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Abstract—Reading rate with print size (reading performance)
was studied in a group of 132 older readers with normal age-
related vision using the Minnesota Low Vision Reading Acuity
(MNREAD) test. Regression by a monotonic Weibull model
had greater convergence success with lower residual error than
either Logistic or Gompertz models. Reading performance by
Weibull model regression was characterized by inflexion slope,
critical print size, and maximum reading rate. Successive
shortening of the data set length before regression by the
monotonic Weibull model gave decreased fitting error. This
finding suggests that some individual reading rates, rather than
asymptoting at the largest print size, may give nonsigmoidal
responses. Shortening the data set length decreases regression
error but significantly changes regression parameter values. A
nonmonotonic Weibull model that was sensitive to declining
reading rate at large print size improved regression on 22% of
our data. This result indicates that a subgroup of subjects had
response falloff at large print size and reading performance
characteristics that included incremental and decremental read-
ing rate slopes at different print sizes, which were separated by
a reading rate plateau.

Key words: Gompertz model, growth models, Logistic model,
MNREAD, nonlinear regression, normal readers, reading,
reading rate, rehabilitation, sigmoidal models, Weibull model.

INTRODUCTION

One measure of reading performance is reading rate
of printed text of varying sizes [1-2]. Individual variation
of visual nystagmus, eyeblinks, comprehension/literacy,
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and sundry features of entoptic and nonentoptic origin
provide the noise background within which reading rate
is embedded. The reader’s task involves detection and
discrimination of a signal, similar to that required in stud-
ies of auditory detection or visual discrimination, where
data (appropriately scaled) often take sigmoidal form [3—
4]. Therefore, assuming that reading rate versus print size
has a sigmoidal relation is reasonable.

For each reader, we can also reasonably assume that
at each print size a population of reading rate values exists
that is normally distributed about the population means
[5]. If data samples are distributed about those means,
their regression (which converges on the mean) simulates
reading rate across print size and gives a psychometric
template. This template may be used to calculate reading
rate characteristics like change in reading rate with respect
to print size (slope), smallest print size at maximum read-
ing rate (critical print size [CPS]), average maximum
reading rate (plateau), the point where reading rate slope
is greatest (inflexion), and the point where print size is so
large that reading rate decreases [1-2].

Abbreviations: CPS = critical print size, MNREAD = Minne-
sota Low Vision Reading Acuity, SR = squared residuals, SSE =
sum squared error, RMSNE = root-mean-square normalized
error, VA = Department of Veterans Affairs.
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Some who have fitted reading performance data have
performed a logarithmic transformation of the reading rate
measure before making a spline fit [6]. This transformation
introduces nonlinearities into data that are typically viewed
as normally distributed about their population means. We,
instead, chose to regress data onto functions of monotonic
growth. Three monotonic growth models of sigmoidal
function were examined: Weibull, Logistic, and Gompertz.
Each model has three parameters that specify asymptotic
maximum {a}, shape {b}, and position {c}. These models
were chosen because their ordinate values at X = {c}
(Y[X]) were complementary about the half-maximum:
Y[X.] = 0.63 x {a} for the Weibull, Y[X.] = 0.50 x {a} for
the Logistic, and Y[X.] = 0.37 x {a} for the Gompertz.
(Curly braces “{ }” specify characteristics and parameters
of reading performance.) Each model simulates one of
three types of reading rate growth: (1) early, slow accelera-
tion with later, rapid deceleration to a large print size that
maintains maximum reading rate plateau (the Weibull);
(2) early acceleration symmetric with later deceleration
(the Logistic); and (3) early, rapid acceleration with later,
slow deceleration (the Gompertz). In analysis 1, we com-
pared the three models using actual reading performance
data from older adults.

In many readers, however, maximum reading rate
often occurs at a print size less than 1.30 logMAR (larg-
est print size for Minnesota Low Vision Reading Acuity
[MNREAD] chart). Reading rate, therefore, would pla-
teau to a maximum over a range of print sizes and then
might decline at the largest print sizes. Modeling reading
rate performance could be constructed as the difference
of two monotonic functions and be the algebraic sum of
increase and decrease in reading rate with print size
increase. With this nonmonotonic template, we could cal-
culate characteristics like reading rate maximum, range
of print size over which the reader manifests reading rate
that is irresolvable from maximum (plateau), and reading
rate slopes at print sizes that delimit the plateau.

One-hundred-thirty-two older adults age 65 to 91 years
(mean = 75.6) completed the MNREAD test [1-2] at the
Atlanta Department of Veterans Affairs (\VA) Rehabilitation
Research and Development Center of Excellence. All par-
ticipants completed informed consent and Health Insurance
Portability and Accountability Act authorization per Atlanta
VA and Emory University human subjects requirements.
Participants were screened for dementia using the Mini-
Mental State Examination; all participants self-reported
normal ability to read and reported having received 3 to

18 years of formal education (mean = 10.36). Visual acuity
among them ranged from —0.15 to 0.64 logMAR (median =
0.15) as tested with the Early Treatment Diabetic Retinopa-
thy Study chart. Contrast sensitivity using the Peli-Robson
Contrast Sensitivity Chart ranged from 1.05 to 2.05 logcon-
trast (median = 1.74). Humphrey visual field testing con-
firmed normal central visual fields. Therefore, all our
subjects had normal age-related visual function. One-
hundred-twenty-one subjects returned a second time more
than 1 month later to repeat the MNREAD test.

The MNREAD test comprises sentences of 60 char-
acters (average length of 10 words) presented at 40 cm
distance in print size decrements of about 26 percent
(-0.10 logMAR) starting at Snellen size 20/400 (1.30
logMAR) [1-2]. Reading time was measured with a stop-
watch and misread words (errors) were recorded. If 10 or
more errors occurred, reading rate was recorded as O.
Sentences of progressively smaller character size pro-
ceeded until a subject took longer than 20 seconds (reading
rate under 30 wpm without error) to complete a sentence.

Reading time and reading error were transformed into
reading rate (units of wpm) and size of textual material and
reading distance were transformed into print size (units of
logMAR) [1-2]. The 132 older adults created 253 data
sets, each a sequence of reading rate-print size pairs that
ranged from the smallest readable print size to 1.30 log-
MAR (“conventional data set length”).

ANALYSIS 1: MONOTONIC REGRESSION OF
CONVENTIONAL LENGTH DATA SET

Methods

Using commercial software (JMP®, version 5, SAS
Institute; Cary, North Carolina), we regressed each reader’s
data with Weibull, Logistic, and Gompertz models [5].
Regression was defined as successful if convergence onto a
given data set occurred within no more than 150 iterations
of the JMP nonlinear modeling platform. Each model had
three parameters, determining asymptotic maximum {a},
shape {b}, and location {c}. The three monotonic models
Appendix Equations 1(a)-(c) and their initial values
Appendix Equations 4-6(c) are given in the Appendix
(available online only at www.rehab.research.va.gov/jour/
08/45/6/pdf/contents.pdf).

The models are all sigmoidal, with bell-shaped deriva-
tives Appendix Equations 2(a)—(d) describing change in
reading rate with increasing print size (X). Evaluated at
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inflexion {i} for Weibull (Appendix Equations 2(a)-
(b)), Logistic (Appendix Equation 2(c)), and Gompertz
(Appendix Equation 2(d)) models, the derivative gives
tangent slope (reading rate/print size) in units of wpm/
logMAR. (Inflexion is where reading rate has zero accel-
eration with increasing print size; for reading perfor-
mance, it is where growth in reading rate changes from
positively accelerating to negatively accelerating.) For
the Logistic and Gompertz (but not the Weibull) models,
tangent slope is the same at both {i} and {c}.

The three models are fundamentally different at {i}.
Inflexion ordinate value (Y;) is 0.50 x {a} for the Logistic
model, 0.37 x {a} for the Gompertz model, and 0.62 for
the Weibull model. (For the Weibull, Y; — 0.63 x {a} as
{b} — ). In other words, as the independent variable
(e.g., print size) increases, Gompertz inflexes first, then
Logistic, then Weibull. Near Y = 0 (e.g., at small print
size), acceleration is greatest for Gompertz, less for
Logistic, and least for Weibull. However, near Y = {a}
(e.q., at large print size), this order is reversed.

The assumption of univariant data normality was
tested on grouped residuals and received limited support.
(Grouped residuals are the mean differences between indi-
vidual reading rate and Weibull regression at each print
size averaged over all regressed data sets.) Only at the
nine largest print sizes (0.50-1.30 logMAR) was residual
normality supported at p = 0.05 (Wilk-Shapiro). Analysis
of variance showed that no significant (p[F] = 0.05)
change was found in residual variance with regression
mean only for the eight largest print sizes (0.60-1.30 log-
MAR. Assuming correspondence between group and
individual means (the group is a cohort of normal individ-
uals), these results suggest that grouped regression values
at the eight largest print sizes simulate means of individ-
ual univariant and normal distributions. At smaller print
sizes, however, this assumption is unsupported. There-
fore, we conclude that single reader uncertainty cannot be
estimated from our grouped reader response.

Error in the experimenter’s response, however, can be
used to estimate the reader’s uncertainty. Noise variation
in simple reaction time response is reported to be constant
[7]. When key press is used, subjects respond with a con-
stant uncertainty of 50 ms at each of a range of stimulus
intensity levels. In our reading performance study, reading
time was obtained with a stopwatch that required two key
presses per measure, at the start and stop of reading. The
largest positive recording time error would result from
maximum experimenter anticipation (key press 50 ms
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before reading onset, which adds +50 ms to the response)
followed by maximum experimenter delay (key press
50 ms after reading completion, which again adds +50 ms
to the response), for a total error of +100 ms. The largest
negative recording time error would result from maxi-
mum experimenter delay (key press 50 ms after reading
onset, which adds —-50 ms) followed by maximum experi-
menter anticipation (key press 50 ms after reading com-
pletion, which again adds -50 ms), for a total error of
—100 ms.

To specify experimenter uncertainty, we added two
constants (100 ms) to each individual reading time value,
transformed the data into rate units, and performed the
regression. If regression is a psychometric template that
simulates reading rate distribution means at each print size,
then it is invariant with reader, but not experimenter, uncer-
tainty. Our protocol gave numerical estimates of lower and
upper uncertainty bounds of individual maximum reading
rate (—{aynct and +{aync})- Intersection of —{a, .} with the
regression function gave {CPS}. Figure 1(a) shows this
response in a typical reader.

Regression by Appendix Equation 1(a) produced the
monotonic reading performance template, with asymp-
totic maximum {a}, slope {dY/dX;}, and {CPS} (abscissa
projection of intersection by —{a, .} and Appendix
Equation 1(a)).

Results

We wanted to choose the best model to serve as a
template for monotonic reading performance. Our crite-
rion was greatest frequency of convergence at lowest
residual error both within (squared residuals [SR]) and
across (sum squared error [SSE]) print size. Then, aver-
aged over all regressed data sets—

1. Weibull regression had the highest frequency of data
set convergence at 248/253 (98%), followed by Logis-
tic (92%), and then Gompertz (91%).

2. Model difference in SSE was <1 percent.

3. For print sizes between 0.40 and 1.30 logMAR, model
difference in SR was <0.2 percent. Figure 1(b) shows
that 80 percent of {CPS} (obtained using the Weibull)
was found at or above 0.30 logMAR. At 0.30 log-
MAR, Weibull regression showed greater SR (Fig-
ure 2 (b)).

These findings justified use of the Weibull model.

Five characteristics of reading performance regres-
sion were obtained (shown in Figure 1(a)): {a}, {aync}

{dY/dX;}, {CPS}, and abscissa at inflexion (X;). The first
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(a) Detail of Weibull regression (Appendix Equation 1(a), see main text). Shown are reading rate inflection coordinates ({X;, Y;} = 0.195 logMAR, 89.9
wpm), uncertainty at maximum reading rate ({a,.} = 114.1 wpm), critical print size ({CPS} = 0.31 logMAR}), and maximum reading rate ({a} = 116.4
wpm). Note that slope at inflexion ({dY/dX;} = 553 wpm/logMAR) has changed from its initial value (Y/X = 115 wpm/logMAR). (b) Distributions of
monotonic characteristics across 247 data sets. Units of inflexion print size and {CPS} are in logMAR; units of inflexion and maximum reading rates are

in wpm; and units of inflexion slope are in wpm/logMAR.

four have already been defined: X; was determined by
setting the second derivative of Appendix Equation 1(a)
equal to zero and solving for X; substitution into Appen-
dix Equation 1(a) gave Y;.

For the data used in Figure 2, characteristics are {X;,
Yi} = 0.195 logMAR, 89.9 wpm, {dY/dX;} = 553 wpm/
logMAR, {CPS} = 0.306 logMAR, and {a} = 116 wpm.
Only 247 of 253 data sets could be regressed because
6 sets did not possess sigmoidal growth characteristics
that would permit successful regression onto Appendix
Equation 1(a). Five of these sets never reached a plateau
(average maximum reading rate), and one set failed to
show {CPS}.

For the others, variation in characteristic values is
shown in the five distributions of Figure 1(b). Note the

skew. Median inflexion reading rate appears to inversely
correspond with its change (inflexion slope) and with
{CPS}. High reading rates across our group of readers
with normal age-related vision appear to be associated
with a low rate of change and with print size values near
rate maximum.

ANALYSIS 2: MONOTONIC REGRESSION OF
SHORTENED LENGTH DATA SET

Methods

To improve efficiency of data collection, we exam-
ined the effect of shortening data set length. In our short-
ening protocol, data set length was truncated by reducing
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(@) Procedure for setting initial parameter values for monotonic
regression. Line segment between Y., and Yy, shows slope of change
(Y/X). (b) Between 0.30 and 1.30 logMAR, regression error using
Weibull (line plot) is equal to or less than that obtained using either
Logistic (circles) or Gompertz (squares). (Below 0.30 logMAR for
Logistic and 0.60 logMAR for Gompertz squared residuals are off-scale.)

the value of the largest print size presented in 0.10 log-
MAR increments. Data set length was longest when the
largest print size was 1.30 logMAR (first tuncation step,
which gave the “conventional data set length”) and short-
est when the largest print size was 0.70 logMAR (seventh
truncation step, which gave the “shortest data set length”).

All data sets used in the previous section (247) were
considered. Successive truncation was performed only if
two conditions were met: (1) response was present at every
data set length and (2) at least five reading rate responses
comprised the shortest data set length. These conditions
were satisfied by 204 data sets. Truncation of each gave
7 data subsets with maximum print sizes ranging from 1.30
to 0.70 logMAR, for a total of 1,428 (204 x 7) data subsets.
Each subset was then individually regressed onto Appen-

NYGAARD et al. Reading performance in older adults

dix Equation 1(a) and analyzed, both by group (all subsets
averaged within truncation step) and by individual subset.

Grouped parameter error ranges at each truncation
step were then computed by considering the effect of noise
variation in simple reaction time response [7]. This
entailed (1) summing one of two constants (£100 ms) onto
reading time values in each conventional length data set
(see methodolgy of analysis 1 for justification), (2) con-
verting units to reading rate, (3) regressing each set, and
(4) averaging normalized parameter values. This protocol
gave three error ranges: +{a}, £{b}, and £{c}. If a nor-
malized parameter value from a shortened length data set
fell within the conventional length data set error range, we
assumed it was noise deviation.

Grouped residual error (root-mean-square normalized
error [RMSNE]) was also computed at each truncation
step by averaging normalized residual errors of regression
across data set and print size above {CPS}. Because it is a
group response, RMSNE can only indicate change in vari-
ance (along the reading rate asymptotic plateau). It would
only suggest (at least for some readers) the possibility of
departure from sigmoidal behavior at large print size.

Results

The effect on grouped parameter values of shortening
data set length is shown in Figure 3. Group error limits
for {a} (horizontal lines) are similar for {b} and are
about one-twentieth as large for {c}.

While the group value of {a} remains within these
error limits as data set length is shortened, those of {b}
and {c} do not. At the shortest data set length, the group
value of {b} increases by 70 percent of its average value
at conventional length while the group value of {c}
decreases 99 percent. Therefore, shortening data set
length results in significant parameter change. Further-
more, goodness of linear fit (RZ) for individual data set
values of {a} between conventional and shortest data set
length is poor (R? = 0.61). This finding suggests that indi-
vidual data set variation in {a} might be averaged out
when calculating group means.

Parameters {b} and {c} and characteristics {dY/
dX;} and {CPS} are compared in Figure 4.

Here, slope (closed squares) and intercept (open cir-
cles) of linear fit between {b} and {dY/dX;} (Figure 4(a))
or {c} and {CPS} (Figure 4(b)) are roughly constant as
data set length is shortened. In Figure 4(c), R? for {b} ver-
sus {dY/dX;} varies between 0.90 and 0.94 (left axis), while
R? for {c} versus {CPS} varies between 0.78 and 0.83
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Figure 3.

Change in average normalized parameter value with decreasing data
set length. Left ordinate is for {a} and {b}; right ordinate is for {c}.
Horizontal lines about {a} (+{a}, —{a}) are explained in main text.

(right axis), suggesting predictive validity (across data set
length) only for {b} and {dY/dX;}.

Figure 5 shows that RMSNE decreases with decrease
in data set length (largest print size) with significant corre-
lation (r =0.945, p =0.01) [8].

Figure 5 indicates increased variation in reading rate at
large print size. In group response, this increase suggests
the presence of subgroups that might respond differently at
those sizes. One subgroup might gradually approach (nega-
tively accelerate to) maximum rate while a second sub-
group approaches more rapidly (positively accelerates) and
a third declines. We next test this possibility.

ANALYSIS 3: NONMONOTONIC REGRESSION
OF CONVENTIONAL LENGTH DATA SET

Methods

To examine reading rate variation at large print size, we
modified Appendix Equation 1(a) to permit nonmonoto-

(a)
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Figure 4.

Intercept (open circles, right-hand ordinates in (a)—(b)) and slope
(closed squares, left-hand ordinates in (a)—(b)) of linear fit taken
across data length for (a) {b} versus {dY/dX;} and (b) {c} vs {CPS}.
(c) Shows R? for {b} versus {dY/dX;} (left ordinate) and for {c}
versus {CPS} (right ordinate). CPS = critical print size.

nicity. Mixed-additive (nonmonotonic) Weibull models
(Appendix Equations 9(a) and (c)) were used [9], giving
nonmonotonic templates of reading performance that had
five parameters {a, b, ¢, g, €}.

Appendix Equation 9(a) is the sigmoidal sum and
Appendix Equation 9(b) the sigmoidal difference of two
monotonic Weibull models (Appendix Equation 1(a)).
Rearrangement gives Appendix Equation 9(c). The first
term represents increase in reading rate with increase in
print size. The second term represents either further
increase (+) or decrease (-) in rate. Appendix Equations
1(a) and 9(a—b) specify reading rate that asymptotically
approaches maximum (Equation 1(a)), nonasymptoti-
cally approaches maximum (Appendix Equation 9(a)),
or declines from maximum (Appendix Equation 9(b)).
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Initial parameter values for the nonmonotonic mod-
els are given in the Appendix. Regression was defined as
successful if convergence occurred within no more than
150 iterations of the JMP nonlinear modeling platform.

Results

Nonmonotonicity (regressibility by Appendix Equa-
tion 9(b)) was shown by 111 of 248 conventional length
sigmoidally regressible data sets (111/248 = 45%). Of
these 111, 49 percent had lower mean SRs (SRs divided
by appropriate degrees of freedom) than when either
asymptotic (Appendix Equation 1(a)) or monotonically
increasing (Appendix Equation 9(a)) models were used.
This finding indicates that 22 percent (45% x 49%) of our
248 sigmoidally regressible data sets gave evidence of
reduction in reading rate at large print size (falloff). The
remainder (100% — 22% = 78%) had apparently not yet
reached maximum reading rate at the largest print size.
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Figure 5.

Normalized regression error (root-mean-square normalized error
[RMSNEY]) for print sizes above {CPS} averaged across 204 data sets
versus data set length. Also shown is largest print size corresponding
to each data set length (in parentheses) and line of best fit between
RMSNE and data set length (largest print size). CPS = critical print
size.
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The falloff subgroup provided eight characteristics:
(1) average maximum reading rate ({Max}, determined by
numerical interpolation of regression); (2) uncertainty at
maximum ({Maxc}, determined by multiplying {Max}
into {a,nc.}{a}); (3)—(4) abscissa projections at their inter-
section ({X{} and {X5}); (5) print size range ({Xo} — {X1} =
{plateau}), over which reading rate was effectively maxi-
mum (between {Max .} and {Max}); (6)—(7) derivatives
of Appendix Equation 9(a) at abscissa limits ({dY/dX,}
and {dY/dX,}); and (8) reading rate at 1.30 logMAR, or fal-
loff ({FO}) (determined by substitution).

Figure 6 shows these characteristics for the typical
subject, with the following values: {X;} = 0.31 logMAR,;
{dY/dX,} = 112.1 wpm/logMAR; {Max} = 120.0 wpm;
{plateau} = 0.84 logMAR; {Max .} = 117.6 wpm; {dY/
dX,} =-43.2 wpm/logMAR; {X,} = 1.15 logmar; {FO} =
87.8 wpm; and {FO}/{Max} = 0.73.

Data sets that successfully regressed onto Appendix
Equation 9(b) gave distributions for these characteris-
tics. Figure 7 shows distributions for {X;}, {dY/dX;},
{Max}, {plateau}, {Max .}, {dY/dX,}, {X,}, and {FO}/
{Max} at 1.30 logMAR.
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Location of nonmonotonic Weibull characteristics on data of typical
reader: maximum ({Max}), uncertainty of maximum ({unc}),
corresponding abscissa projections ({X;} and {X,}) for points of
intersection with Appendix Equation 9(a) (see main text), {plateau},
and falloff ({FO}) at 1.30 logMAR.
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{FO/Max} at 1.30 logMAR

Distributions of nonmonotonic characteristics across 111 data sets: (a) {X1}, (b) {dY/dX1}, (c) {Max}, (d) {plateau}, (e) {Xo}, (f) {Max nc}, (9) {dY/
dX,}, and (h) estimates of {FO/Max} at 1.30 logMAR. Units of {X,}, {plateau}, and {X,} are in logMAR; units of {Max} and {Max .} are in wpm;
units of {dY/dX;} and {dY/dX,} are in wpm/logMAR; {FO/Max} is unitless. FO = falloff, Max = maximum, Max,. = uncertainty of maximum.

The following four observations can be made:

1. Absolute values of {dY/dX,} appear to cluster around
50 wpm/logMAR, while those for {dY/dX,} cluster
about 20 wpm/logMAR. Their ratio (|{dY/dX{}|/{|dY/
dX,}| = 2.5) indicates that the preplateau rising slope
({dY/dX1}) greatly exceeds the postplateau falling
slope ({dY/dX,}). Thus, maximum reading rate in nor-
mal subjects appears to be attained more quickly at
smaller print size, while decrease in reading rate at
large print size is relatively muted.

2. {Plateau} correlates more with {X,} than with {X;},

suggesting that increase in {X5} (not decrease in {X1})
is responsible for increase in {plateau}.

3. Note the similarity between monotonic and rising portion

of nonmonotonic Weibull regressions (Figures 2(b) and 7,
respectively). Median values of {dY/dX;} (343.0 wpm/
logMAR), {CPS} (0.435 logMAR), and {a} (112.0 wpm)
given by Appendix Equation 1(a) approximate (respec-
tively) those of slope at print size of monotonic inflexion
(340.3 wpm/logMAR), {X;} (0.440 logMAR), and
{Max} (115.5 wpm) given by Appendix Equation 9(b).
This is to be expected because the first term of Appendix
Equation 9(b), predominant at small print size, is
Appendix Equation 1(a).

. The last distribution (Figure 7(h)) establishes a numeri-

cal criterion for reading rate falloff at 1.30 logMAR
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({FO}). Let us define falloff criterion (normalized to
{Max}) as {FO}/{Max} at the 5 percent quantile
(where the value of {FO}/{Max} is smaller than that
given by 95% of all data sets). Furthermore, if Appen-
dix Equation 9(b) fails to regress, let {FO}/{Max} = 1.
Then, {FO}{Max} = 57 percent, i.e., {FO} = 57 per-
cent of {Max}. If a reader of unknown provenance
gives a lower value, we shall conclude that his reading
rate is significantly under criterion for a member of a
group of subjects with normal vision and should be
flagged as clinically problematic.

DISCUSSION

Spline fits of reading rate on logarithmically scaled
ordinates have been reported [7]. This procedure, how-
ever, complicates determination of average maximum
reading rate and {CPS} by its direct data reference and
nonlinearity of ordinate scaling; the latter distorts the
hypothetical data distribution. Weibull regression on lin-
early scaled ordinates has already been demonstrated
[10], as have results comparing subjects with normal
vision against patients in a very small group of older
adults with normal age-related vision [11]. Our study
shows that the Weibull regression model can fit all the
appropriate reading performance data from older adults.

Regression by a honmonotonic Weibull model indi-
cates that reading rate might sometimes decline at large
MNREAD chart print sizes designed for older adults with
normal age-related vision. This concept is not new as
Legge et al. showed that reading rates for young adults (in
their twenties) gradually decreased at character sizes
larger than 2° [12]. However, the MNREAD charts were
designed so normally sighted readers were expected to
maintain average maximum reading rate even at the large
character sizes (the largest lowercase letter on a
MNREAD chart subtends a visual angle of about 1.7° at
the standard viewing distance, 40 cm). While our results
indicate that reading rates at large print sizes may decline
even for normally sighted older adults, other reading stud-
ies have assumed this is a low vision characteristic [12].

The combination of visual, lexical, and oculomotor
information has been integrated into an ideal-reader
model of reading [13]. Here, the concept of the visual
span (the number of characters that can be identified in a
single fixation) plays a unifying role. Increased print size
decreases this span [14] and suggests a decrease in read-
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ing rate. Further work, perhaps facilitated by a regression
protocol similar to ours, is needed to investigate the rela-
tionship between possible declining visual span in older
adults and declining reading rates.

Unfortunately, no set standard exists for the reading
rate that corresponds to the estimate of {CPS}. Previously
published studies have equated this value with reading rates
ranging from 75 to 99 percent of the average maximum.
Besides the measure of experimenter uncertainty that we
used to determine {CPS}, a number of reader-originated
factors that likely contribute to variability are (1) time
required to visualize a letter sequence comprising a word or
sentence, interpret its meaning, and vocalize it; (2) saccadic
eye movements and fixation pauses; and (3) verbal intelli-
gence, attentional maintenance, and self-assurance. Vari-
ability in these visual, lexical, and oculomotor factors
derives from changing sensory, cognitive, and muscle fac-
tors, different within and between each reader. Unlike the
experimenter uncertainty used in this study, these factors
are difficult to measure but add considerable temporal
uncertainty to recorded values of reading time.

Nevertheless, our work has demonstrated use of
(1) Weibull monotonic and nonmonotonic functions in
quickly assessing normal reader reading rate characteris-
tics; (2) data sets less than conventional length (-0.20
to 1.30 logMAR); and (3) a means to objectively assess
falloff in reading rate in readers with unknown clinical
provenance.

CONCLUSIONS

Analysis 1

A monotonic Weibull model gives equal or lower
regression error and increased convergence onto data of
conventional length than do either Logistic or Gompertz
models. Weibull regression gives estimates of reading
rate slope and maximum. Furthermore, consideration of
uncertainty in the experimenter’s response provides an
estimate of the {CPS}.

Analysis 2

Shortening the data set length by eliminating the
largest print sizes of monotonic Weibull regression gives
lower average per datum error variation but significantly
changes parameter values.
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Analysis 3

A nonmonotonic Weibull model showing falloff in
reading rate at large print size was found superior in
some cases to monotonic and nonmonotonic models
showing continued reading rate increase. This model
gave estimates of maximum reading rate, its uncertainty,
location and length of response flatness (plateau), slopes
at plateau limits, and reading rate at 1.30 logMAR. The
last parameter shows reading rate reduction at the largest
print size and provides a criterion measure for evaluating
readers of unknown clinical provenance.
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