
IV Felt by many, windows and walls creak 
V Felt by nearly everyone, some dished and windows broken
VI Felt by all, damaged plaster and chimneys
VII Damage to poorly constructed buildings
VIII Collapse of poorly constructed buildings, 

slight damage to well built structures
IX Considerable damage to well constructed buildings,

buildings shifted off foundations
X Damage to well built wooden structures, some masonry 

buildings destroyed, train rails bent, landslides 
XI Few masonry structure remain standing, bridges 

destroyed, ground fissures
XII      Damage total

Modified Mercalli Intensity



Normal Modes Normal Modes 

Useful for studies of
・

 
Interior of the Earth

・
 

Largest earthquakes

l=1 m=1 l=1 m=2 l=1 m=3

Houseman http://earth.leeds.ac.uk/~greg/?Sphar/index.html

Liberty Bell
(USA)
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Normal modes are the free oscillations of the Earth that happen following a large earthquake – they are similar to the ringing of a bell. They have much longer periods and wavelengths than other seismic waves so they are very useful for studying the largest earthquakes. Like a bell there are initially many different frequencies, but the higher modes attenuate (loose amplitude) more rapidly than the lower modes, so with time the ringing simplifies.



Toroidal and Spheroidal Modes

Toroidal
Spheroidal

Dahlen and Tromp Fig. 8.5, 8.17
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Some of the more simple and longer period ways the earth can oscillate. The top figure on the right is known as the “breathing mode” as the Earth expands and contracts. The lower figure is the “football mode” . Note that these waves have periods of many 10’s of minutes , far longer than the P, S  and surface waves.



Natural Vibrations of the Earth

Shearer Ch.8.6Shearer Ch.8.6
Lay and Wallace, Ch. 4.6Lay and Wallace, Ch. 4.6
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More ways the earth can oscillate.



Summary

Rays
Earth structure causes complicated ray paths
through the Earth (P, PKP, PcP)

Wave theory explains
・

 
P and S waves

・
 

Static displacements
・

 
Surface waves 

Normal Modes
The Earth rings like a bell at long periods
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