

Theoretical Seismology 2: Wave Propagation

Based on a lecture by James Mori of the Earthquake Hazards Division, Disaster Prevention Research Institute, Kyoto University

U.S. Department of the Interior U.S. Geological Survey

Contents

- Rays
 Snell's Law
 Structure of the Earth
- Seismic Waves Near-Field Terms (Static Displacements) Far-Field Terms (P, S, Surface waves)
- Normal modes
 Free oscillations of the Earth

USGS

Faulting

Seismic waves

Homogeneous Earth

If the Earth had constant velocity the wave paths would be very simple.

Structure in the Earth results in complicated paths

USGS

Lowrie, 1997, fig 3.69

Bolt, 2004, fig 6.3

Ray Paths in a Layered Medium

α = velocity of seismic energy in the layer

 $\alpha_1 < \alpha_2$

 $\alpha_1 > \alpha_2$

The Moho

Andrija Mohorovicic (1857-1936)

Found seismic discontinuity at 30 km depth in the Kupa Valley (Croatia).

Mohorovicic discontinuity or 'Moho'

Boundary between crust and mantle

Forward Branch

Backward Branch

- 1912 Gutenberg observed shadow zone 105° to 143°
- 1939 Jeffreys fixed depth of core at 2898 km (using PcP)

PcP

Core Reflections

Aspects of Waves not Explained by Ray Theory

- Different types of waves (P, S)
- Surface Waves
- Static Displacements
- Frequency content

{Ⅲ

Wave Equation

$$\frac{\partial^2 u_1}{\partial x_1^2} = \frac{1}{c} \frac{\partial^2 u_1}{\partial t^2}$$

1-D wave equation

c = propagation speed

This is the equation that explains the waves on a spring: constant velocity wave propagation, no mass transfer, different from circulation eq.

{|||

1-D Wave Equation

$$\frac{\partial^2 u_1}{\partial x_1^2} = \frac{1}{c} \frac{\partial^2 u_1}{\partial t^2}$$

Solution

$$u(x,t) = A \sin[\omega(t \pm x/c)]$$
$$T = \frac{2\pi}{\omega} \qquad T = \text{wave period}$$
$$\omega = \text{angular frequency}$$

Wave Period and Wavelength

	Period	Wavelength
Body waves (P・S)	0.01 to 50 sec	50 m to 500 km
Surface waves	10 to 350 sec	30 to 1000 km
Free Oscillations	350 to 3600 sec	1000 to 10000 km
Static Displacements	∞	-

3-D Wave Equation with Source

$$\rho \frac{\partial^2 u}{\partial t^2} = f + (\lambda + 2\mu)\nabla(\nabla \cdot u) - \mu\nabla \times (\nabla \times u)$$

source spatial 2nd derivative

Near-field Terms (Static Displacements
olution

$$f(t,r) = \frac{1}{4\pi\rho} A^{N} \frac{1}{r^{4}} \int_{r/\alpha}^{r/\beta} \tau \cdot M_{0}(t-\tau) d\tau + \frac{1}{4\pi\rho\alpha^{2}} A^{IP} \frac{1}{r^{2}} M_{0}(t-\frac{r}{\alpha}) + \frac{1}{4\pi\rho\beta^{2}} A^{IS} \frac{1}{r^{2}} M_{0}(t-\frac{r}{\beta})$$

$$+\frac{1}{4\pi\rho\alpha^{3}}A^{FP}\frac{1}{r}\dot{M}_{0}(t-\frac{r}{\alpha})+\frac{1}{4\pi\rho\beta^{3}}A^{FS}\frac{1}{r}\dot{M}_{0}(t-\frac{r}{\beta})$$

Far-field Terms (P, S Waves)

S(u()

Near-field terms

{|||

- Static displacements
- Only significant close to the fault
- Source of tsunamis

Bei-Fung Bridge near Fung-Yan city, 1999 Chi-Chi, Taiwan earthquake

Static displacements

Co-seismic deformation of 2003 Tokachi-oki Earthquake (M8.0)

Generation of Tsunami from Near-field Term

UNESCO-IOC (Great waves)

Far-field Terms

 $+\frac{1}{4\pi\rho\alpha^{3}}A^{FP}\frac{1}{r}\dot{M}_{0}(t-\frac{r}{\alpha})+\frac{1}{4\pi\rho\beta^{3}}A^{FS}\frac{1}{r}\dot{M}_{0}(t-\frac{r}{\beta})$

- Propagating Waves
- No net displacement

• P waves

• S waves

surface waves

© Copyright 2004. L. Braile.

January 26, 2001 Gujarat, India Earthquake (Mw7.7)

Recorded in Japan at a distance of 57° (6300 km)

Amplitude and Intensity

Seismic waves loose amplitude with distance traveled - attenuation

 $A(t) = A_0 e^{-\omega_0 t/2Q}$

So the amplitude of the waves depends on distance from the earthquake. Therefore unlike magnitude intensity is not a single number.

INTENSITY	I	-	١V	V	VI	VII	VIII	IX	X+
SHAKING	Notieit	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
DAMAGE	none	none	none	Verylight	Light	Moderate	Moderate/Heavy	Нелку	Very Невчу

Modified Mercalli Intensity

- I Barely felt
- II Felt by only few people
- III Felt noticeably, standing autos rock slightly
- IV Felt by many, windows and walls creak
- V Felt by nearly everyone, some dished and windows broken
- VI Felt by all, damaged plaster and chimneys
- VII Damage to poorly constructed buildings
- VIII Collapse of poorly constructed buildings, slight damage to well built structures
- IX Considerable damage to well constructed buildings, buildings shifted off foundations
- X Damage to well built wooden structures, some masonry buildings destroyed, train rails bent, landslides
- XI Few masonry structure remain standing, bridges destroyed, ground fissures
- XII Damage total

Normal Modes

Liberty Bell (USA)

()-

Useful for studies of

- Interior of the Earth
- Largest earthquakes

Houseman http://earth.leeds.ac.uk/~greg/?Sphar/index.html

Toroidal and Spheroidal Modes

Toroidal

Spheroidal

Dahlen and Tromp Fig. 8.5, 8.17

Natural Vibrations of the Earth

TABLE 4.2 Some Observed Normal-ModePeriods

Spheroidal modes	<i>T</i> (s)	Toroidal modes	<i>T</i> (s)
$\overline{{}_{0}S_{0}}$	1227.52	$_0T_2$	2636.38
$_{0}S_{2}$	3233.25	$_{0}T_{10}$	618.97
$_{0}S_{15}$	426.15	$_{0}T_{20}$	360.03
${}_{0}S_{30}$	262.09	$_{0}T_{30}$	257.76
$_{0}S_{45}$	193.91	$_{0}T_{40}$	200.95
$_{0}S_{60}$	153.24	$_{0}T_{50}$	164.70
${}_{0}S_{150}$	66.90	$_{0}T_{60}$	139.46
$_1S_2$	1470.85	$_{1}T_{2}$	756.57
${}_{1}S_{10}$	465.46	$_{1}T_{10}$	381.65
${}_{2}S_{10}$	415.92	$_{2}T_{40}$	123.56

Shearer Ch.8.6 Lay and Wallace, Ch. 4.6

Summary

Rays

Earth structure causes complicated ray paths through the Earth (P, PKP, PcP)

Wave theory explains

- P and S waves
- Static displacements
- Surface waves

Normal Modes The Earth rings like a bell at long periods

