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Abstract—We studied the relationship between grip force and
external forearm pressure in nondisabled subjects using force
myography (FMG). FMG uses a sensorized cuff surrounding
the forearm to register the distributed mechanical force, detect-
ing pressure on the sensors generated by the volumetric
changes of the underlying musculo-tendinous complex. Each
of nine nondisabled subjects donned the FMG cuff and applied
grip forces to a cylindrical dynamometer; grip forces ranged
from 0% to 100% of the subjects’ maximum voluntary contrac-
tion. The cuff was positioned with seven force sensors located
on both the anterior and posterior surfaces of the proximal
forearm, but no attempt was made to match sensor placement
with particular muscles or sites. Grip prediction was simply
encoded as the rectified sum of the FMG sensor outputs. Dur-
ing grip and release cycles, the FMG waveforms of each sub-
ject correlated closely with his or her force waveforms (r >
0.89). FMG also correlated highly with the timing of grip onset
and release (intraclass correlation coefficient (ICC(A,2)) =
0.99) and time to peak (ICC(A,2) = 0.91), with negligible lag.
These results demonstrate that when applied to the forearm,
FMG represents a grip force signature that may be useful for
near-real-time proportional control of upper-limb prosthetic
devices.

Key words: control, feedback, force myography, forearm,
grasp, grip force, hand, prosthesis, rehabilitation, sensors,
upper-limb.

INTRODUCTION

Fundamental to human manual dexterity is the ability
to precisely control the forces applied by the hand in pro-
portion to the requirements of the task and/or object.

Restoring this ability to upper-limb amputees requires
dynamic registration of the neuromuscular volition and
faithful reproduction of the articulations encoded for the
absent hand. This biomimetic paradigm necessitates both
an interface for the extraction of neuromotor signatures
from within the residuum [1–5] and a high-fidelity grip
force control for proportional grasping in near real time
[2,6–12]. The goal of this study was to critically evaluate
force myography (FMG) as a representation of dynamic
grip force for proportional control.

FMG registers the radially directed muscle pressures
relating to the force produced by the contractile compo-
nents as well as the corresponding series and parallel
elastic components within the limb. Volitions concerning
the hand, such as individual finger flexions, are encoded
in the forearm FMG as characteristic force images that
can be readily decoded for multifinger biomimetic con-
trol of robotic and virtual hands by amputees [1,13–16].
To date, FMG is the only neuromuscular imaging modality
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that has demonstrated simultaneous multifunctional and
multiple degrees-of-freedom control of prosthetic hands
[13–15,17], including multifinger operation by amputees.
Previous results with amputees suggested the potential of
FMG as a register of force magnitude volition [13].
Herein, we directly test its effectiveness in predicting
grip force in nondisabled limbs.

Our main aim was to establish the reliability of fore-
arm FMG as a predictor of grip force generated in repetitive
grasping tasks. We compared the temporal landmarks of
grip onset, grip cessation, and time to maximum volun-
tary contraction (MVC) and assessed the within-subject
variability of FMG and grip force traces. These compari-
sons directly assessed the suitability of forearm pressure
maps as a proxy for grasp activities. We report that the
dynamics of grasping tasks in nondisabled subjects can
be accurately predicted by the summed and rectified
FMG signals generated from the surface pressure signa-
tures of the forearm.

METHODS

Nine nondisabled human volunteers performed a
series of cyclic grasping tasks while data records of their
forearm musculatures and handgrip forces were simulta-
neously recorded by FMG and grip force dynamometry,
respectively.

Force Myography Cuff
A myokinetic FMG cuff (Figure 1) [18] was

designed to measure mechanical activity of the extrinsic
hand muscles in the forearm as described elsewhere [16].
The cuff consisted of an array of 14 force-sensitive resis-
tors (FSRs) (1.4 cm diameter, model 402, Interlink Elec-
tronics; Carpenteria, California) placed at 7 anterior and
7 posterior loci within a standard forearm/wrist orthosis
(Orthobionics, Inc; Dallas, Texas) that covered primarily
the mid-to-proximal surface of the forearm. Though a
securing strap was wrapped around the thumb, it did not
affect grasping movement. Voltage output from the sen-
sors was obtained from a half-bridge circuit with an FSR
sensor and a 5 kΩ fixed resistor.

The FSR array reports changes in limb muscle activ-
ity as a change in voltage due to the expansion or con-
traction of the muscle belly radius during shortening or
lengthening, which alters the pressure normal to the inter-
facing sensor. Sensor signals were acquired with 12-bit

accuracy by an external data acquisition board (NI-DAQ-
USB-6008, National Instruments, Corp; Austin, Texas)
and subsequently routed to LabVIEW (National Instru-
ments, Corp), which provided the online processing as
well as real-time visual feedback for target tracking.

The cuff was donned on the arm with a baseline pres-
sure of ~5 percent full-scale output of the sensors, repre-
senting ~25 mmHg, which was subtracted before each
test (see “Signal Processing” section). Overall FMG
response was calculated as mean square deviation from
each sensor’s baseline value (Equation 1) and stored
using LabVIEW.

Grip Dynamometry
The custom grip force dynamometer (GFD) (Figure 1)

was constructed as described elsewhere [18]. The GFD
consisted of a polyvinyl chloride cylinder (4 cm diameter ×
10 cm long) onto which four strip FSRs (model 408,
Interlink Electronics) were equidistantly placed along the
entire length. The grip shape and orientation of the sen-
sors were designed to maximize the contact between the
sensors and the fingers, palm, and thumb. Voltage output
of the quadrupolar parallel array of FSRs was obtained
with half-bridge circuitry with a single 5 kΩ resistor.
Data were acquired as described previously for the cuff.

Signal Processing
Raw instrument sensor data, RInst, were adjusted

for baseline, bInst, on each sensor track acquired during

Figure 1.
Grip force dynamometer and force myography sensors. Sensors
primarily detect proximal forearm musculature.
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calibration (Inst = GFD or FMG) and condensed to a
single track in SInst a root-mean-square (RMS) rectifica-
tion by

where the number of sensors NFMG = 7 and NGFD = 4
and i is the data sample index. FMG output was simply
represented as Si

FMG without further processing. GFD
signals, however, were linearized (since the raw output of
the FSRs is nonlinear) by

where Gδ(s) is the Laplace transform of individual GFD
sensor outputs, L–1 is the inverse Laplace transform, and
Y(s) is the empirically determined third-order transfer
function found in the GFD linearization procedure

where s is the representation of the time-domain signal in
complex angular frequency domain. In this way, the grip
force display was linearized. Both the rectified FMG and
linearized GFD signals were low-pass filtered with a sec-
ond-order Butterworth filter with a 4 Hz cutoff. Linear-
ized GFD force signatures (scaled to % MVC during the
preprotocol calibration) were delivered to the display
screen for real-time visual feedback proportional to user
grip forces (Figure 2).

Subject Protocols
Nine nondisabled subjects (8 male, 1 female; 23.9 ±

5.5 years old; all right-side dominant; of moderate to ath-
letic fitness; and with body mass index ranging from 18.9
to 24.4) were recruited for the study. (All data are pre-
sented as mean ± standard deviation unless otherwise
noted.) Subjects were selected to reflect the expected
demography of a typical user population, such as return-
ing service personnel. All subjects provided informed
written consent, with the protocol approved by the insti-
tutional review board of Rutgers. Each subject donned
the FMG cuff and grasped the grip dynamometer with his
or her right hand while sitting comfortably in front of the

computer screen (19 in. liquid crystal display). The sub-
ject’s elbow rested on a table, with the unsupported fore-
arm suspended in the air to prevent perturbation to the
FMG sensors. All subjects maintained their arm in a neu-
tral position throughout the protocol. The screen dis-
played a single tank that provided visual feedback in the
target tracking tasks, as shown in Figure 2. Prior to test-
ing, we corrected the display grip force for baseline and
scaled the data for maximum force with the following
protocol. Subjects grasped the GFD by wrapping their
fingers and thumb around it with their wrist in neutral
position and completely relaxed, with force just sufficient
to hold the GFD. They were then asked to maximally
grasp with their full cylindrical grip force to establish
their MVC. These two raw output values were used to
scale the visual feedback tank display from 0 to 100 per-
cent MVC. The FMG was calibrated simultaneously,
according to the voltages produced at the cuff sensors; no
visual feedback was provided for this calibration.

To test the correlation between grip force and fore-
arm FMG, we asked subjects to perform repeated cycles
of grasp and release, with or without a matching target.
For the targeting protocols, we asked subjects to match
their grip force output to a moving visual target that con-
sisted of a large red mark within a blue tank. The follow-
ing specific protocols were administered in random
order: (1) tracking of sinusoids at a slow pace (0.05 Hz) for
60 s, followed by variable rest periods (3 sets); (2) tracking
of sinusoids at a fast pace (0.1 Hz) for 60 s, followed by
variable rest periods (3 sets); and (3) self-paced sinusoidal
patterns without visual feedback of force (30 s/set) (3 sets).

Figure 2.
Interface screen shot (LabVIEW) showing feedback of moderate
activation (left) and target achievement (right).
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In addition, we asked subjects to produce a sudden
force to 50 percent MVC and hold it for 20 s. During pro-
tocols 1 and 2, visual feedback came from the GFD only.
The overall experimental setup is depicted in Figure 3.

Waveform Comparisons
To compare GFD and FMG waveforms, we first sep-

arated the processed signals from each instrument, Si
Inst,

into their constituent grasp cycles. We did this in one of
two ways: a supervised method, where fiducial points
extracted from the target wave were used to separate grip
cycles from FMG and GFD, and an unsupervised method
that separated the cycles using only the intrinsic waveform
features of GFD and FMG. The supervised method is
primarily a means by which an identical window can be
imposed over both signals for waveform comparisons. In
both methods, a cycle was defined by consecutive local
minima determined by manual thresholding performed
with a custom program written in MATLAB® (The Math-
Works, Inc; Natick, Massachusetts).

FMG and GFD waveforms were first compared in a
cyclewise interinstrument comparison via the Pearson
product moment correlation coefficient (r) given by

where the correlation substrates (S) were the processed
one-dimensional signal waveforms from the FMG and
GFD and cov the covariance.

Using grip data extracted from a supervised separa-
tion and temporally normalized by an inline MATLAB
interpolation function, we assessed between-test repeat-
ability of FMG and GFD signals. Peak amplitudes of
each cycle were also normalized to unity since waveform
morphology was the only parameter of interest. We used
the variance ratio (VR) to assess the grip-to-grip variabil-
ity as rendered by each instrument [19]:

where X is the array of j temporally normalized signals;
is the average value of the n waveforms at time-point

i, running to total time k; and  is the data set grand
mean. For perfectly identical signals, VR is equal to 0,
and for completely unrelated or random signals, VR is
equal to 1. In a multiple-repetition cyclic grasping task,
the VR can determine signal waveform similarity for all
repetitions (not just between two, as with the correlation
coefficient); temporal shifts are ignored by uniform cycle
extraction.

To estimate temporal correlations, we extracted onset
and offset times for each grip cycle from processed and
filtered data sets as described previously. The time-to-
maximum effort was determined as the time of maximum
signal strength between each set of onset-offset times.
Temporal landmarks were extracted with a completely
unsupervised process, with fixed thresholds for the out-
put GFD and FMG waves and without reference to the
target.

Temporal landmarks from both instruments were
compared via the intraclass correlation coefficient (ICC),
which quantifies the proportion of variance attributable to
the objects of measurement, i.e., the relationship between
variables sharing both metric and variance. Two versions
of the ICC, each based on a two-way analysis of variance
(ANOVA), were employed: consistency, ICC(C,2), and
agreement, ICC(A,2). Interrater differences between GFD
and FMG were estimated by

where MSR and MSE are the mean squared errors of row
variables and error obtained from ANOVA, respectively;
k is the number of measurable objects (i.e., instruments,
FMG and GFD); and n is the number of measurement
instances (i.e., grasp cycles, which varies from subject to
subject and test to test) [20]. These two-way models were
selected over the one-way random effects model,
ICC(A,1), because the two measurement modalities con-
stitute separable sources of variability. ICC values range
from 0 to 1, representing completely uncorrelated and iden-
tical data sets, respectively.
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A final analysis was performed on the linear relation-
ship of these temporal landmarks. We simultaneously
compared timing data from all protocols via a cross-
correlation coefficient. We evaluated slopes and inter-
cepts for their deviations from 1 and 0, respectively.

RESULTS

Waveform Correlation
Data from a typical subject executing two complete

cycles for the target-tracking protocols are shown in Fig-
ure 4. Note the close correspondence of the FMG waves
to those of the GFD in terms of timing of onset, peak, and
offset as well as in overall shape and relative amplitudes.
Many sudden spikes in the waveforms seen in the grip
force signal appear to be mirrored in the FMG signal. To
ascertain the stability of the FMG signal during sustained
grips, we asked each subject to grip to 50 percent MVC
and hold the grip for 20 seconds. A sample trace is pre-
sented in Figure 4(c). Note that the FMG signal followed
closely, without visible lag, relative to the onset and

cessation of GFD and remained stable throughout the
duration of the grasp.

Each of the nine subjects performed an average of
34.2 ± 13.5 grasp/release cycles, executing two sinusoidal
tasks and one self-paced task. The mean correlation
coefficient between FMG and GFD for all cycles (N =
391) was 0.89 ± 0.05, as shown in Table 1. A one-way
ANOVA did not reveal a significant difference in correla-
tion coefficients among tasks.

Waveform Repeatability
The VR (Equation 5) reports the summed variability

among all grip cycles within the data sets generated by
both instruments. VRs for FMG, GFD, and the computer-
generated target are listed in Table 2. The cycle-to-cycle
VR of GFD at the high targeting speed was significantly
lower than that of FMG (p < 0.001); however for slow
targets, no significant difference was found between the
modalities from one-way ANOVA on group means. GFD
for slow targeting had a very low VR (0.082 ± 0.091) and
was close to that of the target variability (0.078 ± 0.113),
indicating that for slow tasks, signal repeatability of both

Figure 3.
Instrumentation and signal processing flow chart. G(s) and Y(s) denote the convolution of the Laplace-transformed grip force dynamometer
sensor outputs onto Fourier-domain representation of linearization equation (Equation 3). These signals were transformed by Laplacian operator
(denoted by L) and converted back into time domain by inverse Laplace (L–1). Low Pass = second order Butterworth low-pass filter with 4 Hz
cutoff, Rect. = rectified.
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instruments approximated that of the computer. VRs for
both GFD and FMG were lower for 0.1 Hz targeting.

Temporal Landmark Correlation
The ICC values for each protocol are presented in

Table 3. ICC(C,2) and ICC(A,2) values in excess of 0.99
indicate a high correlation between the two measurement
systems in terms of onset and offset. Time to peak also
correlated well (ICC ≥ 0.95).

The relationship between temporal landmarks for
FMG and GFD is graphically shown in Figure 5. Analy-
sis of regression parameters from the Pearson product

moment correlation revealed a slope of m = 0.98 ± 0.05
and intercept of b = 0.01 ± 0.02; Student’s t-test did not
reveal a significant departure from m = 1 and b = 0 at the
p < 0.05 level. Thus, timing by FMG directly corre-
sponds to timing by GFD, with negligible delay.

DISCUSSION

Validity of Study
This article studied forearm pressure signature as a

predictor of grip force. Although we report on only non-
disabled subjects, the results may apply to the transradial
amputee population, since previous studies have shown
that the amplitude of single-finger volitions can by extracted
via FMG [15,17]. Test conditions were limited to the arm
and wrist in a fixed neutral position in the horizontal
plane. This pose simulates a common working condition,
and moderate departures from this posture are unlikely to
significantly alter the waveform characteristics of the
FMG signal. Moreover, in prosthetic applications, prona-
tion/supination of the wrist is not an issue, and the FMG
interface can adapt well to different arm conditions by
calibration upon donning [14–15].

Although it would be valuable, a direct comparison
between FMG and electromyography (EMG) is beyond
the scope of this article, and further work is needed to
establish the utility of FMG as a control modality. Specifi-
cally, FMG should be tested under conditions of variable
loads, ballistic motions, and increasingly dynamic activi-
ties. Additionally, whereas FMG has demonstrated the
capacity to resolve forearm pressure signatures during

Table 1.
Waveform correlation results (mean ± SD) comparing forearm
pressure signals detected by force myography to isometric power grip
force output detected by grip force dynamometer. Subject averages
were r = 0.89 ± 0.05, rmin = 0.68, rmax = 0.97, µgroup = 34.22 ± 13.48,
Mingroup = 17, and Maxgroup = 54.

Task Task-Specific 
Correlation µreps

Self-Paced 0.90 ± 0.05 16.22 ± 5.86
Slow Target 0.90 ± 0.05 6.33 ± 4.09
Fast Target 0.86 ± 0.10 11.67 ± 6.96
Max = maximum, Min = minimum, SD = standard deviation, µgroup = grand
mean ± SD, µreps = mean ± SD per subject.

Table 2.
Between-subject variance ratios (mean ± standard deviation) for
targeted grasping tasks.

Task Target Hand Forearm
Slow Target 0.078 ± 0.113 0.082 ± 0.091 0.188 ± 0.164
Fast Target 0.005 ± 0.005 0.027 ± 0.015 0.085 ± 0.033

Figure 4.
Sample records of grip force dynamometer (GFD) and force myography (FMG) from protocols (a) 1 and (b) 2 (2 cycles) (see main text) and
(c) isometric grasp sustained at 50% maximum voluntary contraction for 10 s (3 cycles).
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several grip types (such as precision pinch, mouse-click,
and cylindrical grasp) [21], it remains to be established
whether these postures are equally predictive of their
respective force outputs at the hand. Future studies
should also include assessments of longitudinal variation,
but FMG interpretation is expected to be relatively insen-
sitive to both daily and long-term changes in the residual
limb.

The ability of FMG to resolve hand postures and
individual finger motions has previously been demon-
strated in transradial amputees, some of whom were
>15 years postamputation and had relatively poor residua
[14–15,17]. More recently, it has been shown that six dif-
ferent grip types can be classified with considerable
accuracy when FMG is used to measure intact forearms

[21]. The results presented herein demonstrate the viabil-
ity of FMG as a proportional control system in prosthetic
applications.

Grip Force Prediction
We performed several interrater analyses in order to

assess the correspondence between FMG of the forearm
and the grip force produced during cyclic and sustained
grasping tasks. Point-to-point waveform correlation of
signals from the FMG and GFD yielded the most powerful
rating of compatibility between measurement modalities.
Analysis of 391 cycles of cyclic grasp and release pro-
duced by nine subjects yielded a mean cross-correlation
of 0.89 ± 0.05 between GFD and FMG waveforms
(Table 1), with no significant differences between tasks.
Thus, FMG accurately represents grip force continuously
over its entire range and is sensitive to minute adjust-
ments in timing and magnitude of force application.
These characteristics are crucially relevant to the needs
of users of upper-limb prostheses: a volitional control
paradigm with a high-fidelity real-time correspondence
to end-effector activity is necessary for user safety, com-
pliance, and reliability in device operation. We should
note that though the waveform correspondence between
GFD and FMG was generally excellent throughout the
grasp and release cycles, the FMG displayed overshoot
and undershoot during the stepwise grips that was much
larger than that seen in the GFD signal (Figure 4). This
apparent amplification of force transients by FMG may
be due to thixotropic properties of the forearm and could
readily be filtered if needed.

Since cross-correlation is insensitive to possible
phase shifts between signals, we evaluated the accuracy
of FMG in timing of grasp forces using the ICCs. As
shown in Table 3, ICC(A,2) reports the absolute agreement
and ICC(C,2) reports consistency of the FMG’s respec-
tive detection of temporal landmarks of grasp activity
including onset, cessation, and peak grip force. ICCs for

Table 3.
Intraclass correlation coefficients (ICCs) comparing force myography and grip force dynamometer for grasping task temporal landmarks (onset,
offset, time-to-maximum). ICC(C,2) = rater consistency and ICC(A,2) = rater absolute agreement. Data presented as mean ± standard deviation.

Task
Onset & Offset Time-to-Maximum

ICC(C,2) ICC(A,2) ICC(C,2) ICC(A,2)
Self-Paced 0.99 ± 0.02 0.99 ± 0.001 0.95 ± 0.04 0.91 ± 0.10
Slow Target 0.99 ± 0.01 0.99 ± 0.001 0.97 ± 0.03 0.95 ± 0.05
Fast Target 0.99 ± 0.01 0.99 ± 0.001 0.97 ± 0.03 0.95 ± 0.05

Figure 5.
Comprehensive plot of linear regression to temporal landmarks of
force myography (FMG) detection of forearm muscle pressure vs grip
force dynamometer (GFD) detection of grasp force. Across all
protocols, subjects exhibited linear slope of m = 0.99 and intercept of
b < 0.001, fitting 391 grasps. Scale normalized for clarity.
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timing of grip onset, peak, and release all exceeded 0.90
(Table 3), demonstrating the fidelity of FMG of the fore-
arm in predicting changes in grasp forces. These ICC val-
ues compare favorably to those reported for M-wave
EMG normalization factors that ranged from 0.95 to 0.98
[22]. Additionally, temporal landmarks extracted from
FMG and GFD data records were evaluated for their
slope and intercept parameters. The regression fits were
extremely close (R2 > 0.99) and yielded slopes and inter-
cepts that were not significantly different from m = 1 and
b = 0. Thus, over the course of a session, the timing of
even subtle variations in grasp forces remains highly pre-
dictable via FMG, with negligible lag.

Waveform repeatability is critical to the reliability of
any encode/decode system, and its accuracy can be effi-
ciently assessed across any number of repetitions using
the VR [19]. Across successive grasp and release cycles,
each subject produced relatively invariant waveforms in
their FMG signals, as quantified by their extremely low
VRs (Table 2). Testing approximately 34 repeat FMG
waveforms during grasp and release by nine subjects, we
found that VRs for FMG averaged 0.085 and 0.188 for
fast and slow tracking, respectively (Table 2). These VRs
indicate a high degree of repeatability and compare
favorably with those of EMG. For example, EMG M-
waves from the biceps brachii were judged to be “very
reproducible” with a VR of 0.24 ± 0.17 [23]. Also, com-
parison of the surface EMG of musculus flexor digitorum
supericialis between skilled archers and nonarchers
yielded VRs of 0.08 and 0.70, respectively [24]. FMG
repeatability tested in untrained subjects thus parallels
that of EMG in highly trained individual muscles.

Although the ability of subjects’ hands to track the
target force was not explicitly analyzed, we found it to be
highly accurate based on the low VRs for GFD, espe-
cially for the slow cycle (0.082), which did not differ sig-
nificantly from that of the computer target VR (0.078).
VRs for FMG were two to three times greater than those
of GFD, indicating the occurrence of some signal degra-
dation between the forearm muscles and the joints.

Force Myography as Control Modality
Proportional control of grip force is a feature highly

desired by users of upper-limb prostheses, but presently,
few and limited options are available to them. The Pro-
Controller® (Motion Control, Inc; Salt Lake City, Utah)
offers the most advanced force-controlled prosthesis
through use of EMG levels and force feedback for con-

trol, but its limitation to a few discrete states has not sig-
nificantly improved since its introduction in the 1980s
[25]. Many studies have demonstrated the potential of
EMG models and advanced signal processing to predict
grip force, but none has demonstrated that these modali-
ties have been practically implemented in a prosthesis
[23,26–31]. However, we expect that the inherently low
frequency information associated with FMG measure-
ment of superficial changes in muscle conformation will
more precisely render subtle changes in grasp dynamics.

The most obvious difference between FMG and
myoelectric control is the sensing of mechanical rather
than electrical signals. Mechanical output of muscles rep-
resents a low-bandwidth and degraded version of the
neuroelectrical signals and cannot resolve activities of
individual muscles. FMG, after the processing used
herein, is rather analogous to the average rectified values
of surface EMG and the RMS-based EMG processing
described by Basmajian and De Luca [32]. Surface EMG
may be considered a structure-based model, reductionally
representing the system’s important elements [33],
whereas FMG is a more phenomenological model, based
on its direct correlations and resemblance to grip force.

To incorporate FMG into a versatile prosthetic con-
troller, researchers must establish its utility beyond the
laboratory and answer several practical questions. These
include reliability and durability of the sensor sleeves, the
ease of donning for users, ease of calibration, and com-
patibility with controller interfaces. Preliminary trials
with amputees have demonstrated that donning and cali-
bration of FMG are relatively simple, that its sensitivity
is not seriously compromised by the wearing of a protec-
tive stocking, and that it works well with residua with
severely damaged tissue [13]. A crucial component that
is still lacking is an electronic interface with sufficient
analog inputs that are compatible with diverse sensors to
enable multidimensional control. The current Defense
Advanced Research Projects Agency initiative, “Revolu-
tionizing upper-limb prosthetics,” [34] will no doubt
stimulate progress toward this end.

CONCLUSIONS

Our results indicate that the grip force signature pro-
vided by FMG may be a useful alternative to EMG as a
noninvasive prosthetic interface for proportional grip
control. The FMG, using a simple summation of pressures
recorded on the forearm, closely mirrors the grip force
continuously from rest to 100 percent MVC. Point-by-
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point signal processing with minimal filtering makes
real-time operation of FMG control a realistic paradigm.
Since FMG does not depend on precise positioning of
sensors on the limb, prosthetic users may daily don and
doff the interface, without concern for precise position-
ing. The calibration process requires two measurements:
baseline and maximum effort. We conclude that FMG of
the forelimb accurately reflects grip force and may be use-
ful in providing intuitive control of upper-limb prostheses.
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