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Executive Summary

F
EMA Flood Insurance Rate Map (FIRM) guidelines do not currently ex-

ist for conducting and incorporating tsunami hazard assessments that
reflect the substantial advances in tsunami research achieved in the last

two decades; this conclusion is the result of two FEMA-sponsored workshops
and the associated Tsunami Focused Study (Chowdhury et al., 2005). Therefore,
as part of FEMA’s Map Modernization Program, a Tsunami Pilot Study was
carried out in the Seaside/Gearhart, Oregon, area to develop an improved
Probabilistic Tsunami Hazard Assessment (PTHA) methodology and to provide
recommendations for improved tsunami hazard assessment guidelines. The
Seaside area was chosen because it is typical of many coastal communities
in the section of the Pacific Coast from Cape Mendocino to the Strait of
Juan de Fuca, and because State Agencies and local stakeholders expressed
considerable interest in mapping the tsunami threat to this area. The study
was an interagency effort by FEMA, U.S. Geological Survey, and the National
Oceanic and Atmospheric Administration, in collaboration with the Univer-
sity of Southern California, Middle East Technical University, Portland State
University, Horning Geoscience, Northwest Hydraulics Consultants, and the
Oregon Department of Geological and Mineral Industries. Draft copies and a
briefing on the contents, results, and recommendations of this document were
provided to FEMA officials before final publication.

Methodology

The study methodology consisted of a number of important components,
each of which was essential to successfully developing 100- and 500-year
tsunami inundation products required by FEMA for Flood Insurance Rate
Maps, including flooding depth and high velocity zones (V -zones). These
components were:

• Source Specification. Review of literature; consultation with expert
colleagues; development of a database of quantitative probabilistic mod-
els of local and far-field earthquake tsunami sources in the Cascadia
Subduction Zone (CSZ), the Alaska-Aleutian Subduction Zone (AASZ)
and the Peru-Chile Subduction Zone (PCSZ).

• Data Acquisition. Performance of a paleotsunami deposit mapping and
interpretation study; acquisition of historical records and eyewitness
reports.

• Model Development, Testing, and Application. Development of a high-
resolution Digital Elevation Model (DEM) based on the latest available
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2 Tsunami Pilot Study Working Group—Seaside, Oregon Tsunami Pilot Study

topography, bathymetry, and tidal information; development of a state-
of-the-art, site-specific tsunami inundation model; testing of the model
with all available tsunami field observations, including paleotsunami
data, historical records, and eyewitness reports; application of the model,
using the source database, to generate the corresponding tsunami inun-
dation database.

• Probabilistic Computations. Development of a systematic procedure to
process the study data and compute the distributions of 0.01 and 0.002
annual rates of occurrence (100- and 500-year) quantities, including the
effect of ocean tides; application of the procedure to create the site-
specific tsunami hazard maps.

• Study-Specific Database Development. Development and documenta-
tion of a comprehensive, study-specific, GIS-compatible database that
includes sources, DEM, model output, field observations, and other
information relevant to the study; creation of web-based interface for
database access.

• Analyses and Interpretation. Use of the GIS database for quality control
and error-checking, and to analyze and interpret the primary study re-
sults; exploratory analyses and interpretation of various tsunami impact
indices to generalize the concepts of tsunami hazard levels in general,
and tsunami high-velocity flood zones (V -zones) in particular.

Results

Although Seaside suffered inundation and damage as a result of the tsunami
generated by the Great 1964 Prince William Sound earthquake, little inundation
is indicated by the 100-year tsunami hazard map. The interpretation of this
result is that, on the 100-year time scale, Seaside is threatened primarily
by tsunamis generated by far-field earthquakes that are not generally as de-
structive as those generated locally. In contrast, on the 500-year time scale,
Seaside is threatened by large, destructive tsunamis generated locally by great
earthquakes on the Cascadia Subduction Zone, which lies just offshore. As a
consequence, the 500-year tsunami hazard map reflects very large regions of
Seaside inundated to significant depths.

Details of the methodology developed during the course of this project,
a discussion of older tsunami assessment methods, data sources, literature
references, results, and other recommendations are provided in the body of the
report.

Recommendations

Some important factors influenced our recommendations, as follows. First,
the methodology for probabilistic tsunami hazard assessment (PTHA) devel-
oped by this study, while preliminary, is nonetheless a major advance over
previous methods, and should therefore be applied to upgrade assessments
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in other coastal areas. However, considerable work remains to improve the
methodology, and these follow-on studies should also be designed to refine
and improve the methodology, as discussed in the report. Also, truly disastrous
local events will inevitably devastate U.S. coastal communities near known
subduction zones, such as the Cascadia and the Alaska-Aleutian Subduction
Zones; though infrequent, the impact of such events are so catastrophic that
they must somehow be taken into account. Time limitations did not allow
development of a “Credible Worst Case” methodology during the course of
this study. However, our results lay the groundwork for the development of
this method which, essentially, answers two fundamental questions: “What
is the scientifically defensible and credible worst case scenario?” and “What
is the probability of occurrence of this scenario?” This simple concept has
great intuitive appeal and should have very high practical value as an ac-
tuarial tool. Finally, adequate PTHA for all U.S. coastlines is a long-term,
challenging effort that requires an integrated, sustainable national approach,
including the establishment and maintenance of Federal agency partnerships,
in collaboration with State agencies, academic, and other institutions. Our
specific recommendations are therefore grouped as Scientific/Technical and
Policy/Programmatic, as follows.

Scientific/Technical Recommendations

• Include all reasonable epistemic and aleatory sources of uncertainty in
each Probabilistic Tsunami Hazard Assessment, using the best available
science.

• Utilize tsunami hydrodynamic models that meet NOAA standards, to
ensure consistency of Federal agency products.

• Test all earthquake and tsunami models by extensive field studies to
gather and exploit all possible paleogeography and paleotsunami data,
historical tsunami measurements, eyewitness reports, and other types of
field observations.

• Develop and maintain a comprehensive GIS database of all field data,
model results, and a comprehensive site- and source-specific tsunami/
earthquake bibliography for the region as an essential and invaluable
analysis and product development tool.

• Publish a report for each PTHA project that documents procedures, data
sources, and results, that includes a bibliography, and that is reviewed for
consistency with FEMA standards.

• Publish PTHA results either as a separate Federal Insurance Rate Map, or
include PTHA information as separate, tsunami-specific items on FIRMs.
In either case, include: (a) the 100-year and 500-year events, (b) tsunami-
specific V -zones, (c) measurements available for the worst case historical
and/or paleotsunami events, and (d) the “Credible Worst-Case Scenario”
event.
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Policy/Programmatic Recommendations

• Establish a formal FEMA/NOAA/USGS partnership to address national
needs for tsunami hazard assessment products in a federally consistent
and cost-effective manner.

• Apply PTHA to additional Cascadia Subduction Zone communities as
NOAA inundation models are completed.

• Conduct pilot studies to adapt PTHA to other tsunami regimes in the
Pacific, Caribbean, Atlantic, and Gulf, using a preliminary assessment of
uncertainty.

• Apply PTHA to additional Pacific, Caribbean, Atlantic, and Gulf commu-
nities as the corresponding pilot studies and NOAA inundation models
are completed.

• Establish a systematic maintenance and improvement program to inte-
grate scientific and technical advances into the PTHA methodology.



1. Background and Introduction

F
EMA Flood Insurance Rate Map (FIRM) guidelines do not currently ex-

ist for conducting and incorporating tsunami hazard assessments that
reflect the substantial advances in tsunami research achieved in the last

two decades. Thus, current FIRMs rely heavily on the science, technology, and
methodologies developed in the 1970s, such as that of Houston and Garcia
(1974) and Houston (1980). This work is generally regarded as groundbreaking
and state-of-the-art for its time, but is now superseded by modern methods
(Table 1).

Two recent FEMA workshops were held to help develop plans for up-
dating the existing FIRMs. The approximately 40 workshop participants in-
cluded FEMA management, coastal engineering and scientific experts, flood-
plain management professionals, and study contractors. FEMA guidance at
the first workshop encouraged a regional approach, in recognition that “one
shoe seldom fits all” and that somewhat different methodologies are frequently
required to properly account for regional differences. The second workshop
concentrated on reviewing “Focused Study” plans developed by Technical
Working Groups, including the Tsunami Focused Study.

Table 1: Comparison of pre-1990 and post-1990 tsunami hazard assessment.

Component Pre-1990 Post-1990

Runup modeling No Yes
Far-field sources Earthquakes. Surface deformation

based on simple elliptic analytic
idealizations.

Earthquakes and landslides.
Surface deformation based on
geophysical models.

Near-field sources No. Importance not recognized. Yes. Importance now recognized
as a result of numerous studies.

Bathymetry and topography Low quality coverage and
availability. Deep ocean modeled
as constant-depth basin. Shallow
coastal features not adequately
resolved.

Improved quality, coverage, and
availability of Pacific deep and
coastal bathymetry and
topography.

Computational grids Coarse-resolution. Fine-resolution, where required.
Probabilistic methodology Based on short-term historical

tsunami record.
Based on long-term paleoseismic
and paleotsunami records and
short-term, historical earthquake
and tsunami records.

Hazard zone identification Qualitative estimates inferred
from offshore height only.

Indices can be computed, based
on both runup heights and
currents.

5
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Tsunamis generated by seismic or other sources near or far from a site of
interest are termed, from the point of view of that site, near-field (or local)
and far-field (or distant) tsunamis, respectively. The Tsunami Focused Study
(Tsunami Focused Study Team, 2005) identified two general types of sources
as the most common generators of destructive tsunamis: earthquakes, which
might be local or distant from the area of interest; and slides, which might be
coseismic or aseismic, subaerial or subaqueous.

Earthquake sources generally produce a zone of destructive tsunami energy
over a larger geographic scale than slide sources. Differences in the relative
importance of local and distant earthquake sources serve to identify five
distinct Pacific Tsunami Regimes:

A. Southern and Central California. Local offshore fault systems; distant
Subduction Zones

B. Cascadia (Northern California to Northern Washington and Straits of Juan
de Fuca). Local Cascadia Subduction Zone; distant subduction zones

C. Puget Sound. Local Seattle, Tacoma, and other fault systems

D. Alaska. Local Alaska-Aleutian Subduction Zone

E. Hawaii. Distant subduction zones

Slide sources in all regions can also generate tsunamis that produce de-
structive zones, but on a smaller geographical scale, with variations in the type
and potential threat. Upon review and discussion by workshop participants of
the Tsunami Focused Study plan, the following recommendation was made:

“The recommended approach is to perform a comprehensive prob-
abilistic tsunami hazard assessment at a pilot site in California
or Oregon or Washington [that includes]: (1) recurrence interval
estimate[s] of forcing functions and (2) propagation of tsunamis
from Pacific Seismic subduction zones, (3) inundation calculations,
[and] (4) probability distributions and integration.”

Subsequently, after a site selection study, this interagency project—the
Seaside Tsunami Pilot Study—was funded by the FEMA Map Modernization
Program. The purpose of the study was to develop methods and preliminary
guidelines for future tsunami components of FEMA FIRMs. These specific
guidelines would apply to coastal communities along the coast of the Cascadia
Tsunami Regime, extending from Cape Mendocino to the Strait of Juan de
Fuca. Existing FEMA Flood Insurance Studies and the resulting FIRM maps
for this region do not include tsunamis as a flooding hazard. During the 1970s,
a Type 16 Flood Insurance Study was carried out for this region by Houston
and Garcia (1978). Their study was based on the assumption that only far-
field tsunamis impacted this region. Furthermore, their computations did not
include actual inundation of the land. Since that study, compelling evidence
from earthquake and paleotsunami research has shown that great earthquakes
occur in the Cascadia Subduction Zone and that these earthquakes generate
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major tsunamis. These local Cascadia events, although infrequent, are not
rare. Furthermore, they would cause such widespread and severe devastation
that they need to be considered in developing new FIRM maps for this coastal
region.

The site for the Pilot Study includes the communities of Seaside and
Gearhart, Oregon, and the adjacent unincorporated areas. The site was chosen
because it is typical of coastal communities in the region with development
on sand spits and other low-lying areas near the ocean and with coastal rivers
flowing through the communities. The study area was also recommended by
Oregon Emergency Managers, who need the results of the Study for tsunami
evacuation planning and public education. Furthermore, stakeholders in the
Seaside/Gearhart area are very interested in tsunamis, due in part to the
flooding and damage caused by the 1964 Alaska tsunami and other recent
tsunamis that struck these communities. There is also increased awareness
that major Cascadia Subduction Zone tsunamis have struck this area in the
past.

This pilot study directly addresses Task Item 16, “Probabilistic Hazard As-
sessment for the open and non-open coastlines of the Pacific States,” and Task
Item 20, “Tsunami structure debris interaction to define hazard zones,” identi-
fied in a series of workshops in 2004 that were held to plan the development of
new tsunami hazard mapping guidelines for FEMA’s National Flood Insurance
Program. A methodology was recommended for a comprehensive probabilistic
tsunami hazard assessment for the Cascadia Region, considering both far-field
events and near-field events triggered by seismic sources. For both types of
events, the tsunamis are generated by coseimic seafloor displacement and
submarine landslides. Far-field events are defined as those generated a long
distance away by sea floor displacement during earthquakes, such as the 1964
Alaska and 1960 Chile earthquakes; near-field events are those generated by sea
floor displacement from Cascadia Subduction Zone earthquakes. An example
of the latter is the 1992 Cape Mendocino tsunami that was incident on the
northern California coast (González et al., 1995).

FEMA’s policy has been to incorporate tsunami-induced hazards and other
storm-related coastal hazards into one coastal high-hazard zone, which is
defined in the Code of Federal Regulations, Title 44, Part 59.1 as:

Coastal high hazard area means an area of special flood hazard
extending from offshore to the inland limit of a primary frontal
dune along an open coast and any other area subject to high
velocity wave action from storms or seismic sources.

During the course of the present study, it became imperative to address
not only the statistical aspects of tsunami generation but also the associated
geological, numerical modeling, regulatory, and institutional aspects as well as
the available resources in NOAA, USGS, and academic institutions participating
in this study.





2. Previous Methods Used for
FIRM Tsunami Maps

F
or the FEMA Pilot Study, it is helpful to understand the procedures

used by Houston and Garcia (1978) to develop the previous set of FIRM
tsunami maps for the U.S. West Coast. Like the goals of the new Pilot

Study, their procedures produced 100- and 500-year tsunami runup elevations
using numerical models and probabilistic approaches to both the distribution
of tsunami sources, in terms of their intensity and location, and the effects of
tides and other background water levels on the elevations. The purpose of this
section is to summarize the assumptions and methodology used by Houston
and Garcia (1978) in order to provide background for the Pilot Study and to
provide a perspective when comparing their results with those generated by
the Pilot Study. Only a few references are given in this section; an extensive
bibliography can be found in the 1978 report.

When Houston and Garcia (1978) did their study for the Federal Insur-
ance Administration in the Department of Housing and Urban Development,
regional tsunami sources in the Cascadia Subduction Zone had not been
identified as the most likely to dominate the 100- and 500-year tsunami runup
elevations along the middle and northern portions of the West Coast. Local
landslides in the Southern California Bight had also not been identified as
important sources for that region. However, Houston and Garcia (1978) state
that important local sources might eventually be found but that such sources
are outside the scope of their study. The sources they use are limited to the
Alaska-Aleutian and Peru-Chile Subduction Zones, justified by the historical
record of damaging tsunamis along the West Coast.

2.1 Tsunami Sources

The tsunamis striking the West Coast are assumed by Houston and Garcia
(1978) to be teletsunamis from the Alaska-Aleutian and Peru-Chile Subduction
Zones. Using observed tsunamis in the source regions, the tsunami intensities
i = log2(21/2Ravg) are first computed from the average runup height Ravg in
meters using the Imamura-Iida intensity scale as modified by Soloviev (1970).
(Runup is strictly defined as the wave height at maximum inundation. As used
in this case, runup is a more general term that also describes wave height
measurements within the inundation zone.) A least-square fit to the historical
data along the Peru-Chile Subduction Zone then gives n(i ) = 0.074e−0.63i

as the probability of occurrence in a given year for a tsunami of intensity
i . (The Houston and Garcia (1978) technical report lacks the minus sign

9
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in the exponential term, which is needed since the probability n(i ) should
decrease with increasing tsunami intensity.) Since there is much less historical
information on tsunamis occurring in the Alaska-Aleutian Subduction Zone,
an assumed exponent coefficient −0.71 is used, i.e., n(i ) = 0.113e−0.71i , based
on large (i = or > 3.5) tsunamis in the Alaska-Aleutian Subduction Zone
and observed coefficients of other tsunamigenic regions around the Pacific
(Soloviev, 1970). The probabilities are assumed to be uniform along the
respective subduction zones.

The Alaska-Aleutian Subduction Zone is divided into 12 segments and the
Peru-Chile Subduction Zone into 3 segments. The fine segmentation along the
Alaska-Aleutian Subduction Zone honors the observation that the heights of
tsunamis along the West Coast are very sensitive to the location of earthquake
in the Alaska-Aleutian Subduction Zone, whereas this is much less true for
the Peru-Chile Subduction Zone. The coseismic uplift patterns due to the
tsunamigenic earthquakes are assumed to be ellipses oriented parallel to the
subduction zone trench and are centered on the respective segment.

The shapes and sizes of the uplift ellipses are “standardized” because there
is often a disparity between the intensity, observed uplift extent, and the
tsunami heights that occur at impact site. Houston and Garcia (1978) discuss
this issue using the 1946 and 1957 Aleutian tsunamis, in which the modest 1946
earthquake had a relatively small uplift area but large tsunami, whereas the
great 1957 earthquake had a very large extent but a much smaller teletsunami.
Other issues and their implication for tsunami generation are also discussed.

For each segment, seven tsunami intensities in the range i = 2 − 5 (in
increments of 0.5) are used. Here, i = 2 is considered a lower limit for
dangerous tsunamis along the West Coast; and i = 5 is a credible upper limit
based on the history of Pacific tsunamis. The 15 earthquake segments (12 for
the Alaska-Aleutian and 3 for the Peru-Chile Subduction Zones) then lead to a
total of 105 tsunami sources used in the study by Houston and Garcia (1978),
each with its own probability of occurrence.

2.2 Trans-Pacific and Nearshore Numerical
Models

A linear finite difference model (1/3◦ ×1/3◦) is used to propagate the tsunamis
from each source across the Pacific to the vicinity (about the depth contour
of 500 m) of the West Coast. The details of the trans-Pacific model are given
in Houston and Garcia (1974). A finer-scale nearshore finite difference model
(2′ ×2′), driven by tsunami time series at the open boundaries, is then used to
estimate runup along a vertical-wall coast. The nearshore model is based on
that of Leendertse (1967) and includes advective terms and quadratic drag.

The West Coast is divided into four overlapping segments, each with its own
nearshore model applied to a rectangular domain. Variable bathymetry is used
out to the 500 m depth contour, beyond which the depth is set to 500 m. Each
domain has a normal-to-shore width of approximately 1.5 wavelengths of a 30-
min tsunami. This width is chosen so that at least three waves of a major trans-
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Pacific tsunami have a chance to reach the coast before re-reflection can occur
at the open seaward boundary.

While the southern domain extends across half of the Southern California
Bight, only results for the region west of Santa Barbara are reported. However,
100- and 500-year tsunami maps for the Southern California Bight are given
by Houston and Garcia (1974). Likewise, Garcia and Houston (1975) show
analogous maps for Monterey and San Francisco Bays and Puget Sound.

Verification of the model time series is limited to a comparison at Cres-
cent City and Avila Beach (Port San Luis), California. There is significant
disagreement at Crescent City, but this station had only a partial tide gage
record. The agreement at Avila Beach (largest tsunami amplitude reported from
uninterrupted 1964 tide gage records along the West Coast) is good and is taken
to be justification for the modeling procedures.

2.3 Predicted Tides

To include the effects of the tides on the maximum tsunami runup elevation,
Houston and Garcia (1978) use as tidal input 15-min sampled time series of
predicted tides for stations along the West Coast. Observed NOAA harmonic
constants were used to compute the predicted tides where these were available.
Presumably the predicted tides were either zoned (constant within a coastal
section) or interpolated to give the coastal tides at the nearshore model grid
points. The tidal time series are for the year 1964, during which nodal factors
modifying tidal heights are at or near their average values during the 18.6-year
nodal cycle. Clearly, these are also convenient series to use when discussing
the 1964 Alaska tsunami.

2.4 Computing the 100- and 500-Year Tsunami
Runup Heights

For each of the 105 tsunami time series at each coastal grid point of the
nearshore model, a 24-hr tsunami series is prepared by adding a sinusoidal
series (with an amplitude equal to 40% of the maximum height of the first
model waves) to the 2 hr of directly modeled series representing the first waves
of the tsunami. The factor of 0.4 was determined from observed tsunamis
along the West Coast that are observed to decay slowly in time. Adding a given
tsunami time series sequentially to the predicted tide, stepping every 15 min,
and then computing the maximum height of the combined tsunami and tide,
leads to a year-long series of maximum runup heights. The largest of these
is selected to give the tsunami runup elevation for that coastal grid point and
that tsunami source location and intensity. This is under the assumption that
the linear sum of the tsunami and tidal time series adequately represents the
actual water levels for that tsunami impacting the coast as the tides vary in
time.

The 100- and 500-year tsunami runup heights are computed numerically by
Houston and Garcia (1978) from the maximum runup heights and probabilities
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Table 2: 100- and 500-yr tsunami runup heights at Seaside, Oregon (latitude
of 46◦ 0.00′N) relative to various tidal datums. The heights are computed
from the Houston and Garcia (1978) results relative to mean sea level (MSL),
using observed tidal datums interpolated in latitude between Hammond (46◦
12.1′N, 123◦ 56.7′W) and Garibaldi (45◦ 33.3′N, 123◦ 45.7′W).

Datum (m)* 100-Year Runup (m) 500-Year Runup (m)

MHHW 2.5 2.1 4.7
MHW 2.3 2.3 4.9
MTL 1.4 3.2 5.9
MSL 1.3 3.2 5.9
MLW 0.4 4.2 6.9
MLLW 0.0 4.6 7.3

*1983–2001 Tidal Epoch

associated with the corresponding source segment and tsunami intensity. For
a given coastal grid location, the probabilities are summed over decreasing
heights starting with the maximum one for that location. When the sum
reaches 1/500, this is the 500-year runup height for that coastal location. The
summing of the individual probabilities downward in height then continues
until the summed probability reaches 1/100, yielding the 100-year runup
height. Once this is done for all the coastal grid points along the West Coast,
smooth curves are drawn through these to give the alongshore distributions of
the 100- and 500-year runup heights that are shown in Plates 1–30 of Houston
and Garcia (1978).

2.5 Application to Seaside, Oregon

Shown in Table 2 are the 100- and 500-year tsunami runup heights computed
from Plate 26 of Houston and Garcia (1978) for Seaside, Oregon, which is the
site location for the FEMA FIRM Pilot Study. The heights are for the open coast
at lat. 46◦ 00.0′N, which passes through Seaside. The original heights are in feet
relative to mean sea level (MSL). For the purposes of the Pilot Study and for
other applications, Table 2 also contains heights relative to other tidal datums
on the open coast.

Mean high water (MHW) was used as the background water level for all
inundation modeling performed in the current study. A check on the conse-
quences of fixing the background water level at MHW was made by performing
a statistical analysis based on linearly superimposed tsunami wavetrains by
predicted tides at Seaside. The tsunami wavetrains are assumed to decay
exponentially in time with an e-folding decay coefficient of 2.0 days, consistent
with observed Pacific teletsunamis (Van Dorn, 1984; Mofjeld et al., 2000).
Assuming a linear superposition may be regarded as a first step toward a fuller
analysis that includes the dynamical interaction between tsunamis and the
tides. The details of the linear analysis are given by Mofjeld et al. (in press). It is
consistent with the way the Seaside tides are included in the estimation of the
0.01- and 0.002-probability wave heights in this present study (see Appendix E).



Section 2. Previous Methods Used for FIRM Tsunami Maps 13

Table 3: Representative maximum tsunami wave heights when the background water level in
the tsunami inundation model was set to mean high water (MHW) and when the equivalent
mean height for the tsunami wavetrain was superimposed linearly on predicted Seaside tides
(1992).

Background: MHW Adjusting for Tides Difference Difference
Annual Prob. Location (m) (m) (m) (%)

0.01 Coastal 4.0 3.6 0.4 10
Estuarine 3.0 2.8 0.2 8

0.002 Coastal 10.0 9.3 0.7 8
Estuarine 7.0 6.5 0.5 7

Briefly summarizing the results of the Mofjeld et al. (in press) analysis, the
probability distribution functions (pdfs) of maximum wave height for small
tsunamis (<0.5 m amplitudes) are tightly concentrated around the sum of the
tsunami amplitude and mean higher high water (MHHW). Hence, using MHW
as the background water level in modeling these small-amplitude tsunamis
introduces a slight downward bias relative to the mean height of the pdfs. At
Seaside, this bias amounts to MHHW–MHW = 0.23 m. As the amplitude of the
incident tsunami increases, the pdf changes both in mean maximum height
and vertical spread. The total mean is the sum of the tsunami amplitude
at each location and an effective height. The latter decreases from MHHW
to mean sea level (MSL) with increasing amplitude. For very large tsunami
amplitudes, the largest tsunami wave simply selects the stage of the tide at
the time of the wave crest. Statistically, the pdf then represents the probability
distribution of the tide itself.

For the 0.01- and 0.002-probability wave heights shown in Figs. 26 and 28,
the effect of not allowing the tides to vary in the tsunami modeling gives an
upward bias (Table 3) of 0.2–0.7 m (7–10%) based on the linear analysis. The
bias will be less at other locations where the tsunami amplitude is less, so the
values in Table 3 are estimates of the maximum bias.

There is a need for future research on non-linear tide/tsunami interactions
and their effects on wave heights, inundation, and current strength. Research
is also needed on issues of tsunami-caused erosion during the first waves that
might alter the access of tsunamis and tides to estuaries and coastal rivers.





3. Development of GIS Database

A
n extensive amount of relational spatial data was collected and devel-

oped for the study. A geographic information system (GIS) was built to
organize these data for analysis (Wong et al., 2006). The GIS database

consists of data descriptions, preview images, virtual globe (Google Earth©)
views, metadata, and downloadable files (Table 4). Except for data sets strongly
tied to the study, such as historic inundation lines and existing FEMA Flood
Insurance Rate maps, the GIS serves only data developed in the course of
building the tsunami model.

The majority of the data were built using ESRI ArcGIS© software products.
All were georeferenced to the following parameters:

Coordinate system: Geographic decimal degrees or Universal Transverse
Mercator Zone 10 where indicated

Vertical units: Meters
Horizontal datum: North American Datum of 1983
Vertical datum: Mean High Water

Table 4: Summary of GIS database layers.

Category Dataset

Digital elevation model development Coastal tide stations
Modeling grid limits
Historic shorelines
Vertical control data
Seaside digital elevation model

Historical tsunami events Alaska 1964 event deposits, observations, and
inundation

Cascadia 1700 event deposits and inundation
Photographs of field sites

Tsunami propagation and inundation modeling Far- and near-field earthquake sources
Maximum tsunami velocity zones based on far-

and near-field sources
Coseismic vertical displacement fields for

near-field sources
Maximum wave heights based on far- and

near-field sources

Probabilistic tsunami hazard assessment model Probability surfaces for maximum wave heights
of 0.5 to 10.5 m

Maximum tsunami wave heights for 100- and
500-year floods

15
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The horizontal datum was based on the latest accepted geodetic references.
Mean High Water (MHW) was used as the constant background water level
for the tsunami inundation modeling, and this is the reference datum for the
tsunami heights in this report. Current FEMA FIRM maps are based on the
horizontal and vertical datums of the North American Datum of 1927 and the
National Geodetic Vertical Datum of 1929, respectively. Mofjeld et al. (2004)
provide more information on the determination of vertical datum values for
Seaside (Appendix A).

3.1 Digital Elevation Model

An accurate digital elevation model (DEM) is critical to accurate model results.
The DEM for inundation modeling should consist of the best available eleva-
tion data at a resolution of 50 m or less (González et al., 2005). Elevation data
available from Federal, State, and local agencies often consist of disparate hor-
izontal and vertical datums that must be rectified through accepted conversion
methods (see Appendix A).

Three nested DEMs were created for the MOST model to simulate tsunami
generation at the offshore source, wave propagation nearshore, and inundation
in the region of interest (Fig. 1, Table 5). The source and propagation DEMs
consist solely of bathymetric values with land set to a “no data” value. The
inundation DEM consists of both bathymetric and topographic values.

These DEMs were developed using a standard four-step process:

1. Data collection
2. Data assessment
3. DEM development
4. Quality assessment

The best available bathymetric, topographic, orthophotographic, and con-
trol data were obtained from various government agencies and converted to
modeler parameters. Datasets were analyzed for accuracy and consistency. The
best available data were used to build the DEMs.

The inundation DEM was compared to fifteen vertical control points to
yield a RMS error of 0.135 m. Detailed procedures, methodologies, and quality
assurance analyses are available in Venturato (2005) (Appendix B).

Significant shoreline differences were discovered when comparing the in-
undation DEM with historical shorelines. Coastlines extracted from regional

Table 5: DEM summary.

Region Resolution SW/NE Corner Extents

Pacific Northwest 36 arc-seconds (∼1 km) SW: −132.00, 43.00; NE: −122.00, 53.00
(bathymetry only)

Washington-Oregon Border 6 arc-seconds (∼180 m) SW: −124.5, 45.36; NE: −123.5, 47.36
(bathymetry only)

Seaside 1/3 arc-seconds (∼10 m) SW: −124.04, 45.90; NE: −123.89, 46.08
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Figure 1: Study area of the FEMA FIRM pilot project for Seaside, Oregon. Top panel displays nested grids used
by the model. Bottom panel details the study region.
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Figure 2: Historical shoreline depicting the apparent Mean High Water line based on orthophotography from
various Federal and State agencies.
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Figure 3: Accretion and erosion trends of the Necanicum River mouth (3.2 m/y).
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historical aerial photography obtained from the University of Oregon show a
general trend of accretion averaging 3.2 m/yr on the outer coast north of the
Necanicum River mouth (Fig. 2) (Appendix B).

A cyclic pattern of erosion and accretion within the Necanicum River
mouth along its northern and southern Mean High Water extents is apparent
(Fig. 3). The northern extent generally shows an accretion rate of approximately
7 m/yr since 1939. The southern extent varies between accretion and erosion
over an estimated 15-year cycle. The river mouth cycled from a minimum
width of 300 m to a maximum width of 800 m over the 65-year period
(Appendix B).

The final DEMs were distributed in an ASCII raster format to the modeler.
The modeler converted the DEMs to a format compatible with the model,
clipped the DEM to cover the inundation area, and applied an algorithm to
smooth the bathymetry using a predetermined steepness threshold (refer to the
Section 6, “Propagation and Inundation Modeling”).

3.2 Historical Tsunami Event Data

Tsunami deposits, observations, and inundation lines were collected to com-
pare with model results. Deposits collected in the field (see Tsunami Deposits
section) were converted to GIS files for comparison with model results. Esti-
mated inundation lines were subsequently created for the 1964 Gulf of Alaska
and the 1700 Cascadia Subduction Zone events. Summaries of observations
and historic shoreline are discussed below.

3.2.1 Observations

Over 70 observations at Seaside of the 1964 Gulf of Alaska event were added
to the GIS database for comparison (Fiedorowicz, 1997) (see also Appendix
C). These observations include estimated runup/wave height values and type
(Fig. 4).

3.2.2 Shoreline

The apparent Mean Lower Low Water line was digitized (Fig. 5) from orthopho-
tos nearest in time to significant historical tsunami events (1946 East Aleutian
Islands, AK, 7.3 Ms; 1960 Central Chile, 8.5 Ms; and 1964 Gulf of Alaska, 8.5
Ms). The Necanicum River mouth migrates northward from 1946 to 1964 and
then southward from 1964 to 2000. The dynamic nature of the shoreline in this
region could vary tsunami inundation patterns over time.

3.3 Model Output

Model runs from the Model Database (see Section 6, “Propagation and Inun-
dation Modeling”) were converted to GIS-compatible formats and added to the
GIS database. Model setup of the inundation grid introduced a rounding error
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Figure 4: Observations of the Alaska 1964 tsunami event as described in Fiedorowicz (1997) and updated by
Horning (see Appendix C). The runup line is based on observations (a) and tsunami deposits (b). The values
associated with each observation represent runup elevation in meters based on a vertical datum of Mean High
Water. Meaning of different eyewitness runup indicators listed in (a) described in Appendix C. Locations of
possible tsunami sand and mud layers are provided in (b). (c) Major streets in Seaside and Gearhart shown
with tsunami observation locations.
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Figure 5: Estimated shoreline during historic tsunami events depicting Mean High Water (solid) and Mean Lower
Low Water (dashed). Shoreline from the most recent orthophoto (2000) also displayed in rightmost panel.

(RMS error 0.000901 m), which is reflected in the model runs. Additional error
(total RMS error 0.001267 m) was created during the conversion of the model
runs to GIS. This error is considered insignificant in this study. Probabilistic
tsunami wave height data were derived as described in the “Probabilistic
Method” part of this report.





4. Tsunami Deposits

T
sunamis flooding Seaside have left behind distinctive sheets of sand

(hereafter referred to as tsunami deposits) that can be interpreted to
reconstruct the history of tsunamis. These tsunami deposits are similar

in appearance to those found by other researchers studying tsunamis along
the Cascadia margin (Peters et al., 2003). The spatial distribution of tsunami
deposits in Seaside is hard evidence of tsunamis that establishes minimum in-
undation areas (Jaffe and Gelfenbaum, 2002). Tsunami deposit age, combined
with this spatial distribution, can be used to estimate the relative magnitude of
near- and far-field tsunamis and to determine the frequency and magnitude of
tsunami inundation.

The value of incorporating a tsunami deposit component in probabilistic
tsunami hazard assessments is underscored by the fact that the only record
of tsunamis generated by earthquakes on the Cascadia Subduction Zone im-
pacting Seaside are from tsunami deposits. Tsunami deposits verify the ability
of the Cascadia Subduction Zone to generate large tsunamis that impacted
Seaside in the past. Tsunami deposits define the lower limit of the inland extent
of inundation. In this study, we have not interpolated between these point
measurements, although in some locations it would be justified because they
are close together. The spatial distribution and ages of tsunami deposits were
used in this study for validation of the hydrodynamic model runs. The focus
of tsunami deposit validation for modeling was on two events—the near-field
1700 Cascadia tsunami and the far-field 1964 Alaska tsunami.

Tsunami deposits also are tangible evidence of tsunamis in Seaside that the
public is able to relate to. Locations of known tsunami deposits overlain on
an inundation map, or, for this study, on a map showing the 100- and 500-
year tsunami flooding lines, validate study results for the public, emergency
planners, and managers. Digging a hole and seeing a tsunami deposit makes
believers out of even the most skeptical—a tsunami flooded this location.

This study benefited from extensive research on tsunami deposits in Sea-
side conducted by Curt Peterson and his students in the 1990s (Darienzo
and Peterson, 1995; Darienzo et al., 1994; Fiedorowicz, 1997; Fiedorowicz
and Peterson, 2002; Peterson, 1993). It is possible to generate a tsunami
deposit record for use in a probabilistic tsunami hazard assessment without
previous studies. When the geometry of the site is simple, there is less need for
preexisting tsunami deposit data. In the case of Seaside, which has a complex
geometry (two shore-parallel rivers bounded by high beach ridges), without
preexisting data the tsunami deposit component of this study would require
additional effort and would not have produced as complete a record of past
tsunamis.

23
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4.1 Methods

The methods used in the tsunami deposit component of this study are stan-
dard for the geologic tsunami research community. These methods can be
transported to other sites where FEMA requires a probabilistic tsunami hazard
study. It is essential that scientists performing a tsunami deposit study have
experience identifying tsunami deposits and knowledge of geologic environ-
ments where tsunami deposits are likely to be formed and preserved. Without
such experience and knowledge, the quality of a tsunami deposit study is
compromised and the results of such a study are of limited usefulness.

We used a combination of preexisting sedimentary data and new sedimen-
tary data collected specifically for this study to map out the distribution of past
tsunami inundation in the Seaside area. We examined and re-evaluated logs of
cores, trenches, and cut banks from previous work done in Seaside during 1996
by Brooke Fiedorowicz and Curt Peterson (Fiedorowicz, 1997; Fiedorowicz and
Peterson, 2002). The existing data set, collected at 236 sites in the 1990s, was
supplemented by additional fieldwork to increase the data density, provide data
where existing data was not available or clear, and to extend the boundaries of
the survey farther inland and farther to the south of Seaside. Cores, trenches,
and cutbacks were examined and logged from 76 locations in the Seaside area
during the summer and fall of 2004 (Fig. 6). Overall, data from 312 locations
were included in the survey (Fig. 7).

In addition to sedimentary data, we used a database that contains 66
observations by Seaside, Oregon residents of inundation, runup, and water
levels from the 1964 tsunami in Seaside, recorded by Tom Horning, and
included in the master’s thesis of Brooke Fiedorowicz (1997). Other locations
of possible tsunami sand layers and tsunami mud layers based on these
eyewitness observations were also noted and categorized as locations where
the 1964 tsunami was known to have inundated. We included an additional
five observations of areas with no sedimentary deposits that are presumed to
have not been inundated by the 1964 tsunami.

The ages of the deposits were determined using a combination of radio-
carbon dating, stratigraphic context and, for 1964 tsunami deposits, historical
documentation. Correlations between deposits were based on stratigraphic
context and lateral continuity between deposits. Tsunami deposits stratigraph-
ically below the 1700 event were deposited by earlier tsunamis.

4.2 Results

Deposits from five tsunamis in the past 2000 years were found at 167 sites
located as far as 2 km inland along the 5-km stretch of coast at Seaside.
Deposits were found primarily in marshes fringing the Necanicum River and
Neawanna Creek, which flow parallel to the coast between beach ridges that
are 5 to 10 m high.

Tsunami deposits in the Seaside area usually occur as anomalous sand
layers within mud or peat layers (Fig. 8). The following additional criteria
were established for the Seaside area to determine whether a sand layer had
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(a)

(b)

Figure 6: (a) Bob Peters and Curt Peterson coring at Stanley Lake; (b) Bruce Jaffe digs a trench while Curt Peterson
cores along Neawanna Creek.
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Figure 7: Locations of gouge core and trench sites visited by Tom Horning (1996), Fiedorowicz and Peterson
(1997), and Jaffe et al. (2004).
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(a)

(b)

Figure 8: (a) Deposit from 1964 tsunami in Neawanna Creek trench; (b) Deposit from 1700 tsunami exposed in
Neawanna Creek cutbank.

a tsunami origin: normal grading, presence of organic detritus, particularly as
a detrital cap; a noticeable decrease in the amount of peat from the underlying
material to the overlying material; lateral continuity; presence of rip-up clasts;
presence of sand/mud couplets; and historical documentation. With the
exception of historical documentation, no single criterion is wholly diagnostic.
A combination of stratigraphic context and lateral context, combined with
one or more of the identifying criteria, were used to assign a tsunami origin
to a particular deposit. See Peters et al. (2003) for a discussion of tsunami
identification criteria.

We focused on defining tsunami inundation from tsunami deposits for the
1964 far-field and 1700 near-field tsunamis to develop a dataset for validating
hydrodynamic models.
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4.2.1 1964 tsunami deposits

Tsunami deposits from the 1964 tsunami were identified at 116 sites (Fig. 9;
Appendix D). Tsunami deposits from the 1964 Alaskan tsunami were typically
found within a few tens of centimeters of the surface. In contrast, tsunami
deposits from the 1700 Cascadia tsunami were typically covered by more
than 0.5 m of sediment. The stratigraphic features of the 1964 tsunami
deposits are very different than those of a storm deposit (Morton et al., in
press), allowing discrimination between the two types of deposits. Inundation
during the 1964 tsunami was primarily up channels. Tsunami deposits were
limited to the banks of channels, primarily the Necanicum River, Neawanna
Creek, and Neacoxie Creek. Along Neacoxie Creek, deposits were found as
far upstream as the G Street Bridge in Gearhart (Fig. 4c). Residents observed
tsunami inundation over the bridge and beyond it. There was a log jam at
the bridge and the water backed up behind the bridge. In Seaside, deposits
from the 1964 tsunami are found along Neawanna Creek as far south as 16th
Avenue. Residents observed the tsunami as far south as the 12th Avenue Bridge.
Tsunami deposits from 1964 on the Necanicum River are found as far south as
Avenue Q. Eyewitness observations indicate that the 1964 tsunami inundation
reached the golf course south of Avenue U (Fig. 4c).

Tsunami deposits were found primarily within the inundation line deter-
mined from eye-witness reports (Appendix C, Figs. 4 and 9). The distribution
of 1964 tsunami deposits was a close approximation of the area of inundation
along the Necanicum River determined from historical observations, but sig-
nificantly underestimated the area of inundation along Neawanna Creek.

4.2.2 1700 tsunami deposits

Deposits from the 1700 tsunami were present at 119 sites in the Seaside area
(Fig. 10; Appendix D). The 1700 tsunami deposit is usually found approximately
0.5–1 m below the surface and in many places forms sand sheets that are
laterally continuous for tens to hundreds of meters. The sites available for
investigation were limited to those not developed or otherwise disturbed since
1700. Long stretches of the banks of the Necanicum River and Neawanna Creek
have been covered with fill so that residential or commercial structures could
be built or to create pasture land. Armoring of the banks also made many areas
possibly inundated by the 1700 tsunami inaccessible for coring or trenching.

Deposits from the 1700 tsunami east of Neawanna Creek were found at
Stanley Lake and along Shore Terrace Road as far east as the trailer park.
Fiedorowicz (1997) reconstructed the geography present during the 1700 tsu-
nami by interpreting geologic deposits. The tsunami probably entered Stanley
Lake through the outlet at the north end of the lake. The deposits along Shore
Terrace Road are best explained by the tsunami overtopping the dune ridge that
separates Neawanna Creek from the lowlands to the east. Deposits from the
1700 tsunami were found along the banks of the Necanicum River as far south
as Avenue U and along the banks of Neawanna Creek in the reaches south of
the millponds. In Gearhart, deposits from the 1700 tsunami were also found
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e

Figure 9: Sites containing 1964 tsunami deposits.
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Figure 10: Sites containing 1700 tsunami deposits.
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along the banks of the small creek east of the present Neacoxie Creek, but no
deposits from the 1700 tsunami were found along Neacoxie Creek. Geological
evidence suggests that Neacoxie Creek is younger than 1700 (Fiedorowicz and
Peterson, 2002).

The 1700 tsunami may have overtopped the narrow gravel ridge between
the Necanicum River and Neawanna Creek north of Avenue P. It may also have
overtopped the considerably wider gravel ridge complex at 4th Avenue.

4.2.3 Older tsunami deposits

Deposits from tsunamis older than the 1700 tsunami are also found in the
Seaside area (Fig. 11). Deposits from tsunamis older than the 1700 event were
found at 36 sites. Of particular interest are deposits dated at 1230 ± 30 years B.P.
and 2770 years B.P. that are located south of the bend in the Necanicum River
south of Seaside. These radiocarbon dates are based on spruce cones found
within the deposits. This area may have been a paleo-outlet for the Necanicum
River. Deposits from events older than the 1700 event are also found along the
banks of the southern portions of Neawanna Creek. In the vicinity of Avenue
P, north of the Avenue S Bridge, a deposit from a tsunami that occurred prior
to 1700 can be seen at low tide along the cut banks of Neawanna Creek. This
deposit lies stratigraphically below the 1700 deposit. Deposits from tsunamis
older than 1700 are also found in cores from the Stanley Lake region.

4.2.4 Paleo-tidal inlet

The distribution of the 1700 tsunami deposits and morphological features
prompted us to hypothesize that the inlet was located further south than its
present location when the 1700 tsunami impacted Seaside. A preliminary
investigation using Ground Penetrating Radar (GPR) found a sediment-filled
valley between the Necanicum River and the Pacific Ocean that could have
been formed by an inlet approximately 1 to 1.5 km south of its present location.

North-south GPR lines collected along Downing Street and the full length
of Front St. (north-south parallel to Necanicum River) detected the banks
and the bottom of the paleo-inlet. Curt Peterson and David Percy (Portland
State University) ran additional north-south GPR lines to confirm location
of the paleo-inlet and west-east lines to check for channel fill versus beach
progradation strata. At the southern portion of the sediment fill, north-dipping
reflectors indicate a northward migration of the paleo-inlet. Change from
northward-dipping reflectors to flat or landward-dipping reflectors occur at
approximately 50 m south of A Street, marking the southern extent of the
paleo-inlet. Paleo-tidal inlet depth was a maximum of 5 m below mean sea
level. The inlet fill is approximately 1.3 km wide; the size of the paleo-inlet
was less because the fill is created by migration or narrowing of the inlet. For
comparison, the widest portion of the present inlet is approximately 0.7 km
wide. The north side of the paleo-tidal inlet begins just south of 15th Street in
Seaside (on Franklin S-N extension of Downing Street about 3 blocks south of
the waste water treatment plant).
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Figure 11: Locations of older tsunami deposits.
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Reflectors imaged by GPR constrain the history of the inlet. At 1st Street,
a progradational beach facies (seaward dipping reflectors) starts 50 m east of
the present landward extent of the beach (the boardwalk), indicating that the
closing off of the inlet and building out of the beach there is relatively recent.
Moderately-deep reflectors dipped south (toward the paleo-inlet channel) at
the northern end of the inlet fill, confirming that the channel “jumped” to its
present position (north of the waste-water treatment plant) rather than by a
gradual migration north, which would have left north dipping reflectors. The
jump may have occurred immediately after the catastrophic flooding by the
1700 AD tsunami event.

4.3 Discussion of Tsunami Deposit Results

The tsunami deposit record for Seaside establishes that near-field tsunamis
generated by great Cascadia Subduction Zone earthquakes are significantly
larger than the 1964 far-field Alaska tsunami. Deposits from the 1700 tsu-
nami are found up to 2 km inland near the base of the hills on the east
side of town (Fig. 10). The spatial distribution and characteristics of 1700
tsunami deposits indicates that the 1700 tsunami overtopped the ridge east of
Neawanna Creek—the 1700 tsunami was large even this great distance inland.
Geological and archeological evidence indicates that this and other high gravel
ridges have been present in Seaside for many centuries (Fiedorowicz, 1997).
In contrast to the extensive spatial distribution of 1700 tsunami deposits,
deposits from the 1964 tsunami are confined to the margins of Neawanna
Creek and the Necanicum River—indicating a smaller tsunami that was not
able to overtop the high gravel ridges at Seaside. Geological and archeological
evidence indicates that this and other high gravel ridges have been present in
Seaside for many centuries (Fiedorowicz, 1997). In contrast to the extensive
spatial distribution of 1700 tsunami deposits, deposits from the 1964 tsunami
are confined to the margins of Neawanna Creek and the Necanicum River—
indicating a smaller tsunami that was not able to overtop the high gravel ridges
at Seaside. The presence of tsunami deposits older than 1700 far inland is
evidence that the 1700 tsunami is not an outlier in terms of size. The Seaside
area has been inundated by large tsunamis many times in the past.

The inundation zones derived from the tsunami deposit data in this report
are minimums because of limitations inherent in deriving inundation from
tsunami deposits and limitations in the scope of this study. Where there is
a suitable environment for deposition and preservation of tsunami deposits,
data from modern tsunamis (Gelfenbaum and Jaffe, 2003; Jaffe et al., 2003)
indicate that the inland extent of tsunami deposits and of flooding are usually
within 50 m—using tsunami deposits as proxy for limit of inundation does not
introduce significant error. However, inundation extent is underestimated if a
deposit never formed because there was not a source of sediment. A larger
source of error in mapping inundation using only tsunami deposits, especially
for tsunamis that occurred hundreds or thousands of years ago, is erosion
of tsunami deposits. Preservation potential must be carefully evaluated in a
probabilistic analysis of inundation and used as a filter for evaluating tsunami
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deposit data. Although a large number of sites (312) have been examined
in Seaside for tsunami deposits, it is probable that further investigations will
increase the estimate of the area of inundation, especially for older tsunamis.

Changes in topography or bathymetry need to be accounted for in using
tsunami deposits to estimate the magnitude of past tsunamis. For Seaside,
inlet location is a primary control on tsunami inundation. Deposits from the
1964 tsunami extended farthest inland at the inlet, indicating that it served as a
conduit for the tsunami. Preliminary investigations using Ground Penetrating
Radar (GPR) found a sediment-filled valley that could have been formed by
an inlet to the south of its present location. If this inlet was open when the
1700 tsunami impacted Seaside, tsunami deposits could be expected to extend
farther directly inland of the inlet. Additional studies are needed to determine
the time when it was open to the sea.

Shoreline stability must also be taken into account when using tsunami
deposits in a probabilistic tsunami hazard study. Change in shoreline position
was observed but not accounted for in the Pilot Study and does not introduce
large errors into the analysis of the 1700 and 1964 tsunamis, but could for older
tsunamis. Estimates of inundation from tsunami deposits at a site where there
is an eroding (prograding) shoreline underestimates (overestimates) tsunami
inundation. For tsunami deposits to be most useful for validation of hydrody-
namic models, paleoshorelines, paleotopography, and paleobathymetry should
be established.

Because of its geologic setting, complex topography, and inlet migration
history, Seaside is not a good location to develop tsunami recurrence intervals.
Sites with simple topography and a coastal geologic setting that favors deposi-
tion and preservation of tsunami deposits are best used for developing tsunami
recurrence intervals. Tsunami recurrence intervals have been established for
Cannon Beach (Peterson et al., 2004), which is 13 km south of Seaside. If a site-
specific tsunami recurrence interval based on deposits were required for this
study, it could have been developed using a combination of the Cannon Beach
and Seaside tsunami deposit records. Use of tsunami deposit records from
nearby locations is acceptable for developing tsunami recurrence intervals in
a probabilistic tsunami hazard study.

Even with the complexities encountered in the study of tsunami deposits
at Seaside, we were able to develop a robust tsunami record using standard
geologic tsunami research methods. This record established minimum inunda-
tion zones from past tsunamis and was the only data available for validation of
near-field tsunamis generated during Cascadia Subduction Zone earthquakes.
An additional benefit of a tsunami deposit component to this study is that
tsunami deposits were useful as an educational tool for the general public,
emergency planners, and managers.



5. Probabilistic Method

5.1 PTHA Overview

5.1.1 Previous PTHA studies

P
robabilistic tsunami hazard analysis (PTHA) is derived from and

closely allied to probabilistic seismic hazard analysis (PSHA); the latter,
developed originally by Cornell (1968) and subsequently described in

several reports (including Senior Seismic Hazard Analysis Committee (SSHAC),
1997). Lin and Tung (1982), Rikitake (1988), and Downes and Stirling (2001)
modified PSHA to develop a PTHA that calculates wave heights using a simple
source specification. In a related effort, a recent Puerto Rico Sea Grant report
(Natural Disaster Research, 2001) used both traditional cumulative runup-
frequency statistics and rank-order statistics (Sornette et al., 1996) derived from
hydrodynamic modeling for calculating wave heights at Aguadilla, Puerto Rico.
Included in this Sea Grant report were 1% annual probabilities of exceedance
(i.e., according to the FIRM specification) as well as a specification of the 10%
probability of exceedance in 50 years.

Geist and Parsons (2005) recently expanded these efforts by comparing
empirical analysis of tsunami probabilities with computational PTHA. For
a site such as Seaside that lacks an extensive historic record of tsunamis,
computational PTHA provides a valuable tool for assessing tsunami risk. For
the Cascadia region, Geist and Parsons (2005) compare end-member models
of earthquake magnitude distributions: characteristic and Gutenberg-Richter.
The latter involves a Monte Carlo simulation where hypocentral location and
slip distribution is randomized in the process of building a tsunami hazard
curve (tsunami amplitude vs. probability). They also compare an empirical
estimate of far-field probabilities with the computational PTHA estimates for
local tsunamis. For this study, tsunamis from a characteristic M ∼ 9 Cascadia
earthquake are part of the PTHA for the Seaside pilot study.

The PTHA methods described in these previous studies are expanded for
the Seaside tsunami pilot study to develop, for the first time, a probabilistic tsu-
nami inundation map. In this case, rather than calculating a hazard curve for a
point on the coastline, a high-resolution grid is developed for the region around
Seaside (see Section 3, “Development of GIS Database”) and a hazard curve is
computed for each grid cell. For each grid cell hazard curve, the exceedance
wave heights for the 1% and 0.2% annual probabilities are interpolated and the
results mapped using GIS software.

35
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5.1.2 Application of PTHA to FIRM specifications

The central point in developing the PTHA maps is determining the joint
recurrence rate for different sources of tsunamis. This problem has been
previously addressed in the development of FIRMs near the mouth of a river
where there is combined riverine and coastal flooding as described in a Tetra
Tech Inc. report (1981) to FEMA. If riverine flooding at a given elevation (η)
occurs at an average recurrence rate of 1/m and coastal flooding at η occurs
at an average recurrence rate of 1/n, then the joint recurrence rate is simply
1
q = 1

m + 1
n . We can think of this in terms of probabilities such that

Priver(η,T ) = 1−exp

(
− 1

m
T

)
(5.1)

and

Pcoastal(η,T ) = 1−exp

(
− 1

n
T

)
(5.2)

where P is the Poisson, time-independent probability of exceedance and T is
the exposure time.

The combined probability from both sources of flooding is given by

P(η,T ) = 1− (1−Priver) (1−Pcoastal) = 1−exp

[
−

(
1

m
+ 1

n

)
T

]
(5.3)

Thus, the apparent recurrence rate for the combined source is 1
m + 1

n . A
similar approach to determine the probability of ground shaking from multiple
sources is described by Ward (1994).

We can adopt the same methodology (Tetra Tech Inc., 1981) to determine
the joint recurrence rate for multiple tsunami sources. Suppose that in a
given source region (with position vector r0), we can determine the rate at
which a tsunamigenic source with source parameter set (ψs ) occurs: ṅ(r0,ψs ).
Typically, in PTHA the objective is to determine the total rate Ṅ (r,ηcrit) at which
wave height exceeds a risk tolerance value (ηcrit) at a specific coastal site (r). In
general, this involves a double integral over the parameter space for a given
source and over all source locations (for example, Anderson and Brune, 1999;
Ward, 2001):

Ṅ
(
r,ηcrit

)=
∫
A

∫

ψcrit
s (r,r0)

ṅ
(
r0,ψs

)
dψs d A (r0) (5.4)

For our probabilistic inundation map at Seaside, the source locations will
include far-field tsunamis from major subduction zone segments around the
Pacific and local sources near Seaside. Focusing first on the far-field sources,
for a given subduction zone there will be a range of source locations (for
example, a M = 8.0 earthquake could happen anywhere along the subduction
zone), tsunamigenic magnitudes, and recurrence intervals. For a range of
tsunamigenic earthquake magnitudes (Mlow < M < Mmax), each magnitude
will be associated with an average recurrence rate according to the Gutenberg-
Richter relationship log(ṅ(M)) = a−bM , where a and b are empirical constants.
Mlow is the lower cutoff magnitude that would produce a significant tsunami at
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Seaside. Mmax is the maximum earthquake magnitude that can occur along a
particular subduction zone or subduction zone segment.

Ideally, we would like to produce many inundation maps for a range of
earthquake magnitudes Mlow − Mmax for each subduction zone. We note,
however, that if we just estimate the Mmax-recurrence pair for each subduc-
tion zone, this will provide adequate constraint for high recurrence rate-low
wave height tsunamis (that is, P > 0.01). Additional inundation runs for
smaller magnitude earthquakes will not significantly constrain the P = 0.01,
P = 0.002 exceedance wave heights. The possible exceptions are smaller
earthquakes M < Mmax in the Prince William Sound segment of the Aleutian-
Alaska Subduction Zone that are optimally oriented in terms of wave focusing
at Seaside. It is possible that these earthquakes can produce larger tsunamis
than Mmax earthquakes along other subduction zones. Mmax-recurrence pairs
are specified for adjacent regions along all subduction zones considered. For
each earthquake source specification, an inundation map is produced. The
production of inundation maps for these far-field sources is facilitated by the
fact that NOAA/PMEL has pre-computed the open-ocean tsunami wavefield for
these sources as part of the FACTS database. Uncertainty in recurrence rates
and Mmax is discussed in the Section 8, “Results.”

Once a set of far-field and local inundation maps are prepared, Fig. 12
illustrates how we can determine the 1% annual probability inundation line,
using GIS software. To create a map, a hazard curve is calculated for each (x,y)
point. As shown below, the tsunami hazard curve plots cumulative frequency of
exceedance (ordinate) as a function of exceedance wave height (abscissa). The
exceedance wave height incorporates the combined tidal and tsunami wave
heights as described in Appendix E. Aggregating the results from all of the
inundation runs, at each (x,y) point there would be discrete values plotted in
wave height/recurrence rate space. This is shown graphically in Fig. 12, where
a hazard curve is derived from all of the inundation runs at each (x,y) point. A
regression analysis is run to fit a straight or other parametric line to determine
each of these hazard curves. The wave height corresponding to the 0.01 yr−1

recurrence rate is determined from the hazard curve at each (x, y) point and
contoured over x-y space to produce a probabilistic exceedance wave-height
map. A similar procedure is used to also produce the 0.002 yr−1 exceedance
wave-height map.

PTHA can also accommodate a comprehensive treatment of uncertainties
in much the same way as PSHA (Senior Seismic Hazard Analysis Committee
(SSHAC), 1997). For convenience, two types of uncertainty are often con-
sidered: aleatory and epistemic. In simple terms, aleatory uncertainty is
often associated with the natural complexity of the physical process itself,
whereas epistemic uncertainty is associated with incomplete knowledge about
the physical process that can be lessened through the collection of additional
data. Aleatory uncertainty is sometimes called external, objective, random, or
stochastic uncertainty, whereas epistemic uncertainty is sometimes called in-
ternal, subjective, or functional uncertainty (National Research Council (NRC),
2000). A comprehensive treatment of uncertainty requires scientific guidance
from a broad range of scientific experts. In the past, this has been performed
through a Technical Integrator or Technical Integrator/Facilitator (Senior Seis-
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mic Hazard Analysis Committee (SSHAC), 1997) process that determines the
“legitimate range of technically supportable interpretations” and “the relative
importance or credibility that should be given to the differing hypotheses
across that range.”

For this preliminary study, however, we focus on including those uncer-
tainties that are readily quantifiable. These are primarily aleatory uncertainty
of tsunami arrival time relative to the tidal stage (Appendix E) and the slip
distribution of the earthquake. The only epistemic uncertainty we consider
is the two earthquake models for the Aleutian-Alaska Subduction Zone set
forth by Wesson et al. (1999). We compare the probabilistic results using
different rupture models and estimates of recurrence rates for a local Cascadia
earthquake, but do not explicitly include this uncertainty in the probabilistic
calculations. Other possible sources of epistemic uncertainty are indicated
in Section 9, “Discussion,” of this report, but not included in this study. To
include these sources of uncertainty would require the assignment of relative
weights in a logic-tree approach and hence, the consensus among a wide range
of scientific experts. It is recommended that the level of uncertainty analysis
be related to the specific objectives of the probabilistic study as described in
Section 3 of the SSHAC (1997) report entitled “Structuring and Implementing a
PSHA.”

5.2 Source Specification

5.2.1 Source magnitude and geometry

5.2.1.1 Typical interplate thrust earthquakes

Earthquake source parameters used in this study include primarily the largest
earthquakes (that is, M = Mmax) along major north Pacific Subduction Zones
and the southern Chile Subduction Zone, site of the 1960 M = 9.5 earthquake
and trans-oceanic tsunami. The rationale for choosing the largest earthquakes
is that, even though the recurrence rate for each event is low, when combined
these earthquakes (along with local Cascadia earthquakes) should be sufficient
to specify the tsunami at Seaside from any source with an average return
time of 100 years and 500 years. Inclusion of smaller magnitude and more
frequent earthquakes will likely not add significantly more information with
which to constrain the 100-year exceedance wave heights. The exception is
inclusion of smaller earthquakes in the Prince William Sound segment of the
Aleutian-Alaska Subduction Zone, that can result in larger runup values than
M = Mmax earthquakes in other subduction zones. In using this set of source
parameters, it will appear that we are adopting a characteristic earthquake
distribution model (Appendix F). This may be the case, for example, in the 1964
Alaska source region. In most cases, however, we are choosing an earthquake
magnitude that is at the extreme tail of a continuous distribution of earthquake
magnitudes (that is, that of a modified Gutenberg-Richter distribution; see
Appendix F).
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The primary source parameters that are provided are magnitude, width,
length, and slip. Because we are relying on pre-computed solutions from
NOAA/PMEL’s FACTS database for the far-field sources, it is assumed that
other source parameters such as depth, dip, strike, and slip direction have
already been determined from the best available sources. Except for local
events, it will be assumed that variations in slip distribution patterns from
event to event will have minimal effect on far-field tsunami amplitudes (see
Titov et al., 1999). Wherever possible, published references will be provided for
estimates of these source parameters. It should be noted, however, that for the
objectives of the probabilistic study, these source parameters will not be based
strictly on historic events but on events that are thought to be representative
of the M = Mmax earthquake for each subduction zone. Average earthquake
return times may be cited for different cases, though it is important to note
that these are estimates subject to epistemic uncertainty. The Alaska-Aleutian,
Kamchatka, Kuril, and southern Chile Subduction Zones are discussed in the
sections below.

Table 6 below summarizes the earthquake source parameters and recur-
rence rates used in this study. Horizontal dimensions have been adjusted
according to the pre-set parameters in the FACTS database constrained by the
seismic moment relationship. Details of each source region are given in the
next section.

5.2.2 Far-field earthquakes

5.2.2.1 Alaska-Aleutian Subduction Zone

Because the probabilistic tsunami hazard assessment for the Tsunami Pilot
Study closely follows similar efforts used in the National Seismic Hazard Map-
ping Program, it is judicious to take advantage of previous work in determining
likely source parameters. The seismic hazard maps for Alaska are described by
Wesson et al. (1999). They consider two hazard models (I and II) for the Alaska-
Aleutian megathrust: Model I consists of a western and an eastern seismic zone
in which earthquakes as large as M = 9.2 can occur. The delineation between
the zones occurs approximately at the site of the 1946 Aleutian earthquake.
Model II consists of a western Aleutian seismic zone (Zone A) as in Model I,
but a smaller eastern Alaska seismic zone (Zone C) with a western boundary
coincident with the rupture boundary for the 1964 earthquake.

Because the intervening zone (Zone B) that includes the Shumagin seismic
gap (Nishenko, 1991) and the source area for the 1938 earthquake can only
accommodate earthquakes up to magnitude 8.5, there is a saddle (low region)
in the expected seismic hazard near Zone B. For the purposes of far-field
tsunamis, Model I is probably more representative of the long-term zonation
for large earthquakes. Near the source region for the 1964 earthquake, pa-
leoseismic studies indicate that return times of great earthquakes is roughly
600–800 years (Combellick, 1992; Gilpin and Carver, 1992; Wesson et al., 1999).
Average return times for M = 9.2 earthquakes along the Aleutian part of the
subduction zone are probably similar, but more work is needed to constrain
these times. The tsunami models for the largest earthquakes would closely
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Table 6: Source specification for earthquakes used in this study.

Source Length Width Slip Mean Inter-event
Number Location M (km) (km) (m) Time (yr) FACTS Specification

1 Alaska-Aleutian 9.2 1000 100 17.7 1,313 A0–A9 & B0–B9 (Tsunami
model 1—western zone)

2 Alaska-Aleutian 9.2 1100 100 18.1 750 A9–A19 & B9–B19
(Tsunami model 1—mid
source)

3 Alaska-Aleutian 9.2 600 100 — 750 Distributed slip:
15 m � (A20+B20) +
20 m � (A21+B21) +
25 m � (A22+B22) +
30 m � (A23+B23+A24+B24)
(Tsunami model
1—eastern zone)

4 Alaska-Aleutian 9.2 1200 100 16.3 1,133 A0–A11 & B0–B11
(Tsunami model
2—western zone)

5 Alaska-Aleutian 9.2 1200 100 14.8 750 A12–A23 & B12–B23
(Tsunami model
2—western zone)

6 Alaska-Aleutian 8.2 300 100 2.1 875 A17–A19 & B17–B19
7 Alaska-Aleutian 8.2 300 100 2.1 661 A20–A22 & B20–B22
8 Alaska-Aleutian 8.2 300 100 2.1 661 A23–A25 & B23–B25
9 Kamchatka 8.8 500 100 9.8 100 A1–A5 & B1–B5

10 Kamchatka 8.8 500 100 9.8 100 A6–A10 & B6–B10
11 Kuril 8.5 300 100 5.8 500 A11–A13 & B11–B13
12 Kuril 8.5 300 100 5.8 500 A14–A16 & B14–B16
13 Kuril 8.5 300 100 5.8 500 A17–A19 & B17–B19
14 Southern Chile 9.5 1000 100 40.0 300 A35–A45 & B35–B45

15–26 Cascadia 9.1 Var. Var. Var. 520 High-resolution fault
model (Flück et al., 1997)

follow the seismic Model I above. The first tsunami model consists of three
M = 9.2 earthquakes, with adjacent rupture areas as shown in Fig. 13. One
of the M = 9.2 ruptures would correspond in location to the 1964 rupture,
whereas the other two rupture areas would not correspond to any historic
event. The middle event also spans what some may believe is a tectonic
segment boundary at the tip of the Alaska Peninsula. It is important that
the rupture areas for the three events do not overlap—this would violate an
important seismic moment balance along the subduction zone.

For the purpose of accounting for radiation pattern changes with along-
strike shifts of the rupture area (see Fig. 2, gage 3 in Titov et al., 1999), Tsunami
Model 2 is introduced with two M = 9.2 earthquakes (Fig. 14). The western
rupture area approximately corresponds to the 1957 rupture area, whereas the
eastern rupture spans the 1946, 1938, and the western part of the 1964 rupture
area. Tsunami Models 1 and 2 are weighted (50% each) and combined to
form a composite model. The result would be combined as separate, weighted
branches of a logic tree. For each of Models 1 and 2, we are operating under the
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Figure 13: Model 1 for location of M = 9.2 earthquakes along the Aleutian-Alaska Subduction Zone. Red lines:
faults with predominantly strike-slip motion.
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Figure 15: Model 3 for location of M = 8.2 earthquakes along the Aleutian-Alaska Subduction Zone in the Prince
William Sound region. Red lines: faults with predominantly strike-slip motion.

hypothesis that large earthquakes (and even small earthquakes; Tanioka and
González, 1998) will rupture across segment boundaries defined by tectonic
and geologic structures.

Finally, to accommodate the possibility that a smaller magnitude earth-
quake (M = 8.2) in Prince William Sound may cause larger inundation at Sea-
side than other earthquakes considered in this initial set of source parameters,
a third tsunami model (Fig. 15) is included that consists of three adjacent
M = 8.2 ruptures, similar to the 1938 rupture. The recurrence rates for the
M = 8.2 ruptures are again derived from Wesson et al. (1999).

For the Alaska-Aleutian Subduction Zone, eight inundation runs have been
completed: three for Model 1, two for Model 2, and three for Model 3.

5.2.2.2 Kamchatka Subduction Zone

Like the Alaska-Aleutian Subduction Zone, large earthquakes have occurred
along the Kamchatka Subduction Zone (KSZ) with noticeable frequency.
Pinegina et al. (2003) recently concluded that Kamchatka has been impacted
by large tsunamis at a rate of 1 every 100 years for the past 3,000 years, though
not all are from local sources (∼10–20% far field). Of note, the Mw = 8.8 1952
(Johnson and Satake, 1999) and the Mt = 8.8 1923 (Abe, 1979) earthquakes
are probably representative of the largest earthquakes of this subduction zone.
A tsunami model for Kamchatka can be constructed as done for the Alaska
Tsunami Model 1 above, where two adjacent M = 8.8 earthquakes fill the entire
subduction zone.
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5.2.2.3 Kuril Subduction Zone

Continuing south along the Kuril Subduction Zone, the maximum magnitude
earthquake is likely to be slightly smaller than for the Kamchatka Subduction
Zone, primarily because of a change in tectonic regime for the overriding plate.
From the analysis of the 13 October 1963 Kuril Islands earthquake (there was
also a tsunami earthquake in the Kuril Islands on 20 October 1963) which Ward
(1982) and Ruff and Kanamori (1983) placed at Mw = 8.5 and recent evidence
of multi-segment rupture in the southern part of the Kuril Subduction Zone
by Nanayama et al. (2003), it is reasonable to characterize this subduction
zone with a series of M = 8.5 earthquakes. Nanayama et al. (2003) indicates
that the average return time for these earthquakes is approximately 500 years.
Approximately three M = 8.5 earthquakes would fill the Kuril Subduction Zone
up to the southern extent of the Kamchatka Subduction Zone.

5.2.2.4 Southern Chile Subduction Zone

Earthquakes along the Chilean Subduction Zone are also considered, primarily
because of the size of the M = 9.5–9.6 1960 earthquake (Cifuentes, 1989;
Cifuentes and Silver, 1989) and observations of the associated tsunami along
the west coast of North America. The amount of slip that occurred during
the 1960 tsunami is difficult to ascertain because of the complexity of the
event. The geodetic models of both Linde and Silver (1989) and Barrientos and
Ward (1990) result in average amounts of slip that correspond to significantly
lower seismic moment estimates than determined from seismic waveform
data, though still at a M ∼ 9.5 level. Average slip estimates vary from 17 m to
20 m, though the variable slip models indicate significantly higher amounts of
slip, as much as 40–50 m, are predicted for the offshore extent of rupture and
even small earthquakes (Barrientos and Ward, 1990; Linde and Silver, 1989).
For comparison, Liu et al. (1995) use 24 m of slip in their far-field tsunami
model.

Chile has been struck by giant earthquakes and tsunamis in the past,
including the 1570s, 1730s, 1837, and the M ∼ 9.5 1868 earthquake in northern
Chile. These dates are not representative of return times for M ∼ 9.5 earth-
quakes from purely a moment-balance perspective (Barrientos and Ward, 1990)
and from recent paleoseismologic analysis by Salgado et al. (2003). The latter
study suggests an average return time for great earthquakes in Chile of ∼250
years. Even so, if the average slip per event is ∼20 m, this results in a seismic
slip rate of 8 cm/yr—close to the relative plate convergence rate of 8.4 cm/yr.
Although the southern Chile Subduction Zone is considered the most highly
coupled subduction zone in the world in terms of seismic efficiency (Scholz,
1990), the repeat time should not be much smaller, nor the average slip per
event be much greater, than these estimates to satisfy the moment balance.

5.2.3 Cascadia Subduction Zone earthquakes

This part of the pilot study is of particular importance because M ∼ 9 earth-
quakes along the Cascadia Subduction Zone will likely produce the worst-case
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tsunami inundation and be the defining event for the 500-year tsunami flood
standard. We first discuss how the coseismic displacement field can be calcu-
lated for variable slip (Geist, 2002), building on previous inundation mapping
efforts (Priest et al., 1997). Not only does the coseismic displacement field
provide the initial conditions for tsunami propagation, but it will also affect
inundation estimates because of coseismic subsidence of coastal regions. We
will then discuss different approaches to incorporating uncertainties caused by
incomplete knowledge of rupture geometry and by different slip distribution
patterns into the probabilistic calculations. Discussion of recurrence rates and
time-dependent probability calculations is presented by Petersen et al. (2002).

5.2.3.1 Specification of Cascadia earthquake magnitudes

There is mounting evidence that the last major Cascadia Subduction Zone
earthquake in the year 1700 had a magnitude approximately equal to M ∼ 9
(Satake et al., 2003). Available paleoseismic data indicate that other major
earthquakes have struck the Cascadia margin, though it is unclear whether
these earthquakes were “characteristic” M = 9 events or whether they also
included smaller magnitude earthquakes. The method that the National Seis-
mic Hazard Mapping program employed to characterize earthquakes along the
interplate thrust was to use two equally weighted scenarios: (1) a M = 9.0
characteristic earthquake with an average repeat time of 500 years and (2) a
series of M = 8.3 earthquakes that fill the seismogenic region of the interplate
thrust every 500 years, resulting in a repeat time of 110 years for a M = 8.3
earthquake to occur anywhere in the seismic zone (Frankel et al., 1996; Frankel
et al., 2002; Petersen et al., 2002). These two scenarios represent epistemic
uncertainty that is included in the probabilistic calculations for the seismic
hazard maps.

One could now argue, however, that this either/or option has been super-
seded with recent analysis of the Japan tsunami records that indicate the 1700
event had a magnitude of M = 8.7–9.2 and ruptured approximately 1100 km
(Satake et al., 2003). That is, the epistemic uncertainty regarding magnitude
posed in the National Seismic Hazard maps has essentially been resolved with
the collection of new data (that is, tsunami records in Japan). This does not
exclude the possibility of M < 9 earthquakes occurring along the interplate
thrust. Instead, the epistemic uncertainty may now be whether the magnitude
distribution is characteristic or a Gutenberg-Richter (G-R) distribution (Ap-
pendix F). Toward this end, Geist and Parsons (2005) consider two end-member
cases of a characteristic M = 9 earthquake and a modified G-R distribution
of earthquakes for demonstrating methods to calculate tsunami probabilities.
Because of a lack of information to define a G-R distribution for the Cascadia
Subduction Zone (see Discussion), we focus primarily on M = 9 events as
specified by Satake et al. (2003) and Leonard et al. (2004), though this is
certainly a topic open for future research and inclusion in future PTHA studies.



46 Tsunami Pilot Study Working Group—Seaside, Oregon Tsunami Pilot Study

5.2.3.2 Calculation of coseismic displacement field

To calculate the coseismic displacement field, we can take advantage of previ-
ous work performed by Priest et al. (1997) in developing deterministic tsunami
inundation maps. The source discretization currently implemented in FACTS
may not be fine enough to accommodate slip pattern variations. Optimally, it
is best to modify the fault grid developed by Flück et al. (1997) and used by
Priest et al. (1997). This grid includes 105 quadrilateral elements with varying
dip and strike.

The stochastic source model is modified from that of Herrero and Bernard
(1994) as described by Geist (2002). In basic terms, the model computes a
stochastic slip distribution that conforms to a specific amplitude spectrum
in the wavenumber domain that is constrained by earthquake physics and
observations. Randomizing the phase spectrum and transforming to the spatial
domain yields a wide variety of slip distribution patterns. Scaling constants
are adjusted so that the average slip for all slip distributions produced by the
model equal the specified seismic moment or independent slip estimates from
far-field tsunamis and/or coastal subsidence. The slip distribution then can
be mapped to the fault grid without too much distortion of the wavenumber
spectrum. It is important to recognize that the stochastic source is specifically
designed to estimate the aleatory uncertainty related to slip for a given seismic
moment. Any single slip distribution has a low probability of occurring and
should not be considered as a characteristic slip distribution (i.e., one which
represents the slip distribution for each earthquake, with little uncertainty) (cf.,
Schwartz, 1999). Such a model, not considered here, is tightly constrained by
the overall convergence rate and time since the last event.

An important consideration is how to deal with slip in the transition zone
(Flück et al., 1997) and uncertainty in the rupture width. In past coseismic
displacement studies, slip is assumed to taper in the transition zone from full
slip adjacent to the locked zone to zero at the downdip edge of the transition
zone (Flück et al., 1997; Leonard et al., 2004). In Satake et al. (2003), three
long-rupture models are considered for the 1700 C.E. earthquake that are
compatible with both the tsunami records and coastal subsidence estimates:
a “Long-Narrow” model with uniform slip in the locked zone and slip tapered
to zero half-way down the transition zone; a “Long-Splayed” model like the
Long-Narrow model, but with a seaward-vergent splay fault at the updip edge
of rupture; and a “Long-Wide” model with uniform slip throughout both the
locked and transition zones.

Because the Satake et al. (2003) study could not resolve between the Long-
Narrow and Long-Wide rupture models at a reasonable level of confidence,
there is still uncertainty related to the rupture width. The National Seismic
Hazard Maps handle this uncertainty by considering five different rupture
widths that extend through the transition zone (Petersen et al., 2002). We make
the case that uncertainty related to the effective width of the rupture zone is
in part aleatory uncertainty associated with slip distribution patterns. The slip
distributions used for the local tsunami models are based on the Long-Wide
rupture geometry. Using this geometry, regions where slip is concentrated up-
dip, for example, will have a narrow effective rupture width. Even so, there
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is still a level of epistemic uncertainty related to the region where slip can
occur for a Cascadia Subduction Zone earthquake. If we limit variable slip
to a narrow zone consistent with the Long-Narrow rupture geometry, mean
tsunami amplitudes are larger (Geist, 2005). For this pilot study, we did not
consider this latter case.

The uncertainty in rupture width is also related to how well the coastal
subsidence predicted using the slip distributions for the local tsunami models
compare to the observations. The event for which there are the most abundant
paleoseismic observations is the 1700 C.E. earthquake (Leonard et al., 2004).
Recognizing that the stochastic slip distributions represent a range of possible
rupture modes (i.e., they are not representative of one particular event) and
that there is significant uncertainty associated with the paleoseismic subsi-
dence measurements themselves, most of the slip distributions tend to over-
predict subsidence in comparison to the estimates from the 1700 C.E. earth-
quake (Leonard et al., 2004). There are, however, individual slip distributions
that provide an adequate comparison to the observed subsidence observations.
Moreover, reductions in rupture width as little as 12.5% (still greater than the
Long-Narrow geometry) greatly reduce the subsidence predictions. Thus, for
the Cascadia geometry, coastal subsidence is more sensitive to uncertainty in
rupture width than average slip. Tsunami generation, on the other hand, is
more sensitive to average slip and slip distribution.

Finally, we estimate how many model runs it may take to capture that
natural variability in runup heights caused by variations in slip distribution
patterns. To do this, we track variation in peak nearshore tsunami amplitude
(PNTA) at the 100 m isobath, which can be quickly computed using linear
propagation models. In Fig. 16, both the standard deviation of PNTA (blue)
offshore Seaside and the difference between maximum and minimum PNTA
values (magenta) are shown as a function of the number of model runs. As
is typical with this type of computational effort, representational gains in
modeling the physical system die off exponentially with the number of model
runs. In this case, a minimum of about 12 model runs would be needed to
capture the natural variability in PNTA.

5.2.3.3 Specification of earthquake recurrence rates

In the Cascadia region, numerous paleoseismic investigations have been con-
ducted to determine the recurrence record of great earthquakes (for example,
Atwater and Hemphill-Haley, 1997; Atwater et al., 2004; Kelsey et al., 2002; Wit-
ter et al., 2003). In this section, we show how empirical parameters that define
the regional probability distributions can be determined, taking into account
uncertainty in age-dating methods and the open time intervals before the first
and after the last earthquake dated in the geologic record (Ogata, 1999). We
also show how the method for determining empirical distribution parameters
can be applied directly to establishing tsunami probability distributions.

The age range of geologic horizons representing great earthquakes is a
result of dating samples from multiple sites, each with an associated uncer-
tainty related to the age dating technique used. These age ranges, as well
as open intervals before the first and after the last geologic horizon and a
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Figure 16: Level of variability in peak nearshore tsunami amplitudes (PNTA) offshore Seaside as a function of the
number of stochastic slip distributions used. Pink: difference in maximum and minimum values of PNTA. Blue:
standard deviation of PNTA values.
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identified and dated by Atwater et al. (2004).
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limited sampling of earthquake recurrence history, introduce uncertainty in
determining the mean inter-event time and aperiodicity. To determine the
range of distributions that are consistent with available paleoseismic data, a
Monte Carlo simulation is performed in which a random sample of earthquake
times is drawn from a specified probability distribution with varying mean
inter-event times (μ) and aperiodicities (α) (Parsons, 2004, submitted). Either
mean values of μ and α for all random samples that fit the observations can be
used, or a range of values can be carried through the probability calculations
enabling an estimate of parameter sensitivity.

Results using paleoseismic data from southwest Washington (Atwater et al.,
2004) are shown in Fig. 17. The event table shows the age ranges (calibrated
years B.P.) for the identified horizons and the plots show the successful distri-
butions defined in μ-α parameter space that produce hits in the age ranges for
the events. The histogram shows the 30-year conditional probability resulting
for all successful hits, using the Brownian Passage Time probability distribution
(Matthews et al., 2002). The probability corresponding to the mean of the
successful hits is shown by the white star (μ = 566 years, α = 0.55).





6. Propagation and Inundation
Modeling

D
eveloping quantitative estimates for site-specific tsunami hazard as-

sessments requires substantial modeling efforts to simulate potential
tsunami impacts. For most locations, the use of historical data alone

is not sufficient to derive long- and short-term hazard estimates. Such studies
demand additional model data to fill in the gaps in the historical records.
Even if a wealth of historical data is available, extra modeling estimates are
warranted to account for changes of coastal infrastructure and/or for probable
but non-historical events. The goals of numerical modeling for such studies
differ substantially from the goals of a typical hindcast simulation, where the
model results are compared with various field data for a specific historical
event. In probabilistic modeling, comparison with historical data is only the
first preliminary step of the study, to ensure reliability of multiple model
estimates for probable events. In this respect, the probabilistic simulations are
similar to forecast modeling, which employs a similar methodology for model
use. This section presents the methods, modeling results, and discussions
of the modeling study for Seaside, Oregon. This modeling effort produced a
model database for probabilistic tsunami hazard assessment. Multiple sim-
ulations have been performed for a large number of potential far- and near-
field tsunami sources using the MOST numerical model (Titov and González,
1997; Titov and Synolakis, 1996). Unlike previous tsunami probabilistic studies,
high-resolution numerical grids are employed to resolve details and internal
structure of the computed flood zones for each modeled event. Although
Seaside does not have a tide gage to record historical tsunamis, some historical
tsunami inundation data is available in the form of inundation zone estimates
and tsunami sediment data for a limited number of historical events. The nu-
merical model was tested against available historical tsunami measurements.
Full numerical solutions for the high-resolution grid are retained for each
model run to form a model database that can be used to perform various
analyses and probabilistic estimates.

6.1 Numerical Model

NOAA’s MOST numerical model (Titov and González, 1997; Titov and Synolakis,
1995, 1997) was utilized to produce inundation and propagation simulations
for this study. This model has been extensively tested against a number of
laboratory experiments and was successfully used for many historical tsunami
simulations (Bourgeois et al., 1999; Titov and Synolakis, 1995, 1996, 1997, 1998;
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Yeh et al., 1995). The model includes simulation of inundation dynamics
by implementing moving boundary conditions that allow calculation of the
flow dynamics of a wave climbing up dry topography and water withdrawing
from the initial coastline. The employed numerical scheme also handles wave
breaking that has been verified by comparison with a number of laboratory
experiments and historical tsunami observations.

Details of the numerical implementation and testing of the MOST model
are described in Titov and Synolakis (1995, 1996, 1997, 1998) and Titov and
González (1997). Here, we present a brief description of the model and its
application for this study.

6.1.1 Mathematical formulation

Two-dimensional shallow-water-wave equations (SW) are used to model this
phenomenon. Despite certain limitations, these equations have proven ca-
pable of modeling many important physical characteristics of tsunami prop-
agation, including wave breaking and bore runup on mild and steep beaches
(Peregrine, 1966; Kobayashi et al., 1987). Recent studies (Titov and Synolakis,
1995) have shown that this approximation works reasonably well even in the
case of relatively short (length to depth ratio less then 10) breaking waves.
Although the equations cannot resolve the specific pattern of the breaking
front, they adequately model the overall wave behavior and give accurate
estimations of the runup values in a wide range of wave parameters.

The shallow-water-wave equations are

ht + (uh)x + (vh)y = 0

ut +uux +vuy + g hx = g dx

vt +uvx +v v y + g hy = g dy

where h = η(x, y, t )+d (x, y, t ), η(x, y, t ) is the wave amplitude, d (x, y, t ) is the
undisturbed water depth, u(x, y, t ), v(x, y, t ) are the depth-averaged velocities
in the x and y directions, respectively.

For arbitrary topography and bottom displacement the system of equations
has to be solved numerically. We use a finite-differences algorithm based
on the splitting method (Titov and Synolakis, 1998). This method reduces
the numerical solution of the two-dimensional problem into the consecutive
solution of two locally one-dimensional problems. The splitting technique
allows effective implementation of a variety of boundary conditions, including
moving boundary conditions, to account for tsunami inundation of dry topog-
raphy.

Note that, with regards to wave breaking, the equations cannot resolve
the specific pattern of the breaking front. However, the equations do ade-
quately model the overall wave behavior and give accurate estimation of the
runup values in a wide range of wave parameters. The MOST model handles
wave breaking by modeling it as a shock wave within the shallow-water wave
approximation (without simulating the details of the breaking front). The
numerical dissipation qualities of the scheme allow for stable computation of
the shock dynamics, conserving mass and momentum with good accuracy. The
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Figure 18: Definition sketch for the shoreline boundary computation.

amplitudes of the simulated breaking waves compare well with a number of
laboratory experiments.

6.1.2 Moving boundary condition

To calculate tsunami evolution on a dry bed, it is necessary to use moving
boundary conditions. The Froude number may be greater than 1 near the
shoreline point, implying that all characteristic families have the same incli-
nation in this region. Hence, it is impossible to use the direct relationships
between the Riemann invariants, as is done for fixed boundary approximations
(Titov and Synolakis, 1995). Therefore, approximations of the boundary values
from previous space nodes are used. This is described in Fig. 18.

The shoreline algorithm uses a time-dependent space step Δx(t ) of the last
node of the computational area. The objective is to maintain the shoreline
boundary point (represented consecutively by A, B, or C on Fig. 18) on the
surface of the beach during the computation. We therefore adjust the length of
the last space step Δx(t ) every time step, so that the shoreline point (A) is at the
intersection of the beach with the horizontal projection of the last “wet” point,
for example, n −1 node on Fig. 18. The value of the velocity on the shoreline
node is equal to the velocity on the previous “wet” point.

We introduce additional grid points as follows. Referring to Fig. 18, at the
time interval between times t and t +Δt , there are n grid points (n − 1 fixed
grid points and the instantaneous shoreline, points A or B) in the computation.
At time t + 2Δt , when the shoreline point (C) reaches beyond the next fixed
grid point (n-th fixed node of the constant dry bed grid), this n-th fixed
point is introduced between the shoreline point (C) and the previous internal
fixed node (n − 1) and η(D) = η(D). Now there are n + 1 grid points in the
computational area and we repeat the process. During rundown, we reduce
the number of dry grid points sequentially in an analogous manner.
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6.1.3 Tsunami propagation model

To account for a spherical earth during tsunami propagation, the SW equations
are solved in spherical coordinates. The MOST propagation code uses the non-
linear shallow water equation in spherical coordinates with Coriolis force and
a numerical dispersion scheme to take into account the different propagation
wave speeds with different frequencies. The equations, shown below, are
numerically solved using a splitting method (Titov and González, 1997):

ht +
(uh)λ+

(
vh cosφ

)
R cosφ

= 0

ut + uuλ

R cosφ
+ vuφ

R
+ g hλ

R cosφ
− uv tanφ

R
= g dλ

R cosφ
− C f u

�
u2 +v 2

d
+ f v

vt + uvλ

R cosφ
+ v vφ

R
+ g hφ

R
+ u2 tanφ

R
= g dφ

R
− C f v

�
u2 +v 2

d
− f u

where

λ = longitude
φ = latitude
h = η(λ,φ, t )+d (λ,φ, t )
η(λ,φ, t ) = amplitude
d (λ,φ, t ) = undisturbed water depth
u(λ,φ, t ) = depth averaged velocity in longitude direction
v(λ,φ, t ) = depth averaged velocity in latitude direction
g = gravity
R = radius of the Earth
f = 2ωsinφ, Coriolis parameter
C f = g n2/h1/3, n is Manning coefficient

To account for changing spatial scales during tsunami propagation, several
telescoping grids are used for propagation simulations with dynamic data
exchange at the boundaries. The highest resolution grid simulation includes
inundation modeling with moving boundary conditions applied. The MOST
model handles wave breaking by modeling it as a shock wave within the
shallow-water wave approximation (without simulating the details of a break-
ing front). The numerical dissipation qualities of the scheme allow for stable
computation of the shock dynamics, conserving mass and momentum with
good accuracy. The amplitudes of the simulated breaking waves compare well
with a number of laboratory experiments (Titov and Synolakis, 1995).

6.1.4 Model verification

MOST model testing against a variety of data is documented in many publica-
tions (see, for example, Bourgeois et al., 1999; Titov and Synolakis, 1995, 1996,
1997, 1998; Yeh et al., 1995).
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Figure 19: Comparison of the 1993 Okushiri tsunami inundation model (crosses) with field observations (circles)
and stereo photo data (triangles). Top frame shows aerial photo of the modeled area used for the stereo analysis
of the inundation data. Middle frame illustrates the numerical grid used for the simulation of the same area (dots
are computational nodes, contours show topography data) and compares inundation distances. Bottom frame
compares maximum vertical runup for the same shoreline locations.

Here, verification of the inundation computations is presented for one
historical tsunami to illustrate the accuracy of inundation estimates using
the MOST model. As a partial test of inundation forecast capability of the
MOST model, the simulation of the 1993 Hokkaido-Nansei-Oki tsunami has
been compared with an independent dataset. The model scenario of this
event is based on the field survey data (Takahashi, 1996). An independent,
much denser dataset of tsunami inundation distances and heights have been
obtained at PMEL from stereo photography data of Okushiri Island. Figure
19 shows a comparison of the original MOST simulation (Titov and Synolakis,
1997) with the new stereo data. Inundation values are compared for the west
coast of Okushiri Island, where the highest runup was measured for this event.
The MOST runup and inundation estimates compare well with both stereo and
field data.

6.2 Model Sources

Only earthquake-generated tsunamis are assumed for the Seaside probabilistic
analysis. Landslide sources can potentially be considered for analyses in the
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future, when the probability of landslide occurrence is better defined for this
location.

Tsunamis propagated from distant sources have substantially different
dynamics, duration, and intensity when compared with local tsunami events.
Simulations of tsunami propagation across the Pacific from far-field sources
need to be combined with the local high-resolution inundation computations.
On the other hand, deformations from local earthquake sources change the
bathymetry and topography of the study area, which needs to be taken into
account during the simulation of inundation dynamics. To account for those
and other differences, the modeling strategy for the tsunami scenarios of the
far-field sources was different from the local sources’ modeling.

6.2.1 Far-field sources

Seaside inundation modeling from far-field sources was divided into two steps:
(1) across-ocean propagation from a source to the U.S. West Coast in the
vicinity of Seaside and (2) high-resolution inundation simulation using the
tsunami propagation results as input.

A source sensitivity study (Titov et al., 1999) has established that only
a few source parameters are critical for the far-field tsunami characteristics,
namely the location and the magnitude (assuming some typical mechanism
for the displacement and typical size of a given magnitude source). The
details of the earthquake deformation are not important for inundation in
the far-field. For example, wide-ranging variations of dip and slip (rake)
angles of an earthquake source do not lead to significant changes in the far-
field tsunami signal. Therefore, assuming simplified uniform slip for each
location/magnitude combination of far-field sources accounts for most of the
variability of the tsunami inundation at the Seaside (far-field) location for
events of certain magnitude from a specified geographical area.

Tsunami propagation scenarios for far-field sources are obtained from
PMEL’s model tsunami propagation database that includes sources from all
major tsunamigenic subduction zones (Titov et al., 2005). The database con-
tains a discrete set of unit sources that can provide the basis for constructing
a tsunami scenario from a given source location and magnitude. Numeri-
cal solutions of tsunami propagation from these unit sources, when linearly
combined, provide arbitrary tsunami propagation simulation. Figure 20 shows
the computational area of the propagation simulations and locations of 14
earthquake scenarios considered for this study with earthquake magnitudes
varying from Mw 8.2 to 9.2. Details of the earthquake parameters and the
methodology for choosing the sources for the Probabilistic Tsunami Hazard
Analysis are in Section 5, “Probabilistic Method.”

6.2.2 Near-field sources

In contrast to tsunamis arriving from the far-field, details of the local earth-
quake deformation source are important for inundation estimates. The local
source model for this study involved a discretized fault surface with variable
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Figure 20: Source regions from FACTS database used for propagation modeling.
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dip and strike, using average slip estimates, rupture dimensions, and moment
magnitude estimates for the 1700 event. That allowed the use of different slip
distribution patterns and different rupture geometries to estimate the range of
local tsunamis. Figure 21 shows deformation patterns for two tsunami source
scenarios of Mw ∼ 9 earthquake used for the Seaside inundation modeling, as
an example of source scenario variability. A total of 14 different local source
scenarios were considered for the study.

6.3 Numerical Model Setup and Testing

Figure 22 illustrates the numerical grid system setup for the tsunami numerical
model at Seaside. It shows the location and the resolution of three telescoping
grids (grid A, B, and C with corresponding resolutions of 36, 6, and 1/3 arc
seconds) that are used to compute each simulation of the Seaside tsunami
inundation. The propagation results for the far-field sources (1964 propagation
model is shown as an example on the Pacific-wide grid) are used as input
through the boundary of grid A. The deformation data from local earthquake
source scenarios are input directly into all three computational grids; the re-
sulting local tsunamis are computed without additional use of the propagation
model.

The MOST numerical model has been extensively tested in many model
comparative studies and in various historical tsunami simulations (Titov et al.,
2005; Titov and González, 1997; Titov and Synolakis, 1995, 1998). It is known
to accurately simulate tsunami propagation and inundation for even extreme
tsunami events (Titov and Synolakis, 1995). The goal of the model tests in
this study is to verify that the numerical setup for the Seaside, OR location
is adequate for the purpose of this study, i.e., the accuracy, size, and the
resolution of the numerical grid is sufficient to resolve details of the inundation
flow for both the far-field and the near-field tsunamis.

Unfortunately, Seaside does not have a tide gage to record tsunami signals
from the 1964 or other smaller tsunamis. It is not feasible to have a standard
tide gage at Seaside because this would have to be located inside the very
shallow entrance bar to the Necanicum River. To serve the needs of the
northern Oregon coastal region, NOAA has installed a tsunami-capable tide
gage at Garibaldi, a location that provides more direct observation of incident
tsunamis.

Nonetheless, eyewitness reports of the 1964 Alaskan tsunami (compiled by
Tom Horning and described in the Appendix C of this report) provide several
tsunami runup values for this event at different Seaside locations. These
are the best available tsunami field data for this location. The inundation
measurements for this largest tsunami at Seaside are important, but they are
not a comprehensive dataset to verify model accuracy. Changes in topography
and bathymetry since 1964 create an additional difficulty in interpreting com-
parisons of the model simulations and field data.

The source of the 1964 Alaskan tsunami is modeled as a two-fault rupture
with fault geometry and average slip values approximately corresponding to the
analysis of Johnson et al. (1996). Detailed modeling of the 1964 event is beyond
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Figure 22: Schematic of nesting grids for Seaside, Oregon, used in numerical
computations.

the scope of this study. The goal of this exercise is to accurately reproduce
the far-field propagation pattern of this event. The sensitivity study (Titov et
al., 1999) implies that a simplified source model for this event that reflects
the geometry, location, and magnitude of this source generates a tsunami that
accurately reproduces the 1964 Prince William Sound tsunami in the far-field.
To verify this assumption, we compared this model of the 1964 tsunami with a
tide gage record at Hilo, Hawaii. To accurately reproduce the tsunami dynamics
at Hilo, a high-resolution grid was used for the tsunami simulation. The overall
model setup was similar to that used for the Seaside model, and consisted of
three telescoping grids (Fig. 23) that used propagation model output as input
via the outer grid boundary shown in red on Fig. 22. The numerical model
setup for Hilo has been tested against many historical events and has been
shown to be a reliable reference for verifying general parameters of the tsunami
sources. The results shown in Fig. 23 demonstrate that our propagation model
of the 1964 tsunami compares well with the tide gage record. The amplitude
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Hilo tide-gage

Hilo bathymetry

Figure 23: Schematic of nesting grids for Hilo, Hawaii, where the modeled 1964 tsunami is compared with tide
gauge records.

and period of the first two waves match with the measured data. The first
waves carry most of the information about the tsunami source magnitude
and configuration. Therefore, the comparison at Hilo shows that our model
source of the 1964 tsunami has proper amplitude and correct location. These
are the two most important parameters of the source for reproducing the
tsunami amplitude in the far-field (Titov et al., 1999). The good comparison
with independent data at Hilo provides additional confirmation of the accurate
representation of the 1964 tsunami at Seaside.

The comparison of modeled inundation of the 1964 tsunami at Seaside with
the eyewitness accounts shows a qualitatively consistent picture. Figure 24
shows the computed inundation and the inundation inferred from the eye-
witness accounts. The computed inundation shows a slightly larger inundated
area; however, comparisons of the vertical runup values at the open coast show
very good correspondence between measurements and model. The difference
between the model inundation extent and the field estimates can be explained
by many factors, including slight differences of coastal dune representation in
the Digital Elevation Model used for this study and the actual topography in
1964. The most important value for this study is the predicted vertical am-
plitude values. The predicted runup for the 1964 tsunami compares well with
measurements, which ensures the accuracy of the tsunami inundation model
predictions. The Seaside inundation model of the 1964 tsunami was computed
with two different grid resolutions of 30 m and 10 m. The comparison of the
results shows that computed vertical runup values are very similar for both
simulations, while the horizontal extent of the inundation differs. The 30-
m grid does not represent the coastal dunes accurately enough, which leads
to extended inundation areas for waves that have smaller amplitudes than
the height of the dunes. Therefore, the 10-m grid was used for all far-field
simulations, in which case the coastal dunes can block the horizontal extent
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of smaller amplitude waves. For the local tsunami sources, where the runup
values are much larger, small-scale features like dunes do not make much
difference in the horizontal inundation. The 30-m grid with coverage of a larger
area was used to account for much greater inundation distances.

Data for the 1700 Cascadia tsunami are much scarcer. Tsunami deposit
data are the only indication of the size of the tsunami inundation area. Since
topography and bathymetry could have changed significantly in 300 years, a
direct comparison with the model data is very difficult. Our inundation results
for the local tsunami sources (which are all potential scenarios for the 1700
event) show that computed inundation areas encompass the tsunami sediment
locations. At least qualitatively, this indicates that our local inundation esti-
mates are within the constraints of the available field data for such events.

6.4 Database of Model Runs

Computed tsunami inundation scenarios for Seaside are stored in a WWW-
accessible database for further analyses. All computed variables (amplitude
and velocity components) are saved at each time-step for the duration of the
simulation.

These model data are available via Web interface using Live Access Server
(LAS) technology (Fig. 25). The interface provides full access to all computed
variables and additional tools for project researchers to conduct additional
analyses.

6.4.1 Discussion of model simulation results

Analysis of the far-field tsunami source simulations revealed the strong influ-
ence of the directivity of tsunami propagation on runup amplitudes at Seaside.
Directivity determines both the amplitude and the direction of the incident
waves and, therefore, affects the degree of refraction and other effects of local
and regional bathymetry and shoreline shape have on the characteristics of
tsunamis at Seaside. Potentially important local and regional features include
the Astoria Canyon, the bight between the Columbia River and Tillamook Head
just south of Seaside, the Juan de Fuca Ridge, and seamount chains farther
offshore. These bathymetric features are resolved in the DEM used to model
tsunami propagation to Seaside. A detailed analysis of these effects has not
been carried out. However, such an analysis would be helpful for interpreting
the tsunami response in the Seaside area as a function of the source location.

Figure 26 illustrates the overall effects of different sources by comparing
three different simulation results corresponding to Source Numbers 2, 3, and
5 in Table 6. The figure shows that these three simulation scenarios are for
tsunami sources at similar locations (epicenters for these three earthquakes
could very well be at the same location); all correspond to the same earthquake
magnitude of Mw = 9.2. Despite the seeming similarities of these source sce-
narios, the inundation simulations at Seaside show very different amplitudes
(lower images). The difference is explained by different propagation directivity
patterns for the three sources (upper images). The largest inundation at Sea-



62 Tsunami Pilot Study Working Group—Seaside, Oregon Tsunami Pilot Study

PromE

G

Holladay

B

D

Roosevelt

12
th

Beach

F

Wahanna

1s
t

Park

C

Downing

Edgewood

Columbia

B
ro

ad
w

ay

3r
d

2n
d

4th

5t
h

6t
h

7t
h

9t
h

8t
h

Nita

H

S
un

se
t

24
th

Ocean

10
th

Lincoln

S
pr

uc
e

A
ve

nu
e

A

11
th

Franklin

A
ve

nu
e

B

13
th

15
th

Pine

Necanicum

26
th

O
ce

an
V

is
ta

25
th C

oo
pe

r

HilltopRailroad Le
w

is
an

d
C

la
rk

O
st

er

14
th

OregonCoast

C
ed

ar

S
ky

lin
e M

ap
le

Woodland

O
re

go
n

16
th

King

17
th

A
ve

nu
e

T

Ridge

A
ve

nu
e

E

Irvine

Hager

S
un

dq
ui

st

F
er

nw
oo

dShoreline

Grove

E
lk

Le
w

is

Laurel

Le
a

O
ce

an
w

ay

F
ar

re
ll

Reef

A
irp

or
t

Jackson

Jeffrey

V
ill

ag
e

A
ve

nu
e

P

19
th

A
ve

nu
e

U

1st

6t
h

D Park

3rd

H 4t
h

17
th

9t
h

G

Wahanna

4t
h

12
3°

57
'0

"W

12
3°

56
'0

"W

12
3°

56
'0

"W

12
3°

55
'0

"W

12
3°

55
'0

"W

12
3°

54
'0

"W

12
3°

54
'0

"W

45°59'0"N

45°59'0"N

46°0'0"N

46°0'0"N

46°1'0"N

46°1'0"N

123°57'0"W

19
64

T
su

n
am

i
O

b
se

rv
at

io
n

s
(m

et
er

s
M

H
W

)
(H

o
rn

in
g

,1
99

7)

no
flo

od

0.
1

-
1.

0

1.
1

-
2.

0

2.
1

-
3.

0

3.
1

-
4.

0

4.
1

-
5.

0

5.
1

-
5.

9

ak
64

ln

0
2,

00
0

4,
00

0
1,

00
0

F
ee

t

NecanicumR.

NeawannaCr.

NeacoxieCr.

(a
)

(b
)

Fi
gu

re
24

:
(a

)
P

re
d

ic
te

d
p

ea
k

ts
u

n
am

i
am

p
lit

u
d

es
fr

o
m

fa
r-

fi
el

d
so

u
rc

es
at

Se
as

id
e,

O
re

go
n

,
co

m
p

ar
ed

w
it

h
(b

)
ey

ew
it

n
es

s
o

b
se

rv
at

io
n

s
fo

r
th

e
19

64
ts

u
n

am
i.



Section 6. Propagation and Inundation Modeling 63

Figure 25: Screen-shot from FACTS database.

side among the chosen far-field sources is produced by the Alaskan source with
the fault near Kodiak (the middle images). This source roughly corresponds to
the rupture area of the 1964 Prince Williams Sound tsunami but have different
slip distribution. This large inundation from the far-field source may not show
up in the probabilistic inundation map for Seaside due to the lower probability
of such a source. However, it should be noted that tsunami sources from this
area in Alaska could produce large inundation at Seaside if this low-probability
rupture does occur.

Currents cannot be neglected in tsunami hazard assessments, because the
associated kinetic energy can be the most destructive aspect of a tsunami and
very high currents can be associated with relatively modest wave height. Figure
27 illustrates this point for the far-field Source Numbers 3 and 5 of Table 6.
Note that regions of high currents frequently do not correspond to regions
of high wave heights. The most obvious examples are in the river entrance
and the adjacent bay area for both scenarios and, especially in the case of
Source Number 3, on the peninsula south of the river entrance. This lack
of correspondence between maximum wave heights and currents means that
inundation maps of maximum wave height could be dangerously misleading—
i.e., the overall tsunami hazard and destructive potential could be seriously
underestimated in areas of modest wave height because destructively high
currents were not taken into account. A more complete hazard assessment
must employ “impact indices” or “impact metrics” that take account of both
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potential and kinetic energy, i.e., both wave height and currents. This topic is
explored in Section 7, “Evaluating Tsunami Impact Metrics.”

For local sources, in Fig. 28 we compare the inundation map derived from
one of the slip distributions used for Cascadia Subduction Zone earthquakes
described above to the inundation map derived from a uniform slip rupture
model described by Priest et al. (1997) (their Model 1A). Although the magni-
tudes for these two scenarios is similar and the average slip used in Fig. 28a
is similar to the uniform slip used for Fig. 28b, the distributed slip model
results in significantly higher maximum wave heights. This is consistent with
theoretical results (Geist and Dmowska, 1999) and the comparison presented
in Priest et al. (1997) between the uniform slip model and the same model with
an added Gaussian asperity (Model 1A-Asperity). The difference between the
inundation maps derived from uniform slip and distributed slip source models
is shown in Fig. 28c.
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Figure 27: Maximum wave heights and currents for Sources 3 and 5 in Table 6. (a) Source 3 maximum wave
height, (b) Source 3 maximum current speed, (c) Source 5 maximum wave height, (d) Source 5 maximum current
speed.
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Figure 28: Comparison of inundation maps using (a) the distributed slip source described in this study with (b)
the uniform slip source (Model 1A) described by Priest et al. (1997). Map (c) is the difference of wave heights
between (a) and (b).





7. Evaluating Tsunami Impact
Metrics

T
sunamis can generate large onshore currents that can cause dramatic

damage to structures and move large objects far inland. The 26 Decem-
ber 2004 Indian Ocean megatsunami demonstrated tsunami impact on

structures in a rather dramatic fashion. Historic examples of large tsunamis
setting large objects in motion abound. The most notorious is the myth of the
USN Watery, the ship moved by the 1868, Arica, Chile tsunami 2 miles inland
and then moved back to shore during the 1877 Arica tsunami so that the ship
could sail on. Actually, the ship was indeed transported inland, but the 1877
tsunami just moved it closer to the shoreline, where it still rests. During the
26 December 2004 megatsunami, at least two similar-size barges were moved
inland in Banda Aceh and Lhok Nga in North Sumatra.

As a measure of what even a small tsunami can do, consider the 1994
Mindoro Philippines tsunami. In an area where the vertical inundation heights
did not exceed 3 m (10 ft), the generated tsunamis floated a 6000 ton generating
barge, broke its mooring lines, and carried it 1 mile inland down the Baruyan
River. The impact of tsunamis on structures can be observed in detail in
Discovery Channel’s production “Tidal Wave” (1998). The estimation of impact
forces and currents is still an art and far less understood than hydrodynamic
evolution and inundation computations. In what follows, different methods
and formulae in the literature are described, although none has been truly
validated by comparisons with field data.

In terms of assessing FIRM V -zones (zones identifying velocities exceeding
certain thresholds or areas of 100-year coastal floods), in addition to inunda-
tion zones, it is useful to evaluate different combinations of flow parameters.
We name them impact metrics or damage indicators, in an effort to determine
a single hazard zone that helps identify areas where structural safety needs
to be considered in greater detail. For example, existing formulations rec-
ommended in FEMA’s Coastal Construction Manual rely on riverine flooding
results, and the flow velocity and forces inferred through largely empirical
relationships involving only the flow depth. Tsunami flow patterns can be
counterintuitive even for fairly simple topographies of a plane beach as in
Banda Aceh. During the 2004 megatsunami, particle image velocimeter tech-
niques helped identify flow velocities 3 km inland, which suggest that the
larger the depth the larger the velocity. Further, the topography of Seaside
is quite unique, particularly because of the presence of the sand-spit within
the broader Seaside bay, which is fronted by another sandspit. The setting is
as different from the canonical geometry of a one-dimensional wave climbing
up a sloping beach, described by Synolakis (1987), as one can be. As shown
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recently by Carrier et al. (2003), even for the simple geometry of the canonical
problem, the highest velocity does not occur at the same location as the highest
inundation depth, and the location of the region of highest velocity depends on
the incoming wave, hence on the particular scenario under study.

We will describe here existing formulations to calculate forces on structures
to help motivate our choices of combinations of flow parameters, acceleration,
velocity, depth, amplitude, and front velocity that may be relevant in tsunami
V -zone assessment. Not unexpectedly, perhaps, the momentum flux param-
eter appears to be the most useful for engineering applications in identifying
regions where the flow forces may possibly be larger than otherwise anticipated
from existing formulations. The present inundation results for Seaside for
specific far-field and near-field inundation events as discussed in this report
have guided this choice of the boundaries of the V -impact zone.

7.1 Forces on Structures

In principle, the calculation of wave forces on structures involves the integra-
tion of the pressure and of the shear force over the exposed area of the structure
during the wave motion. To understand the development of the damage
metrics, we consider first the simplest possible geometry, which involves the
calculation of the instantaneous wave force at time t on a cylindrical pile of
radius R , in the direction of the wave propagation. Given a pressure p(R ,θ, z, t )
and a tangential shear stress τrθ(R ,θ, z, t ) , then the force is given by

FT (t )=
∫ηp+hp

0

∫2π

0
p(θ, z, t )R cosθdθd z+

∫ηp+hp

0

∫2π

0
τrθ(θ, z, t )R sinθdθd z.

(7.1)
Here, ηp and hp are the local amplitude and undisturbed water depth at the
pile, respectively, with the assumption that they do not vary significantly over
the pile diameter, hence their dependence on the radius R is not shown in the
arguments. Tsunamis are long waves, and indeed the flow parameters do not
vary significantly over small distances, such as those typically encountered in
coastal structures.

In practice, for all but the simplest steady flows, determining either the
pressure or the tangential shear stresses through calculation of the velocity
gradients is impossible at this state of knowledge, as it involves solution
of the Navier-Stokes equation. Shallow-water wave (SW) equations used in
inundation mapping are depth-averaged approximations of the Navier-Stokes
equations for inviscid flow, and there are no velocity gradients perpendicular to
the axis of the pile, that is, there is no depth variation. The classic simplification
is to consider a mass coefficient CM that incorporates some of the dynamic
pressure effects, and a drag coefficient CD which in turn accounts for the form
drag that results from flow separation and incorporates all the effects of the
viscous forces on the cylinder. In terms of these coefficients, the force on a
cylinder is given by

�

F T (t )=
∫ηp+hp

0
πCMρR2 d

�

V

d t
d z +

∫ηp+hp

0
CDρR

�

V
∣∣∣�

V
∣∣∣d z. (7.2)
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Here
�
V is the instantaneous horizontal velocity in the direction of wave motion,

while d
�
V /d t is the instantaneous water particle acceleration. Clearly

�
F is

a vector in the same direction as the velocity vector
�
V , hence, again the

force given by (7.2) is in the direction of wave propagation. The absolute
value is used to underscore that the force may change direction as the water

particle velocity changes direction. For example,
�
V = u

�
i + v

�
j and V = |

�
V | =�

u2 +v 2 with u, v the horizontal particle velocities in x, y . If the flow is

primarily one-dimensional and onshore,
�
V = u

�
i , and u is positive under the

crest and negative below the crest, if x is pointing toward the pile. Dean
and Harleman (1966) note that the expression (7.2) for the drag force was
determined empirically for steady flows, yet for lack of better knowledge, the
same formulation is used for strongly unsteady flows such as the impact of
bores and surges. In these cases, the coefficients CD and CM have to be
carefully evaluated. The variation of CD with the Reynolds number Re = uD/v
is shown in Fig. 8.2, page 344, in Ippen (1966). In the range of 103 < Re < 5×105,
then CD ∼ 1. We note that CD does depend on the roughness of the cylinder,
although for tsunamis a usual assumption is that the pile is hydrodynamically
smooth, given the wavelength of the tsunami wave train.

There are a few cases where (7.2) can be used directly to calculate tsunami
forces. As an example, consider small amplitude wave theory. This theory is

irrotational, requiring that the curl of the velocity vector is zero vector (∇×
�
V =

�
0), an assumption which is not correct when waves are breaking. Shallow
water wave theory (SW) is also irrotational, with no vertical velocity gradients
perpendicular to the direction of wave propagation. However, shallow water
wave theory is valid for larger amplitudes, for L/hp � 1, while small amplitude
theory applies when a/hp � 1. Assuming that the pile is located at x = 0, and

assuming a wavenumber k = 2π/L and celerity σ/k =
√

g hp , then

FT (t )=−ρg
(
πR2akhp

)
CM a sin(σt )+ρgCD a2R cos(σt ) |cos(σt )| , (7.3)

with the understanding that (7.3) is valid for small-amplitude long waves. Dean
and Harleman (1966) note that the inertial force is inversely proportional to
the period, while the drag force is independent of the period. Equation (7.3)
might be an adequate approximation for calculating forces on piles offshore
for tsunamis generated by far-field earthquakes or by landslides, that is, for
tsunami wave trains with more than one wave. For tsunamis generated in the
near-field, where there is not sufficient distance for a wavetrain to fully emerge,
then these equations can only be used with caution.

The total moment is formally calculated from MT (t ) = ∫ηp+hp

0 zFT (t )d z,
that is, it is the first moment of the force from the ocean floor to the free
surface. To the same level of approximation as (7.3), then

MT (t )= 1
2ρgCD Ra2hp cos(σt ) |cos(σt )|− 1

2ρgCMπR2akh2
p sin(σt ). (7.4)

Note that consistent to the SW approximation, the moment is equal to the force
times a moment arm of hp /2, given that SW implies that the force is uniform



72 Tsunami Pilot Study Working Group—Seaside, Oregon Tsunami Pilot Study

over the depth. Note also that the drag force does not depend on the period of
the wave motion.

Impact forces on structures are calculated by different methods depending
on whether or not the breaking wave forms a surge or a bore. On the vertical
front face of a structure, they have been traditionally estimated using the
classic formula of Cross (1967). He proposed that the force on a b wide seawall
is given by

Fwall(t )= 1
2ρg bη2(x = Xw , t )+C f (t )ρbη(x = Xw , t )C 2 (7.5)

where ηw = η(x = Xw , t ) is the water surface elevation on the wall located at
some x = Xw , b is the width of the wall, C is the surge or bore velocity and
C f = (

1+ tan1.2θ
)

is a computed force coefficient. tanθ is the slope of the
front face of the bore as it impacts the wall. For practical applications, Cross
suggested calculating η(x = Xw , t ) as if the wall were not there, that is, the bore
would pass through the wall relatively unchanged. In computational terms,
this implies using a numerical code without the structure present, and then
using the calculated values and applying them on the structure. This may well
be a good assumption if there is sufficient distance between structures. Even
if it is not a good assumption for a densely built town such as Seaside, the
objective here is to identify a damage metric that captures the V -zone and not
to calculate individual forces.

C f (t ) could be a function of time, since the front slope of the wave may
change as the wave evolves. Ramsden and Raichlen (1990) reformulated the
same equation and integrated laboratory measurements to calculate values
for C f in terms of the bore strength H/hp , the ratio of the bore height H to
the local depth hp , recognizing that the wave height at the front face of the
structure might be difficult to calculate a priori.

Ramsden (1993) points out that when b/H ∼ 1, then three-dimensional
effects dominate and are believed to reduce the overall force. On the other
hand, when b � H , that is, the width of the wall is smaller than the effective
crest length of the wave, the force is thought to be primarily the drag force.
When overtopping occurs, that is, the wall height is smaller than the expected
runup R . The resulting forces might be significantly less. Since there are
no established and validated formulas for overtopping, at least this theory
provides a worst-case scenario for the forces on the wall.

The limitations of calculating tsunami forces and moments from (7.3) and
(7.4) are obvious when the tsunami evolves over dry land, which is the region of
interest for developing high-hazard zones. One then has to rely on (7.4) using
results from shallow water wave theory, with the numerical predictions for the
depth-averaged u and v , substituted directly into (7.2) with V 2 =u2 +v 2.

Calculating the x − y tsunami current distributions and magnitudes and
their time variation is possible using numerical solutions of the SW equations
and was done in this study. However, harbor resonances effects, breakwa-
ters, and seawalls with characteristic sizes smaller than the grid spacing are
transparent to the numerical computations. For example, a typical grid size
Δx, Δy ∼ 100 m (333 ft) will miss all coastal structures smaller than 100 m,
unless the grid is positioned appropriately. This is not as simple as it appears,



Section 7. Evaluating Tsunami Impact Metrics 73

for numerical grids are calculated so as to model the hydrodynamic evolution
correctly by attempting to maintain a constant number of grid points per
wavelength as the wavelength changes.

Recently, Hughes (2004) revisited the radiation stress parameter Sxx per-
pendicular to the wave motion per unit wavelength as proposed by Longuet-
Higgins and Stewart (1964),

Sxx = 1
L

∫L

0

∫hp+η(x)

0

(
pd +ρu2)d zd x, (7.6)

pd is the dynamic pressure and u the horizontal particle velocity. The radiation
stress is averaged over one wave period. For small amplitude wave theory and
a periodic wave of the form η(x, t ) = a sin(k x −σt ), then

Sxx = 1
2ρg a2

(
1

2
+ 2khp

sinh2khp

)
. (7.7)

Hughes (2004) proposed the momentum flux parameter

Mt (x, t )=
∫hp+η(x)

0

(
pd +ρu2)d z, (7.8)

as characterizing the flow kinematics better than other parameters. He noted
that at the front surface of a perfectly reflecting seawall, Mt is the instan-
taneous dynamic force. Note that rewriting the momentum flux parameter
Mt (x, t ) for SW waves, that is, if one performs the integration in (7.8), one
obtains

Mt (x, t ) = pd
(
ηp +hp

)+ρu2 (
ηp +hp

)
. (7.9)

Observing that the instantaneous dynamic pressure gradient in z reflects the
instantaneous fluid acceleration in z, equation (7.9) is reminiscent of the force
equation for the total force on a pile. Rewriting (7.3) for shallow water waves

where both
�
V and d

�
V /d t are depth-independent, then

�
F T (t )=CMρR2 d

�
V

d t

(
ηp +hp

)+CDρR
�
V

∣∣∣�V
∣∣∣ (ηp +hp

)
. (7.10)

All earlier results have been developed for steady state flows, and are
usually applied to calculate forces on piles and coastal structures subject to
storm waves. Tsunamis are transient waves. For the purpose of determining
tsunami impact zones, and consistent with both (7.9) and (7.10), we conjecture
that tsunami forces can be thought of as consisting of two parts, an inertial
component (proportional to depth times acceleration) and another due to
the dynamic effects of the moving flow (proportional to depth times velocity
squared). Once the accelerations and current velocities are known, drag CD

and inertial mass CM coefficients can be determined for the specific shapes
of structures, depending on the zone boundaries. Damage metrics of use in
planning and possibly zoning, must reflect the distribution of the force over
the entire impacted area and identify areas of exceptional force. Therefore, the
following parameters are of interest in assessing tsunami impact:
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• the flow depth h = ηp +hp ,
• the current speed V 2 = u2 +v 2,

• the acceleration d
�
V /d t ,

• the inertial component hd
�
V /d t ,

• and the momentum flux hV 2.

Since V -zones must reflect the hazards, we use the detailed inundation
computations for both near-field and far-field scenario events that may impact
Seaside to make detailed calculations of the four different damage metrics over
the entire region, and compared their distributions. We note that while the
tsunami evolves in the surf zone, the speed of the front decreases as the depth
decreases. However, the flow is accelerating. In this case, the relevant velocity
is the depth-averaged flow velocity. Once the tsunami hits the initial shoreline,
the front suddenly accelerates. This phenomenon was explicit in many earlier
investigations (Synolakis, 1987), but only recognized after Sumatra 2004. It
appears to be one of the reasons why tsunami victims appear mesmerized
into inaction, as they are seen in countless videos from the 2004 tsunami to
watch the tsunami front approaching. They seem to expect that it will continue
moving on dry land with a similar diminishing speed (Synolakis and Bernard,
2006). V -zones must reflect the largest velocity, i.e., the flow velocity offshore,
and the velocity of the moving tsunami front on dry land.

While one might have expected that regions of large flow depths might
correlate with regions of large velocities, this is not always the case. For
example, as a tsunami evolves over dry land, the flow depth decreases up to
the point of maximum runup, and the velocity of the shoreline tip becomes
zero. Here, both h and V are small. During rundown, the flow depth remains
small, but the current speed can be substantial, leading to higher hV 2 values
in regions of the flow field that are unexpected, as suggested in a simple one-

dimensional setting by Carrier et al. (2003). The acceleration d
�
V /d t may

diminish as the wave runs up, but may be substantial during rundown.

The distribution of the above four parameters for both near-field and far-
field events for Seaside suggests that while individual differences exist among
the different scenario events, the momentum flux represents the most suitable
damage indicator. In contrast to what one might have expected based on 1-
dimensional considerations for overland flow over a narrow spit of land, flow
velocities appear to correlate well with inundation depths over the two sand
spits in Seaside. Hence, the momentum flux shows a similar distribution as the
inundation depths and currents. While small-scale differences exist, overall,
the inertial component appears to have a similar geographical distribution as
the momentum flux. We therefore recommend that the momentum flux be
used as a determinant for the V -zone.

We note that our results are based on calculating the parameter V 2/g h,
where h is the entire depth. During the calculation of tsunami propagation
and inundation, this parameter was calculated every time step, allowing direct
construction of a map of its distribution of maximum values to guide the V -
zone. We recommend that all future inundation mapping studies monitor this
parameter, in addition to archiving u, v , η for all times. We also recommend
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that, whenever possible, the moving front velocities be monitored and that the
normalized momentum flux parameter V 2/g h be calculated using the front
velocity. The higher of the two values, the one based on the flow velocity and
the other based on the front velocity, should be employed in the maps. Maps of
the V -zone can then be used to identify areas of higher risk, where a detailed
analysis using time histories of u, v , η at the specific locations would be useful.





8. Results

8.1 100-Year Tsunami Map

U
sing the methods described above, Fig. 29 and Plate 1b show the

tsunami wave heights, including tides, that are met or exceeded at
an annual probability of P = 0.01. For brevity, we will call this the

100-year tsunami map. A common feature in all the maps is an increase in
the offshore wave height as the water depth decreases toward the outer coast.
This is a direct effect of shoaling of the long waves. Inside the estuary, the
hydrodynamics are more complex. For the 100-year tsunami map, there is little
inundation of the developed areas in the study region. The region of coastal
dunes south of the estuary mouth (that is, along the Promenade) are high
enough in elevation to block most of the far-field tsunamis. Although a few
of the far-field earthquake scenarios resulted in significant areas of inundation
(for example, Source 3, Table 6, where the 1964 Alaska earthquake occurred),
the 100-year tsunami map shows little inundation because the average inter-
event times for these earthquakes are substantially longer than 100 years.

As a sensitivity test to see what effect our choice of segmentation models
for Aleutian-Alaska Subduction Zone earthquakes has on the 100-year tsunami
map, we compare the results in Fig. 29 with a similar map in which only
Segmentation Model 1, which includes the 1964 source region (Fig. 13), is
used (Fig. 30b). (Correspondingly, the weight for Segmentation Model 1 was
changed from 0.5 to 1.0.) Figure 30a is the 100-year map shown in Fig. 29.
Although there is a slight increase in the wave heights using just Model 1 for
Aleutian-Alaska earthquakes, there is no significant increase in regions that are
inundated by the tsunamis.

8.2 500-Year Tsunami Map

In a similar manner, the 500-year tsunami map was constructed and represents
wave heights that are met or exceeded at an annual probability of P = 0.002
(Fig. 31, Plate 1c). In stark contrast to the 100-year tsunami map, the 500-year
tsunami map shows large regions of inundation with significant wave heights
throughout Seaside. The 500-year tsunami map is dominated by the tsunami
generated by a local Cascadia Subduction Zone earthquake. For reference, the
region of inundation indicated by the 500-year tsunami map includes most of
the localities where tsunami deposits from the 1700 Cascadia tsunami were
found (Fig. 10).

Because the 500-year tsunami map is dominated by local Cascadia tsu-
namis, uncertainties in the corresponding earthquakes are likely to have a
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large influence. Some of the epistemic uncertainties associated with these
earthquakes are discussed in Geist (2005) and in the section below. In Fig. 32,
we explore how uncertainty in the mean inter-event time for these earthquakes
affects the 500-year tsunami map. Figure 32a is the 500-year map shown in
Fig. 31. Two other estimates for mean inter-event times, 477 years and 610
years, that fit the paleoseismic observations (Fig. 17) are shown in Fig. 32b
and 32c, respectively. The shorter mean inter-event time (477 years, Fig. 32b)
results in significant changes in the 500-year tsunami map because it crosses
the threshold of the exceedance probabilities being mapped (500 years). In
contrast, increasing the mean inter-event time to 610 years (Fig. 32c) results in
little change in the 500-year tsunami map. It is evident that it will be important
to gather more accurate age dates of Cascadia Subduction Zone earthquakes to
constrain the mean inter-event times shown in Fig. 17.
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9. Discussion: Resolvable Issues
Through Future Research

9.1 Tsunami Earthquakes

A
lthough not included as part of this study, it is important to note

the possibility of tsunami earthquakes (Kanamori, 1972; Kanamori
and Kikuchi, 1993; Polet and Kanamori, 2000). These earthquakes

typically rupture the shallowest part of the interplate thrust near the trench and
characteristically have a slow rupture velocity. Although we know of subduction
zones where they have occurred (Aleutian, Kuril, Japan, Peru, Nicaragua), it
is unclear how ubiquitous they are or whether or not their downdip rupture
extent overlaps with that of typical subduction zone earthquakes. It is espe-
cially difficult to assign average return times for these earthquakes, though a
minimum return time can be estimated from the characteristic amount of slip
during a tsunami earthquake and the relative plate convergence velocity.

One possible scenario for tsunami earthquakes for the Cascadia Subduc-
tion Zone is that they occur by rupture on a shallow splay fault near the
deformation front (Geist and Yoshioka, 1996; Priest et al., 1997; Satake et al.,
2003). The possibility of rupture propagation onto splay faults is an area of
active research (for example, Kame et al., 2003). For now, it is difficult to
quantify how likely this scenario is.

9.2 Smaller Cascadia Subduction Zone
Earthquakes

Inclusion of earthquakes that have a magnitude smaller than the idealized
characteristic earthquake magnitude will likely affect the results of the proba-
bilistic calculations. Much of the recent paleoseismic research suggests that not
all of the subduction zone earthquakes preceeding the 1700 event ruptured the
entire length of the subduction zone. However, we have neither sufficient infor-
mation for the paleoseismic record nor information from recorded seismicity
to determine what the distribution of earthquake magnitudes is for Cascadia.
One of the main questions we addressed during the beginning of this study
was “Do we model earthquakes of M < 9 and alternative rupture models in
addition to characteristic M = 9 earthquakes?” Depending on the exact form
of the frequency-magnitude distribution, the inclusion of smaller earthquakes
will tend to increase the tsunami hazard for the 0.01 yr−1 recurrence rate
and decrease the tsunami hazard for the 0.002 yr−1 rate (Geist and Parsons,
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Figure 33: Sample logic tree to include the effects of epistemic uncertainties for local
subduction zone earthquakes. The ellipses indicate replication of the branches from
the top level.

2005). It is important to emphasize, however, that it is currently quite difficult
to get reliable recurrence rates for the smaller Cascadia earthquakes from
paleoseismic studies to build such a distribution, thus adding a significant
amount of uncertainty to the calculations. Instead, we have focused on sources
of uncertainty that we can quantify with some degree of confidence: influence
of tides (Appendix E) and natural variability in slip distribution.

9.3 Other Sources of Epistemic Uncertainty

In any probabilistic study, the distinction between epistemic and aleatory un-
certainties is made because they are handled in different ways in the probabil-
ity calculations. Epistemic uncertainties are typically incorporated using logic
trees, whereas aleatory uncertainties, such as the tidal stage at tsunami arrival
and slip distribution at the source, are handled through direct integration in
the rate calculations (Appendix E). Variation in parameters such as rupture
width and whether or not splay faults are ruptured also has a demonstrated
effect on local tsunami runup (Priest et al., 1997). A sample logic tree that
includes many of the sources of epistemic uncertainty is given in Fig. 33. As
displayed, this would involve a total of 20 branches. The total number of
model runs would be dependent on both the number of branches and the
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sample size for the G-R distribution branch—in any case, the number would
be excessive. Even just considering the characteristic distribution branch, if
12 model runs are needed to capture the uncertainty from slip distribution
patterns, then a total of 10 × 12 = 120 model runs would be needed according to
the scheme above. Clearly, some judicious choices need to be made to reduce
this computational load. As possible options for future studies, one can reduce
the number of branches (for example, just considering two rupture widths) or
randomly sample the different branches of a more complete logic tree.





10. Recommendations

T
his pilot study was motivated by the previous finding (Chowdhury et al.,

2005) that the current methodology for including tsunami information
on Federal Insurance Rate Maps is inadequate, because it does not

include advances of the last few decades in tsunami science and tsunami
hazard assessment. The study has integrated advances of the last few decades
in the scientific understanding, tools, and methods available for geophysical
and tsunami hazard assessment to develop a Probabilistic Tsunami Hazard
Assessment (PTHA) methodology, and has applied this methodology to the
community of Seaside, Oregon. The resulting products, including 100- and
500-yr tsunami hazard maps and a comprehensive GIS database, represent a
major advance in tsunami hazard assessment methodology.

The PTHA must now be applied to other Cascadia Subduction Zone com-
munities, and refined and adapted to other tsunami regimes as part of a formal
FEMA/NOAA/USGS partnership in a systematic, cost-effective, national effort
to upgrade the FEMA series of Federal Insurance Rate Maps. To this end, we
make the following recommendations:

10.1 Scientific/Technical Recommendations

• Include all reasonable epistemic and aleatory sources of uncertainty in
each Probabilistic Tsunami Hazard Assessment, using the best available
science.

• Utilize tsunami hydrodynamic models that meet NOAA standards, to
ensure consistency of Federal agency products.

• Test all earthquake and tsunami models by extensive field studies to
gather and exploit all possible paleogeography and paleotsunami data,
historical tsunami measurements, eyewitness reports, and other types of
field observations.

• Develop and maintain a comprehensive GIS database of all field data,
model results, and a comprehensive site- and source-specific tsunami/
earthquake bibliography for the region as an essential and invaluable
analysis and product development tool.

• Publish a report for each PTHA project that documents procedures, data
sources, and results, that includes a bibliography, and that is reviewed for
consistency with FEMA standards.

• Publish PTHA results either as a separate Federal Insurance Rate Map, or
include PTHA information as separate, tsunami-specific items on FIRMs.
In either case, include: (a) the 100-year and 500-year events, (b) tsunami-
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specific V -zones, (c) measurements available for the worst case historical
and/or paleo-tsunami events, and (d) the “Credible Worst-Case Scenario”
event.

10.2 Policy/Programmatic Recommendations

• Establish a formal FEMA/NOAA/USGS partnership to address national
needs for tsunami hazard assessment products in a federally consistent
and cost-effective manner.

• Apply PTHA to additional Cascadia Subduction Zone communities as
NOAA inundation models are completed.

• Conduct pilot studies to adapt PTHA to other tsunami regimes in the
Pacific, Caribbean, Atlantic, and Gulf, using a preliminary assessment of
uncertainty.

• Apply PTHA to additional Pacific, Caribbean, Atlantic, and Gulf commu-
nities as the corresponding pilot studies and NOAA inundation models
are completed.

• Establish a systematic maintenance and improvement program to inte-
grate scientific and technical advances into the PTHA methodology.
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Background tides and sea level variations at Seaside, Oregon

Harold O. Mofjeld1, Angie J. Venturato2, Frank I. González1, and Vasily V. Titov2

1. Introduction

The purpose of this technical memorandum is to provide a summary of the
tides and other sea level variations at Seaside, Oregon, the site for the FEMA
FIRM Tsunami Pilot Study. Because the tidal range is so large along the
U.S. West Coast, the tides and other sea level variations have a significant
effect on tsunami runup heights and inundation. For this reason, Houston
and Garcia (1978) used predicted tides when computing the 100- and 500-
year tsunami runup heights for the previous tsunami Flood Insurance Rate
Maps (FIRMs).

Since Seaside is not served by a long-term tide station, many tidal quanti-
ties that are relevant to tsunami mapping must be estimated by other means.
The results presented here are based on inferences from NOAA tide stations
in the region and from the Eastern North Pacific ENPAC 2003 tide model
of Spargo (2003) and Spargo et al. (in press). Tidal datums are available in-
side the mouth of the Necanicum River from water level observations taken
during Nov 1971–Sept 1972; as we will see, there are substantial differences
between these and the inferred coastal datums. The locations of the tide
stations are shown in Fig. 1.

NOAA has designated the 19-year period 1983–2001 as the official U.S.
National Tide Datum Epoch, and we have used observations from this NTDE
when these were available. It is fortunate that the time series of water
levels observed during this NTDE contain the largest El Niño events of the
Twentieth Century (1982–1983 and 1997–1998), as well as representative
distributions of other water level variations. This allows a useful comparison
between observed and predicted tides in the region.

This technical memorandum is organized into examples of tidal time se-
ries to give a general characterization of the tides in the region (this section),
tidal datums to provide information to develop digital elevation models and
compare with tsunami amplitudes (Section 2), tidal harmonic constants that
can be used for tidal prediction (Section 3), probability distributions includ-
ing the average time the water level is at or above various heights (Section
4), interseismic sea level trends (Section 5), next steps to include background
water levels in the estimation of 100- and 500-yr tsunami heights at Seaside
area (Section 6), and conclusions on estimates of tides and other background
water levels at Seaside (Section 7).

The examples of observed water levels in Fig. 2 show that within the
central Cascadia region containing Seaside, the tides have very similar tem-
poral patterns with some variation in amplitude between the tide stations.

1NOAA/Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle,

WA 98115-6349
2Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of

Washington, Box 354235, Seattle, WA 98195-4235
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Figure 1: Map of the Central Cascadia region showing the locations of Seaside and relevant tide stations.
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Figure 2: Sample time series of observed water levels at the three nearest long-term
tide stations to Seaside.

These tides are mixed semidiurnal (Table 1). Substantial differences (Fig. 2)
occur between successive low waters; lesser differences occur between succes-
sive high waters; and low and high waters follow the sequence LLW, LHW,
HLW, HHW. Both the amplitude and shape of the daily tidal curve are
modulated (Fig. 2) over fortnightly (two-week) and monthly time scales.
The northward increase (Table 2) of the harmonic constant amplitudes and
phase lags is consistent with northward propagating tidal waves that turn
northwestward in the Cascadia region. Descriptions of the tidal modeling
and dynamics in this region, as well as references to previous work, are given
by Mofjeld et al. (1995), Foreman et al. (2000), Myers and Baptista (2001),
Spargo (2003), and Spargo et al. (in press).

Observations and tidal theory show that the amplitudes and shapes of
the daily tidal curve vary throughout the month due to variations in the
lunar phase (new moon, first quarter...), declination (meridional angle off the
equator), and parallax (distance from the earth). Significant modulations of
the tides also occur on seasonal (solstitial-equinoctal and solar parallax) and
interannual (18.6-year lunar nodal) time scales. For the latter reason, tidal
datums (like those in the next section) are ideally computed from 19 years
of observations (e.g., NTDE 1983–2001).
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2. Tidal Datums

For the Tsunami Pilot Study, tidal datums are relevant in two ways. The
first is in developing the digital elevation model (DEM) for the tsunami
inundation model. The second is in providing a succinct summary of height
scales for background water levels to compare with tsunami wave heights.
Tidal datums are for the NTDE 1983–2001, computed from observations
during this period or adjusted vertically to be consistent with it (details
documented at NOAA’s www.co-ops.nos.noaa.gov website).

Table 3 gives the official tidal datums for stations in the region sur-
rounding Seaside as reported by NOAA/NOS/CO-OPS (National Ocean
Service/Center for Operational Oceanographic Products and Services) and
NOAA/NGS (National Geodetic Survey). For Seaside itself, three sets of da-
tums are shown. The first set of coastal datums at Seaside were obtained by
the harmonic constant datum method (Mofjeld et al., 2004) using harmonic
constants from the ENPAC 2003 tide model. The other set of coastal datums
at Seaside were linearly interpolated in latitude from the observed datums
at Hammond and Garibaldi (Fig. 1), the closest stations to Seaside. The
third set of Seaside datums are based on 11 months (Nov 1971–Sept 1972)
of water level observations at the 12th Avenue Bridge over the Necanicum
River.

The coastal datums obtained by the two different methods are in rela-
tively good agreement. For instance, the values of MHW relative to MLLW
(important when merging water depth and land elevation data) agree within
0.2 m. However, there is a significant difference (Table 3) between the coastal
datums and those inside the shallow river mouth. Of particular interest is the
0.76–0.96 m difference for MHW which is relevant to merging water depth
and land elevation data to form the digital elevation model for tsunami mod-
eling. It is worth noting that reduced tidal ranges often occur in bays with
restrictive inlets (e.g., Kjerfve and Knoppers, 1991).

The larger difference (Table 3) between MLLW and the geodetic datum
NAVD 88 observed inside the river mouth is also consistent with restricted
tidal exchange through the inlet, especially near low tide when more wa-
ter is retained in the estuary than would occur with free exchange. This
hypothesis is corroborated by a personal communication from Maria Lit-
tle (NOAA/NOS/CO-OPS) in which she reports that a water level station
at the Seaside Sewage Plant (46◦ 0.4′N, 123◦ 55.1′W), just inside the river
mouth, showed “...damping of the high waters and flat low waters, caused
by a distortion of the tide signal. There are no Accepted Values [of tidal da-
tums] for this station.” The tidal exchange may additionally be affected by
the changing nature of the river mouth as observed over the past 30 years.
The variations in the river mouth will be discussed in a technical memo-
randum by Angie Venturato (in preparation). A high-resolution non-linear
tide model would be needed to fully understand the relationship between
the tides on the open coast at Seaside and those inside the Necanicum River
mouth.
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Table 1: Type of tide = (O1 + K1)/(M2 + S2) and se-
quence of tide = M2◦−K1◦−O1◦ at the nearest long-term
tide stations to Seaside and inferred values for the open
coast at Seaside. The Type of Tide is mixed semidiurnal
when the amplitude ratio is between 0.25 and 1.5.

Station Type Sequence
(deg)

Toke Point 0.563 127.2
Astoria 0.549 126.4
Coastal Seaside 0.611 130.7
South Beach 0.621 132.4

Table 2: M2 and K1 tidal harmonic constants observed at coastal and estuarine tide stations
in the Cascadia region. These are the largest semidiurnal and diurnal constituents, respectively.

M2 K1

Station Latitude Longitude Amp Lag Amp Lag
(deg) (deg) H (m) G (deg) H (m) G (deg)

Neah Bay 48.3683 124.6167 0.787 246.3 0.497 248.3
Toke Point 46.7083 123.9650 0.981 253.7 0.435 251.1
South Bend 46.6633 123.7983 1.124 259.7 0.428 254.8
Astoria 46.2083 123.7667 0.945 264.2 0.403 256.2
Coastal Seaside 46.0017 123.9300 0.960 229.1 0.463 238.2
Depoe Bay 44.8100 124.0583 0.890 225.0 0.438 235.0
South Beach 44.6250 124.0433 0.902 231.1 0.443 237.7
Charleston 43.3450 124.3217 0.818 225.3 0.401 235.2
Port Orford 42.7400 124.4967 0.750 216.5 0.428 231.2
Crescent City 41.7450 124.1833 0.714 212.2 0.390 228.2
North Spit 40.7667 124.2167 0.710 220.0 0.411 236.1

Table 3: Tidal datums relative to MLLW at tide stations in the region surrounding Seaside. The
coastal Seaside datums were linearly interpolated in latitude using the datums at Hammond and
Garibaldi. Also shown are the maximum and minimum observed heights at the tide station (where
available) and the geodetic datums NGVD 29 and NAVD 88.

Coastal Coastal Estuarine South
Station Hammond Seaside Seaside Seaside Garibaldi Beach

Source: Observed Model Interpolated Observed* Observed Observed
Latitude 46.2017 46.0017 46.0017 46.0017 45.5550 44.6250

Longitude 123.9450 123.9300 123.9300 123.9200 123.9117 123.0433
To Entrance 7 km 0 km 0 km 2 km 2 km 4 km

(m) (m) (m) (m) (m) (m)

Max Obs 3.45 3.60 3.73

MHHW 2.54 2.74 2.52 1.77 2.48 2.54

MHW 2.33 2.51 2.31 1.55 2.26 2.33

MTL 1.36 1.47 1.35 0.84 1.35 1.38

MSL 1.34 1.46 1.34 0.83 1.33 1.36

MLW 0.39 0.44 0.39 0.12 0.40 0.42

NGVD29 0.23 1.16 1.26

NAVD 88 −0.01 −0.03 to 0.02 −0.88 0.10 0.23

MLLW 0.00 0.00 0.00 0.00 0.00 0.00

Min Obs −0.90 −0.88 −1.07

*Maria Little, NOAA/NOS/CO-OPS, personal communication
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3. Tidal Harmonic Constants

Tidal predictions rely on harmonic constants (HCs) that are specific to the
location of interest. For the open coast at Seaside (46◦ 00.1′N, 123◦ 55.8′W),
the HCs for the O1, K1, N2, M2, and S2 constituents were computed from the
ENPAC 2003 tide model. The minor diurnal and semidiurnal HCs (Table 4)
were inferred from South Beach amplitude ratios and phase differences using
the method outlined by Schureman (1976). The long period HCs are based
on those at South Beach. The higher frequency tides (2SM2, ...) are set to
zero amplitude because of lack of information. However, they are likely to
be small because the continental shelf west of Seaside is narrow and deepens
relatively rapidly; this limits greatly the shallow water effects that generate
such constituents. Also shown for comparison are observed HCs at Toke
Point and South Beach (Fig. 1). The 37 constituents in Table 4 are the
same as those used by NOAA for its official tidal predictions.

4. Water Level Probability Distributions

Probability distributions serve to characterize the general behavior of back-
ground water levels in terms of the duration of time spent at various ranges
of height. To apply this method, the probability distribution functions (pdfs)
are computed from observed tide gage records when these are available, or
from predicted tides.

4.1 Observed Background Water Levels Near Seaside

Shown in Fig. 3 are the observed pdfs at Toke Point, Astoria, and South
Beach (Fig. 1). The pdfs were computed by first interpolating the verified
hourly observations to 15-minute values using cubic interpolation. The 15-
minute time interval was chosen to allow accurate estimates for the heights
of the individual high and low tides that may not be resolved with 1-hr sam-
pling. The height values in the time series were binned using a 0.1 m height
interval for each bin to form a histogram for each station. The histograms
were then renormalized so that the total (sum) over the full range of heights
is unity (1.0), as required by probability theory.

Figure 3 shows that the pdfs at the three stations tend to be large around
the frequently occurring high and low water stands, when the height is chang-
ing slowly, but much smaller at the extreme ranges that occur only rarely
in time. The pdfs at these stations are very similar. The slight upward dis-
placement of the upper Toke Point and Astoria curves relative to the South
Beach pdf is due to the slightly larger tidal ranges at these two stations.
The shapes of the pdf curves are somewhat different near the central peaks
(pdf > 0.3); but overall, the pdfs have very similar shapes and widths (Ta-
ble 5) and similar maximum values. This is expected since the distances
between the stations are small compared with the alongshore variations in
tides in the Cascadia region (Mofjeld et al., 1995; Foreman et al., 2000; Myers
and Baptista, 2001; Spargo, 2003; Spargo et al., in press). The same should
therefore be true on the open coast of Seaside since it is located between
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Table 4: Tidal harmonic constants (37 constituents) and the mean relative to MLLW for the open
coast at Seaside and at the Toke Point and South Beach tide stations.

Station: Toke Point Coastal Seaside South Beach
Location: 46.7083, 123.9650 46.0017, 123.9300 44.6250, 124.0433

Constituent Amplitude Phase Lag Amplitude Phase Lag Amplitude Phase Lag
H (m) G (deg) H (m) G (deg) H (m) G (deg)

mean 1.458 1.441 1.358

SA 0.158 289.8 0.123 281.6 0.123 281.6
SSA 0.000 0.0 0.019 258.7 0.019 258.7
MM 0.000 0.0 0.027 174.7 0.027 174.7
MSF 0.000 0.0 0.000 0.0 0.000 0.0
MF 0.024 161.8 0.019 155.0 0.019 155.0
2Q1 0.006 221.0 0.007 202.2 0.007 204.3
Q1 0.047 230.2 0.050 216.7 0.048 213.4
RHO 0.011 208.7 0.011 212.4 0.010 213.8
O1 0.264 235.4 0.288 220.2 0.269 221.0
M1 0.016 270.3 0.016 252.2 0.015 250.7
P1 0.136 249.2 0.144 235.5 0.137 234.2
S1 0.006 40.7 0.012 20.4 0.012 20.4
K1 0.435 251.1 0.463 238.2 0.443 237.7
J1 0.023 267.6 0.029 256.8 0.027 255.0
OO1 0.016 292.6 0.016 276.4 0.015 273.1
2N2 0.022 204.6 0.022 178.2 0.021 183.2
MU2 0.008 253.2 0.016 197.2 0.015 201.1
N2 0.198 229.7 0.196 203.7 0.187 207.2
NU2 0.044 228.6 0.038 206.1 0.036 209.5
M2 0.981 253.7 0.960 229.1 0.902 231.1
LAM2 0.009 269.3 0.006 241.2 0.006 243.8
L2 0.033 266.3 0.026 243.6 0.024 246.4
T2 0.017 270.5 0.015 250.6 0.014 253.8
S2 0.261 284.4 0.269 255.2 0.244 258.6
R2 0.002 285.6 0.002 255.2 0.002 258.6
K2 0.071 279.6 0.070 247.4 0.066 250.2
2SM2 0.000 0.0 0.000 0.0 0.003 63.5
2MK3 0.005 64.3 0.000 0.0 0.000 0.0
M3 0.000 0.0 0.000 0.0 0.000 0.0
MK3 0.004 10.9 0.000 0.0 0.004 172.3
MN4 0.006 335.6 0.000 0.0 0.005 164.8
M4 0.014 352.6 0.000 0.0 0.013 189.0
MS4 0.009 30.5 0.000 0.0 0.007 229.5
S4 0.000 0.0 0.000 0.0 0.000 0.0
M6 0.009 45.3 0.000 0.0 0.008 300.7
S6 0.000 0.0 0.000 0.0 0.000 0.0
M8 0.000 0.0 0.000 0.0 0.000 0.0
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Figure 3: Probability density functions computed from observed water levels at
the nearest long-term tide stations to Seaside.

these tide gage stations. Other differences in the pdfs are presumably due
in part to local tidal dynamics within the three bays where the tide gages
are located and to different inlet effects on the tides in these bays.

Integrating the pdfs (Fig. 3) downward in height gives the cumulative
exceedance probability P(η), where η is the height above MLLW. P(η) rep-
resents the fraction of the time, on average, that the water level is above the
height η. As shown in Fig. 4, the exceedance probabilities decrease approx-
imately linearly with increasing height η from MLLW (η = 0) to P = 0.1
(10% probability of exceedance). The differences in P between the three
tide stations increases upward in height to a 0.19 m difference between Toke
Point and South Beach at P = 0.1.

The values of P at larger heights are relevant to the exceedance proba-
bilities of observed storm surges. When plotted on a log(P) scale, the ex-
ceedance curves (Fig. 5) take an asymptotic form that can be fit to extreme
value distributions. Like the tsunami probability distributions, additional
calculations using time series of storm surges, especially their duration in
time, need to be performed before distributions like those in Fig. 5 can be
used to determine event heights for various recurrence intervals (Pugh, 1987,
2004).

The percentage heights and ranges shown in Table 5, as well as the
magnitudes of the tidal datums given in Table 3, indicate that tides are large
enough to have important effects on the height probabilities of tsunamis at
Seaside. The percentage height ranges (Table 5) for the three stations are
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Figure 4: Exceedance probabilities computed from observed hourly water levels
at the nearest long-term tide stations to Seaside.

Figure 5: Same as Fig. 4 but with the logarithm of exceedance probability plotted
against height.
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Table 5: Percentage heights and ranges, based on the probability distri-
bution functions derived from observed water levels during the National
Tidal Datum Epoch 1983–2001. For a given percentage probability, a
random background water level will occur within the height range be-
tween the upper and lower bounds.

Station Height Ranges

Bounds (%): 50% Height 50% 80% 90% 98%
(m) (m) (m) (m) (m)

Toke Point 1.47

Upper 2.00 2.30 2.50 2.82

Lower 0.70 0.21 −0.05 −0.46

Range 1.30 2.09 2.55 3.28

Astoria 1.35

Upper 2.00 2.40 2.60 2.94

Lower 0.70 0.21 −0.02 −0.33

Range 1.30 2.19 2.62 3.27

South Beach 1.36

Upper 2.07 2.49 2.71 3.10

Lower 0.80 0.27 −0.01 −0.45

Range 1.27 2.22 2.72 3.55

very similar, differing by less than 0.2 m for probabilities of 90% or less.
Hence, these statistics are spatially uniform within a few tenths of a meter
at Toke Point, Astoria, and South Beach. By implication, the same is true
along the open coast at Seaside.

4.2 Predicted Background Water Levels at Seaside

Houston and Garcia (1978) used predicted tides to compute the effects of
background water level fluctuations on the 100- and 500-year tsunami ex-
ceedance heights along the West Coast. Since observed water levels are
available at only a limited number of sites along the West Coast and these
are typically within embayments, there is an issue as to whether predicted
tides can be used for the next generation of tsunami flood maps.

As a measure of the differences between the observed and predicted water
levels that might occur at Seaside, a comparison between these was made for
the water levels at South Beach. These are then compared with the predicted
tides at Seaside. The pdf and exceedance probabilities were computed from
19-year (NTDE 1983–2001) time series of hourly tidal predictions (cubic
interpolated to 15-minute values to be consistent with the procedures used on
the observed time series). The South Beach and Seaside harmonic constants
used to generate the predictions are shown in Table 4. The height exceedance
probabilities in Figs. 6 and 7 provide a measure of how much error would
occur on average by using predicted rather than observed water levels for
Seaside, since both South Beach and Seaside are located within the same
meteorological and oceanographic regimes. The differences in the Seaside
curves relative to those for South Beach are primarily due to the larger tidal
range at Seaside, as seen in Figs. 3 and 5 for Astoria and Toke Point.

From the standpoint of probabilities (Figs. 6 and 7), there is very close
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Figure 6: Probability density functions (pdfs) computed from predicted water
levels at South Beach and Seaside. Also shown is the pdf computed from the
observed water levels at South Beach.

Figure 7: Same as Fig. 6 but with the logarithm of exceedance probability plotted
against height.
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agreement between the observations and predictions for South Beach. The
minor differences that do exist (Figs. 6 and 7) are due primarily to the storm
surges and other non-tidal water level fluctuations that are not included in
the tidal predictions. These give rise to the greater heights at low exceedance
probabilities (Fig. 7). However, there is a very low probability that the
maximum wave in a tsunami will arrive at Seaside at the same time as a
winter storm, occurring during a major El Niño, than at lower heights where
there is a very close match between the observed and predicted tides.

5. Sea Level Trends

When presenting the broad spectrum of coastal water levels, it is appropri-
ate to also include a discussion of sea level trends. This is true even though
they are not immediately relevant to the specific issues of computing 1-
percentage-annual-chance and 0.2-percentage-annual-chance quantities that
are FEMA’s definitions for the 100- and 500-yr exceedance values, respec-
tively.

The sea level trends (Table 6) in the Cascadia region vary considerably
between long-term tide stations. This indicates different vertical ground
movement in the vicinity of the tide gages that are significant in magnitude
compared with the present ∼1.4 mm/yr of global sea level rise (Intergovern-
mental Panel on Climate Change (IPCC), 2001; Pugh, 2004). The upward
ground movement at Neah Bay and Crescent City (Fig. 1) is large enough
to overwhelm oceanic sea level rise and produce negative trends that are
significant at the 95% confidence level. In contrast, the observed trend at
South Beach indicates continuing subsidence of the land near the tide gage.

The variation in trends (Table 6) along the length of Cascadia shows
that the interseismic tectonic processes presently affecting relative sea level
also vary with location along the coast. Given this variability, it is diffi-
cult to estimate the sea level trend at Seaside based solely on the observed
trends elsewhere in the region. The observed trends at other sites serve as
placing some bounds of the Seaside trend and, taken together with other in-
formation from GPS observations and geological interpretation, may help to
further constrain estimates of the interseismic Seaside trend. There is also
the important issue of coseismic ground movement (subsidence or uplift)
during regional Cascadia Subduction Zone earthquakes.

6. Joint Probability Methods Versus Direct
Calculations

One method for including tides and other water level fluctuations in the
probability estimates of coastal flooding is via the joint probability method
(JPM) described by, e.g., Tawn and Vassie (1991) and Pugh (1987, 2004).
This method convolves (integrates their product over height) the pdf of the
background water levels at a given coastal location with the pdf of modeled
storm surges to get the total exceedance probability. The revised method
(Tawn and Vassie, 1991) adjusts the probabilities to take into account the
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Table 6: Observed sea level trends at tide stations in the Cascadia region.
Shown are trends in relative sea level, which are the sum of the separate vertical
movements of the water and the land. Note that the uncertainty in the trend
decreases with increasing series length.

Station Trend Stnd. Dev. 95% C I Start End Length
(mm/yr) (mm/yr) (mm/yr) (years)

Neah Bay −1.41 0.22 0.43 1934 1999 66

Toke Point 2.82 1.05 2.06 1973 1999 27

Astoria −0.16 0.24 0.47 1925 1999 75

South Beach 3.51 0.73 1.43 1967 1999 33

Charleston 1.74 0.87 1.71 1970 1999 30

Crescent City −0.48 0.23 0.45 1933 1999 67

non-random nature of the tides and the persistence in time (redundancy) of
both the tides and the additional flooding event (e.g., storm surge), as well
as possible non-linear interactions between tsunamis and the tides. A major
issue in applying the revised JPM method to the tsunami problem would
be finding the redundancy factors for the model tsunamis and background
water levels.

An alternative to this method is that of Houston and Garcia (1978),
in which each model tsunami is slid along the time series of background
water levels. Since the time series of the model tsunamis are relatively
short compared to the duration of significant waves in observed tsunamis,
the model time series need to be extended in time. This can be done by
assuming exponential amplitude decay, which Mofjeld et al. (2000) have
shown matches closely the observed decay of Pacific tsunamis.

7. Summary and Conclusions

For tides on the open coast at Seaside, Oregon, a comparison has been
made of predictions based on the ENPAC 2003 tide model of Spargo (2003)
and Spargo et al. (in press) with the observed and predicted water levels
at long-term tide stations in the region. This comparison shows there is
close agreement for many of the tidal quantities that are relevant to proba-
bilistic tsunami mapping. This is fortunate, since Seaside is not served by
a long-term tide station. The tidal datums inferred from the model har-
monic constants and those interpolated from observed values at Hammond
and Garibaldi (Fig. 1) are found to be within 0.05 m for MHW relative
to MLLW. Having an accurate estimate of this height difference is essen-
tial for generating the digital elevation model (DEM) for tsunami modeling.
There are substantial differences between the coastal datums at Seaside and
those observed within the Necanicum River, possibly due to restricted tidal
exchange through the river mouth.

Close agreement exists between probability distributions at the long-term
South Beach station and those at the Seaside open coast. This is due in part
to the proximity of the South Beach station to the coast and the free tidal
exchange through the inlet to Yaquina Bay. Conversely, the comparison
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of tidal quantities at Toke Point, Astoria, and South Beach (Fig. 1) reveals
greater differences, probably at least partly due to local tidal dynamics in the
bays where these tide stations are located. However, the exceedance curves
from all the tide stations are very close to each other and, by implication, to
that on the outer coast at Seaside. These results also suggest that predicted
tides should be adequate when linearly combining coastal tsunami heights
with background water levels to estimate probabilities.

The goal of the Tsunami Pilot Study is to develop methods that can be
applied to probabilistic tsunami hazard assessment and mapping along the
U.S. West Coast. The analyses and comparison outlined in this technical
memorandum, together with the distribution of long-term tide stations along
the Coast, suggest that the methods used here will work effectively to char-
acterize background water levels at other locations where direct long-term
water level observations are not available.
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A Digital Elevation Model for Seaside, Oregon: Procedures, Data

Sources, and Analyses

Angie J. Venturato1

1. Introduction

As part of a probabilistic tsunami hazard assessment pilot study to mod-
ernize Flood Insurance Rate Maps for the Federal Emergency Management
Agency (González et al., 2004), the NOAA Center for Tsunami Inunda-
tion Mapping Efforts (TIME) developed a digital elevation model (DEM)
for the purpose of modeling tsunami inundation for Seaside, Oregon. The
finite-difference inundation model requires a series of nested computational
elevation grids to simulate tsunami generation, propagation, and inundation
in the region of interest (Fig. 1). To properly simulate the non-linear wave
dynamics of inundation, a high-resolution DEM merging land and seafloor
elevations is required (González et al., 2005). A merged DEM with a reso-
lution of 1/3 arc-seconds (approximately 10 meters) was developed for the
Seaside, Oregon area. This technical memorandum provides a summary of
the data sources and methodology used.

2. Study Area

The study area covers the coastal communities of Seaside and Gearhart in
Clatsop County, Oregon. The Seaside-Gearhart area has a population of
6900 based on 2000 U.S. Census data, with a projected growth rate of 13%
within the next decade (Clatsop County, 2005). The area’s economy is pri-
marily based on tourism with tens of thousands of visitors during the peak
summer season (Oregon Coast Visitors Association, personal communica-
tion). Several tourist accommodations line the promenade, a 2-mile concrete
boardwalk along the ocean beachfront.

Seaside is part of the Clatsop Plains, which is a low-lying coastal area
from the Columbia River to Tillamook Head abutted on the east side by the
hills of the Oregon Coast Range (Fig. 1b). Soils consist primarily of sand
dune ridges and silt loam (USDA Natural Resources Conservation Service,
1994). The sand ridges run parallel to the ocean shore due to littoral accre-
tion from the Columbia River (Fiedorowicz, 1997). Beachgrass and shrubs
along sand ridges and Sitka spruce inland are the main vegetation types
outside of urban areas (Oregon Natural Heritage Program, 1999).

The Necanicum River flows through the center of Seaside where it joins
the Neawanna and Neacoxie Creeks, forming an estuary bay before draining
into the Pacific Ocean (Fig. 1c). The Necanicum River bar-built estuary has
a low water volume with a watershed of approximately 225 square kilometers
(Oregon Ocean-Coastal Management Program, 2000).

1Joint Institute for the Study of Atmosphere and Ocean (JISAO), University of Wash-

ington, Box 354235, Seattle, WA 98195-6349
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Figure 1: Study area of the FEMA FIRM project for Seaside, Oregon. (a) The nested grids used by the
model. (b) Display of the Columbia River littoral cell with associated NOS water-level stations. (c) Details
of the study region.
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3. Methodology

The modeler set parameters for the grid based on input requirements for
the inundation model (Table 1). Other criteria, such as obtaining the best
available data, were also established in the planning process using recom-
mended practices from prior inundation modeling efforts (González et al.,
2005). Data processing, grid assembly, and quality assurance are described
in the following subsections.

3.1 Data Sources and Processing

Bathymetric, topographic, shoreline, control, and orthophotographic data
were obtained from various government agencies. The primary data sources
were obtained from the U.S. Geological Survey (USGS), NOAA National
Ocean Service (NOS), and the Oregon Geospatial Data Clearinghouse
(OGDC). Datasets were converted into formats compatible with ESRI
ArcView GIS© 3.3.

Data sets were corrected to the common data framework established by
modeler parameters. The ArcView Projection Utility was used to convert
projected horizontal coordinates and datums to geographic coordinates and
NAD83. Vertical datum transformation was applied based on the method-
ology described in Mofjeld et al. (2004). A vertical datum surface was
developed using linearly interpolated values from official NOS datums at
Hammond and Garibaldi, Oregon and a historical tertiary NOS water-level
station in the Necanicum River estuary (Fig. 2).

3.1.1 Shoreline

Vector data representing the Mean High Water line were collected from the
NOAA Shoreline Data Explorer and OGDC (Table 2). Significant discrep-
ancies were found when comparing datasets (Fig. 3a). Orthorectified pho-
tographs conducted in 2000 by the National Aerial Photography Program
(NAPP) were obtained from OGDC to perform a visual analysis (Table 2). A

Table 1: Parameters set by the modeler for the high-resolution
DEM.

Pilot study site Seaside, Oregon

Coverage area West boundary: −124.04

East boundary: −123.89

North boundary: 46.08

South boundary: 45.90

Coordinate system Geographic decimal degrees

Horizontal datum North American Datum of 1983 (NAD83)

Vertical datum Mean High Water

Vertical units Meters

Grid resolution 1/3 arc-seconds

Grid format ASCII raster grid
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Figure 2: Estimated contours used to correct vertical datums to Mean High Water. Values are based on
Mofjeld et al. (2004).

Figure 3: Shoreline vector analysis. (a) Shoreline vectors from the Bureau of Land Management (BLM)
in green, National Ocean Service (NOS) in red, and U.S. Geological Survey (USGS) in blue. (b) Corrected
shoreline vectors used in DEM development. The dashed line represents apparent Mean Lower Low Water
based on recent orthophotos. The solid line represents Mean High Water.
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Table 2: Shoreline data sources.

Source Survey(s) Year Scale

NOAA Shoreline Data Explorer OR43C04 1926 1:20,000

USGS Hydrographic Vectors 45123h8 1973 1:24,000

46123a8

Bureau of Land Management Various 1999 1:24,000

National Aerial Photography Program 45123h8 2000 1:24,000

46123a8

Table 3: Bathymetric data sources from the National Ocean
Service. No survey data were available for the Necanicum River
region.

Source Survey Year Scale Spatial Resolution

NOSHDB H04611 1926 1:20,000 50–200 m

NOSHDB H04612 1926 1:20,000 50–200 m

NOSHDB H04635 1926 1:40,000 50–200 m

NOSHDB H08417 1958 1:20,000 50–200 m

LDART Spring 1998 1998 N/A 5 m

resulting shoreline file with vectors representing both Mean High Water and
Mean Lower Low Water was created using the Bureau of Land Management
(BLM) vectors with revisions made based on photography (Fig. 3b). Polyg-
onal files representing water and land were derived from data corresponding
to the Mean High Water line.

3.1.2 Bathymetry

Bathymetric datasets consisted of four hydrographic surveys obtained from
the NOS Hydrographic Database (NOSHDB) and LIDAR data from the
NOS Coastal Services Center (CSC) (Table 3). Various Federal, State,
and local agencies were contacted for recorded depth information on the
Necanicum River estuary, yielding no results. Tom Horning of Horning Geo-
sciences provided an estimated depth based on field observations (personal
communication). This estimation was combined with limited LIDAR data
within the intertidal zone to develop an estimated depth surface for the
estuary (Fig. 4).

NOSHDB surveys were conducted using a single-beam digital echo sounder
or lead line sounding method. The database processing system converted
sounding depths to NAD83 and corrected meters using the National Geode-
tic Survey (NGS) NADCON software and Carter’s tables (Carter, 1980),
respectively. The accuracy of these surveys is difficult to determine. Accu-
racy standards were not established until 1965, and the values were digitized
from hand-drawn maps. The surveys within the immediate vicinity of Sea-
side were based on the North American Datum of 1913, which required an
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Figure 4: Estimated depth surface of the Necanicum River estuarine region.

additional transformation based on a single pair of datum shift values before
applying NADCON (National Geophysical Data Center, 2004).

LIDAR data were obtained using the CSC LIDAR Data Retrieval Tool
(LDART) to cover the intertidal zone. The Topography section provides
details on these data.

Approximately 75,000 bathymetric points were selected from the surveys
and surface model with recent data superseding older data in overlapping
areas. Four anomalous points were removed from the selection. Spatial
polygons were created to display selected coverage areas (Fig. 5) within
the area of interest. 95% of the project area was covered by NOS survey
soundings of variable density.

3.1.3 Topography

LIDAR data from LDART, a 10-meter DEM from the USGS National Ele-
vation Dataset (NED), and a 10-meter DEM used in prior tsunami hazard
modeling (Priest et al., 1998) were obtained as topographic datasets. Fifteen
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Figure 5: Coverage areas of bathymetric data sources used in the DEM. The Necanicum River region
was estimated from limited LIDAR data and estimates from Horning (see Fig. 4). The coverage areas were
clipped to the study area boundaries for display purposes; however, the selected data sources extend beyond
the boundary to avoid interpolation edge errors during grid development.

Figure 6: Coverage area of topographic data sources used in DEM development (clipped to boundary for
display). Vertical control points are depicted by identification number.
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Table 4: Topographic data sources. The associated root mean square (RMS) error is based
on source metadata and NGS control point comparison.

Horizontal Vertical Vertical
RMS Error RMS Error RMS Error

Spatial based on based on based on
Source Survey Year Resolution metadata metadata comparison

LDART Spring 1998 1998 5 m 0.80 m 0.15 m 0.21 m

LDART Fall 1997 1997 5 m 0.80 m 0.15 m 0.37 m

David C. Smith 1996 1996 10 m N/A N/A 0.77 m

& Associates, Inc.

USGS NED 45123h8 1973 10 m 15 m 15 m 1.24 m

46123a8

vertical survey control datasheets were collected from NGS for comparison
with each dataset (Fig. 6). Table 4 provides information on each dataset.

The LIDAR surveys were conducted as part of the Airborne Topographic
Mapper Mission to cover coastal areas. The data were collected at low tide
using a pulsed laser with a wavelength of 550 nanometers. Quality assess-
ment of the survey data is limited to internal consistency checks with filtering
to remove outliers of first returns. A detailed analysis of the LIDAR data was
made to remove vegetation by selecting points with the highest likelihood
of being on the surface. This analysis was conducted using Spatial Analyst
and 3D Analyst (Fig. 7b). Rectified orthophotos were used to remove points
representing apparent vegetation or structures (Fig. 7c) to create a corrected
LIDAR dataset.

The USGS NED DEM was developed in 1999. The dataset was derived
using bilinear interpolation of hypsography and hydrography contours based
on surveys conducted in 1973. The majority of the Seaside area is below the
hypsography contour interval of 25 feet (7.6 m). A comparative analysis of
the USGS data with the corrected LIDAR survey data revealed significant
differences in these low-lying areas. The USGS DEM was edited to select
only those values above the 250-foot contour and outside of the boundary
of the available LIDAR data. Further edits were made to contours derived
from the USGS DEM to remove boundary discrepancies (Fig. 7d).

David C. Smith and Associates, Inc., developed the 10-meter DEM used
in prior tsunami hazard modeling. It was based on 1996 orthorectified aerial
photography. DEM values did not compare well with LIDAR or USGS data
(Fig. 7e). Comparison with control data along the coast also showed an av-
erage error of 3 m. Since little information was available on the development
procedure for this dataset, it was not considered a viable input option.

The corrected 1998 LIDAR survey and USGS NED DEM data were
selected as final input for the DEM (Fig. 6). LIDAR covered approximately
45% of the project area.
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(c)(b)

Figure 7: Topographic data analyses. (a) Red boxes depict sample areas as detailed in associated panels.
(b) Analysis of LIDAR data using 3D Analyst with 2 m vertical exaggeration. Peaks suggest possible
vegetation or infrastructure. (c) LIDAR data is corrected to remove vegetation and infrastructure using
orthophotography as a reference. Polygons (yellow boxes) representing buildings are drawn to select and
remove data values that do not represent the “bald earth.” (d) Contour comparison of LIDAR (black) and
USGS NED (white) data along the boundary of the LIDAR survey. A vector file (yellow) is created to correct
disparities between datasets with reference to orthophotography. (e) Contour comparison of corrected data
(black) with DEM used in prior tsunami hazard modeling efforts (blue).
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3.2 DEM Development

A simple method of Delauney triangulation and natural neighbor interpola-
tion was used to build the DEM. Delauney triangulation, also known as the
triangular irregular network (TIN) method, constructs a surface of continu-
ous non-overlapping triangles based on mass points and breaklines. A TIN
maintains data values within the range of vertices and will not extend beyond
boundaries. Its main disadvantage is the creation of triangular plateaus due
to all vertices having the same elevation value. This usually occurs when
using contours as an input. The inputs for this study consisted primarily of
mass points.

Natural neighbor interpolation helps create a smoother raster grid by
using an areal weighting scheme on the nearest TIN vertices to the output
raster cell. Other methods such as spline interpolation with tension or inverse
distance weighting are also viable options, but were not investigated.

DEM development consisted of three steps: building the bathymetric
grid, building the topographic grid, and then merging the two grids into the
final DEM (Fig. 8). This process was chosen based on modeler requirements
to ensure a definitive distinction between land (positive) and water (negative)
values. Zero or near-zero values cause anomalies in the inundation model.
Consequently, all land values were restricted to ≥0.01 m and all water values
to ≤−0.01 m.

The bathymetric grid was built using selected bathymetric data and the
land polygon (with a value of −0.01 m) as input for the interpolation. The
resulting grid was clipped to the water polygon. The topographic grid used
selected topographic data sources and the water polygon (with a value of
0.01 m) as input and then clipped to the land polygon in the same manner.
Spatial analysis was used to find problem areas, which were corrected by
re-interpolating after removing anomalous points or adding supplementary
points and contours.

The topographic and bathymetric grids were merged into a final DEM
and analyzed for consistency. Any null values were set to 0.01 m. The DEM
was exported to an ASCII raster grid and distributed to the modeler.

3.3 Quality Assurance

The quality of the DEM is difficult to determine. A number of different
factors contribute to cumulative DEM error, including inherent error within
the various selected data sources, conversion error, error due to interpolation
of spatially varying data sources, and error due to subjective interpretation.
An attempt to quantify some of these factors is provided below.

Inherent errors in the data sources are provided in the Data Sources
and Processing section. The spatial density of selected bathymetry and
topography data show high-density in low-lying and intertidal areas with
sparse data offshore (Fig. 9). Offshore values of the DEM are based on
interpolation of distant data points, whereas near-shore values are based on
data points that support the requested 1/3 arc-second resolution.

Horizontal datum conversions were primarily made using NADCON trans-
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(b) (c)(c)(a)(a)

Figure 8: Steps of DEM development: (a) bathymetric grid, (b) topographic grid, and (c) merged grid.

(a) (b)

Figure 9: Spatial density distribution. (a) Spatial density of selected bathymetric (black) and topographic
(gray) data sources. Red box depicts (b) detailed display of distribution. The topographic data had a much
higher density (ranging from 5–10 m) than the bathymetric data (ranging from 5–200 m).
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formation, which is based on a minimum-curvature model (Dewhurst, 1990).
The conversion from NAD27 to NAD83 introduces uncertainty of 0.15 m at
a 67% confidence level. Converting from older North American datums to
NAD83 leads to a conversion error of 0.20 m (National Geodetic Survey,
2004).

Converting from a map projection to geographic coordinates also intro-
duces error. A few data sources were in Oregon Lambert Projection or
Oregon State Plane Projection. The conversion error for both of these pro-
jections is 0.10 m (Snyder, 1987).

Vertical datum conversion based on the interpolation of tidal and geode-
tic datums obtained from NOS tidal benchmarks produced an error of 0.05 m
(Mofjeld et al., 2004). Additional vertical control error was created based
on estimating the interaction between the open coast and the Necanicum
River estuary. The estuarine region is not well defined (see Bathymetry sec-
tion 3.1.2); thus, the vertical datum surface (Fig. 2) does not account for
the possibility of a deltaic sill affecting tidal circulation. This may add a
vertical error of up to 0.35 m within the estuary.

Assessing the quality of the DEM was based on comparison with vertical
control and source data. Vertical control data existed only for land elevation
values, yielding a RMS error of 0.135 m (Fig. 6, Table 5). A direct difference
between bathymetric source data and the DEM yielded a RMS error of
0.01 m.

Subjective interpretation may also introduce error. The construction of
shoreline and contours based on disparate sources are two of the primary
components that could affect DEM quality. Descriptions of these data pro-
vided in the methodology section provide some guidance on the quality of
the interpretation.

Table 5: Comparison of NGS vertical control points with the DEM. Average error
was 0.404 m with a RMS error of 0.135 m. See Fig. 6 for a spatial display of the
control points.

Control Control DEM Absolute
Point Latitude Longitude Elevation (m) Elevation (m) Difference (m)

AA3536 −123.929722 45.993056 8.210 7.715 0.495
RD1141 −123.929551 45.995082 7.297 6.990 0.307
RD1422 −123.924444 45.989167 5.490 5.374 0.116
RD1423 −123.926111 45.981944 6.074 5.992 0.082
RD4368 −123.923333 45.988056 5.640 5.232 0.408
SC0609 −123.914167 46.060278 8.152 8.923 0.771
SC0611 −123.916698 46.056681 20.911 20.494 0.417
SC0617 −123.920805 46.028119 11.834 11.754 0.080
SC0618 −123.920833 46.027778 9.562 9.881 0.319
SC1034 −123.913889 46.047778 6.190 6.764 0.574
SC1035 −123.915000 46.035556 6.964 8.292 1.328
SC1036 −123.911667 46.023333 7.095 7.043 0.052
SC1037 −123.913889 46.009444 4.164 4.185 0.021
SC1038 −123.920833 46.001111 6.103 5.683 0.420
SC1041 −123.925000 46.001389 5.362 4.697 0.665
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Figure 10: Historical shoreline depicting the apparent Mean High Water line based on orthophotography
obtained from the University of Oregon. The northern outer coast has an accretion rate of approximately
45 meters every 14 years. The southern outer coast varies little over the same period.

3.4 Historical shoreline analysis

The discovery of significant shoreline differences with source data and re-
cent aerial photography from 1996 and 2000 led to an analysis of historical
shoreline for the Seaside area. Past aerial photographs were obtained from
the University of Oregon. Apparent mean high water and mean lower low
water were digitized and georeferenced in ArcGIS©.

The resulting files show a very dynamic shoreline pattern likely due to
the Seaside area residing within the Columbia River littoral cell. A gen-
eral trend of accretion averaging 3.2 m/y on the outer coast north of the
Necanicum River mouth is apparent (Fig. 10). These values nearly match
the historical accretion rates of the Clatsop Plains sub-cell, which averages
3.3 m/y (Woxell, 1998).

There is also a cyclic pattern seen within the Necanicum River mouth
(Fig. 11). The northern extent of the mouth shows an accretion rate of ap-
proximately 7 m/y since 1939. The southern extent varies between accretion
and erosion over an estimated 15-year cycle. Over 55 years, the mouth span
ranged from 300–800 m width.
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Figure 11: Accretion and erosion trends of the Necanicum River mouth over a
55-year period.

4. Summary and Conclusions

A digital elevation model consisting of merged bathymetry and topography
and covering the Seaside, Oregon region was built for use in a tsunami in-
undation model as part of a FEMA FIRM Pilot Study. The DEM consisted
of disparate data sources from various Federal, State, and local agencies.
Data were collected and processed according to requested parameters. Best
available data were selected as input for the grid. A simple interpolation
method based on Delauney triangulation and a natural neighborhood filter
was used to build the DEM.

The DEM was analyzed for quality by making comparisons with input
data sources and vertical control points. Total DEM error is difficult to
quantify due to subjective factors in development; however, an estimated
total error range is provided in Table 6. The methodology described in this
report helps provide a qualitative assessment of the DEM.

The DEM provides a snapshot of a dynamic region. Varying shoreline



Digital Elevation Model for Seaside, Oregon 15

Table 6: Estimate of total DEM error. These estimates are based on a quantitative
assessment of the DEM. The total error is sum of the quantitative values. Subjective
interpretation adds unknown error to the DEM.

Error Type Horizontal Error Range Vertical Error Range
(meters) (meters)

Projection/Datum conversion 0.35–0.45 0.05–0.40

Comparison with vertical control 0.14–1.33

Comparison with original data sources 0.80–10 0.01–1.24

Total known quantitative error 1.15–10.45 0.20–2.97

patterns may affect maximum credible tsunami inundation. Further analysis
and subsequent updates are necessary to ensure accurate tsunami hazard
assessments.

The inherent uncertainty based on disparate data sources and the dy-
namic nature of the shoreline led to a set of recommendations to improve
the DEM. These recommendations are listed below in no particular order:

• New bathymetric multibeam surveys should be conducted for the Nec-
anicum River and the offshore region of northern Oregon. This could
significantly reduce error in the DEM by providing greater spatial den-
sity and better information on the current state of the seafloor.

• Recent 2002 LIDAR surveys should be used to update the topography
and intertidal zone. Given the dynamic nature of the shoreline, these
data could also be used to further analyze Columbia River littoral ex-
change patterns. Ideally, data with vegetation already removed would
be available to reduce processing time.

• A high-resolution tidal model to explore the tidal relationship between
the Necanicum River estuary and open ocean should be developed.
Tertiary tide gages should be installed to provide a recent observa-
tional record of current tidal trends, thereby reducing vertical datum
conversion errors.

• The latest orthophotos and high-resolution vectors representing Mean
High Water to more accurately depict the shoreline should be obtained.
New false-color orthoimagery is being collected by the State of Oregon
(Oregon Geospatial Enterprise Office, 2005).

• Different interpolation schemes should be tested to assess the best
method for the inundation model.

5. Data Credit

David C. Smith and Associates, Inc. (1996): 10-meter DEM. Portland,
Oregon.
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NOAA Coastal Services Center (2004): Aircraft Laser/GPS Mapping
of Coastal Topography, LDART. Charleston, South Carolina. http:
//www.csc.noaa.gov/lidar/

NOAA National Geodetic Survey (2004): Vertical Geodetic Control
Data. Silver Spring, Maryland. http://www.ngs.noaa.gov/

NOAA National Geodetic Survey (2004): OR43C04 1926 Shoreline,
Shoreline Data Explorer. Silver Spring, Maryland. http://www.ngs.
noaa.gov/newsys_ims/shoreline/

NOAA National Geophysical Data Center (2002): NOS Hydrographic
Database, GEODAS Version 4.1.18. Boulder, Colorado. http://
ngdc.noaa.gov/

NOAA National Ocean Service (2004): Regional Water-Level Station
Benchmarks. Silver Spring, Maryland. http://tidesandcurrents.
noaa.gov/benchmarks/

Oregon Bureau of Land Management (2001): Oregon Watershed Bound-
aries. Portland, Oregon. Data obtained through the Oregon Geospa-
tial Data Clearinghouse. http://www.gis.state.or.us/

USGS EROS Data Center (1973): Hydrographic Vectors. Sioux Falls,
South Dakota. Data obtained through the Oregon Geospatial Data
Clearinghouse. http://www.gis.state.or.us/

USGS EROS Data Center (1999): National Elevation Dataset. Sioux
Falls, South Dakota. http://gisdata.usgs.net/ned/

USGS National Aerial Photography Program (2002): 2000 Digital Or-
thophoto Quads. Reston, Virginia. Data obtained through the Oregon
Geospatial Data Clearinghouse. http://www.gis.state.or.us/
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Appendix C. Summary of
eyewitness observations from
1964 Alaska Tsunami in Seaside,
Oregon (compiled by Tom
Horning)

The 1964 Good Friday Alaska far-field tsunami struck Seaside on Friday, March
27, at 11:35 PM, approximately 1 hr before an approximate +5.4 ft MLLW high
tide. It took about 4 hr for the tsunami to reach Seaside from its source area
near Prince William Sound, arriving 15 min after the wave struck Neah Bay,
Washington, and 5 min before it reached Crescent City, California. The first
surge caused the greatest damage. A second surge probably occurred prior
to 1 AM, but caused significantly less damage. Surges continued for at least
12 hr. Surf was exceptionally low, averaging about 3 ft high, at a time of year
when 8 to 20 ft waves are common. The moon was full on a balmy windless
night and the night sky was cloudless, permitting good illumination. Damage
totaled $276,000 from flooded homes, damaged bridges, and ruined cars. Two
houses were damaged beyond repair. Evacuation sirens were not blown until
the first surge was spreading through neighborhoods and up rivers. The
decision to evacuate the city was withheld until urgent radio messages from the
Mendocino County (California) sheriff’s office were received recommending
evacuation of the coast. One fatal heart attack occurred during the sirens.

C1. Initial Drawdown

The first surge was preceded by a negative phase that drew down the tide to
an inferred elevation of less than minus 2 ft MLLW. The Necanicum River was
observed at two locations to be lower and narrower than ever seen before. Near
the Avenue A bridge, the river was observed to be only about 45 ft wide in a 135-
ft-wide channel that is always filled with water, even during tides of minus 2.0
ft MLLW. A police observer crossing the river at the 12th Avenue Bridge during
his evacuation claims that the mud bottom of the river was visible. These
observations have not been corroborated. Sand flats in the bay were exposed
immediately prior to the beginning of the first surge, according to another
police observer along the north side of the bay. The flats normally would have
been covered by the high tide.

C1
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C2. First Surge on the Beach

Few people observed the first surge arriving on the ocean beach on the west
side of Seaside. Near the Cove, at the south end of town, the ocean was seen
to withdraw and develop a trough-like depression about 1200 yards west of the
beach. Beyond the trough, the ocean rose higher than normal, as judged by the
elevation of breakers along the boulder beach of Tillamook Head. As the trough
deepened, small breakers between the trough and Seaside diminished until the
ocean surface became smooth and glassy, apparently as water withdrew off the
strand. Large waves then surged past observers on Tillamook Head and toward
the beach, much like 20-ft winter storm waves. It appears that the first surge
arrived along the Cove as a breaking bore, in contrast to its more passive arrival
farther to the north, perhaps due to effects from the headland. The water
surged over the cobble berm and passed between houses south of Avenue W,
carrying large driftwood against houses and filling basements with water.

According to newspaper accounts in the Seaside Signal, the arrival of the
first surge on the beach near Broadway, midway between Tillamook Head and
the river mouth, was characterized by waves running up the beach, followed by
additional waves rapidly overtaking the first, all of which chased strollers off the
beach. There are no eyewitness reports of a prior drawdown of the ocean along
this part of the beach, but it probably occurred, based on the reduction of water
elevation observed in the estuary. Apparently, a bore advanced onto the beach
near 12th Avenue, just south of the estuary at the north end of town, because
the police observer there heard the roar of very loud surf, felt an anomalous
strong wind from the west, and observed wads of foam blowing over his head
from out of the darkness. At this point, he departed in haste, sped eastward
across the 12th Avenue Bridge, and observed the unusual drawdown of the
river, apparently beating the incoming tsunami to the Necanicum River.

Runup elevations along the ocean front ranged from 19 to 23 ft NGVD.
Allowing for about 3.4 ft between MLLW and 0.0 ft NGVD, and given that the
tide was predicted to be at 4.9 ft MLLW (+1.5 ft NGVD) at the 12th Avenue
Bridge at that time, the first surge was from about 17 to 21 ft in height (there
is some question as to MLLW versus NGVD in the Seaside area). Water crossed
the ocean front Promenade at 12th and 9th Avenues, at Broadway and Avenue
A, at locations where elevations ranged from 20 to 23 ft. It rose to 19.5 ft at
Avenue S, but did not cross the boardwalk. There is an anecdotal account
of foam on the boardwalk one or two blocks farther to the north. Water was
observed flowing down 12th Avenue and Broadway, perhaps 6 inches deep, for
a distance of about one block. One eyewitness directly observed water less than
6 inches deep quietly flowing onto the Promenade near Avenue A. To the west,
the ocean surface was glassy with minor roiling “like a full glass of water just
poured”; free of significant foam and without any expression of the prevailing
3 ft surf. The water stood for “a few moments,” and then withdrew rapidly into
the moonlit darkness to well beyond standard low tide. Abundant debris, small
logs, sticks, and other detritus were left on the concrete walk of the Promenade
and in front yards. Larger stumps and logs were stranded on access ramps to
the beach, several feet below the Promenade surface.
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Water flowed onto Ocean Vista Drive south of Avenue W, near the Cove,
establishing runup at about 21 ft NGVD. Accounts are inconsistent as to
whether water crossed Sunset Boulevard along the south side of the Cove. From
the most conservative accounts, water appears to have risen to at least 19 ft
NGVD. Possibly it may have been 2 to 3 ft higher and may have carried large
logs and boulders onto the road, which some observers remember blocking
the road. One neighbor noted that the ocean surface was largely free of foam
and appeared ready to break over the berm, but then withdrew into the night.
Confusion arises with memories for residents of this area after 30 to 40 years,
because winter storms frequently have surged onto the road and into the
marshes on the lee side of the cobble berm on which the road is built. There are
no newspaper accounts of debris on this road, nor do emergency responders
and public works employees recall clearing debris. In general, it appears that
runup generally may have been limited south of Avenue S, as compared to
points farther north along the beach. In part, this can be explained by direct
observation that the tsunami water readily drained into the rounded cobble
deposits that underlie the south part of Seaside, in contrast to less permeable
dune sands and organic soils farther to the north. This enhanced drainage
prevented more extensive inundation of the upland terrain in the southern part
of the city.

C3. Surge Enters the Bay

The primary surge apparently entered the estuary as waves propelled by a rapid
rise in sea level, but it became focused as a series of bores within the narrow
confines of the river channels. Observers along the east side of the bay, at
Mason Street and 25th Avenue, recount that water elevations rose over a period
of several minutes, allowing time to evacuate. Card-players near 24th Avenue
heard the growl of cobbles in the river channel west of their house, like a distant
jet engine, and observed wild and chaotic conditions in the estuary with waves
and foam moving incomprehensively in the moonlight. Water and foam barely
surmounted the forested dune on which their residence was built, establishing
runup at about 21 ft NGVD from about 20th to 24th Avenues.

C4. Surge Enters Neawanna Creek and Venice
Park Neighborhood

An observer at 26th Avenue and Queen Street observed a bore heading straight
toward his house up the lower channel of Neawanna Creek. The family dog first
heard the dull roar of the water. The family had less than 1 min to evacuate
upstairs before water and 5-ft diameter driftwood logs crashed through the
west side of their house, filling it 7 ft deep, pushing out the back wall, and
carrying away their cars. The surge banked against Highway 101 north of
the Neawanna Creek Bridge, partly flooding over it, depositing sand on the
highway and running between houses to the east. The surge spread back to the
southwest, inundating the eastern two-thirds of the Venice Park neighborhood
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under 1 to 3 ft of water from 24th to 26th Avenues, and lapping onto a low
dune ridge on the west side of the neighborhood. Freezers, coolers, furniture,
and spewing propane tanks were consistently found southwest of their homes
of origin. Similarly, large driftwood logs floated into the neighborhood on
southwesterly directed currents. Several families put their children into attic
spaces and onto roofs to avoid the swift rise of water. Surges constrained by
dense forest vegetation and brush along narrow roads rose as high as 7 ft, only
to drop to less than 3 ft in open intersections. Many heard the evacuation
sirens and stepped out of their homes to find swift currents in the streets.
Several mobile homes were swept into the highways or into the river. In this
neighborhood, static water runup averaged about 12.5 ft NGVD, or about 2.5
ft higher than the elevation of highest flooding due to storm surge in the
following 40 years. Surges locally increased runup by 6 to 12 in, primarily near
the river channel.

It is likely that runup was increased a small amount by debris dams lodged
against bridges. Runup elevations upstream from the Neawanna Creek (Hwy
101) Bridge were about 1.5 ft lower than in Venice Park, below the blockage.
Pilings beneath the Seattle, Portland, and Spokane train trestle, just upstream
from the Highway 101 Bridge, were washed away by the floodwaters, leaving
the ties and rails, which hung as a suspension bridge between the riverbanks.
Apparently, debris dams against the pilings forced water to accelerate near the
bed of the river, and this washed away sand into which the pilings had been
driven, allowing them to be swept away with the logjam.

Heavy foam and strong, groaning currents were observed by evacuees who
crossed the 12th Avenue Bridge over Neawanna Creek, but residents along
the river bank at the bridge did not observe evidence of flooding out of the
flood plain. Between 12th Avenue and Broadway, water did not rise any higher
than typical winter floods. Runup in this vicinity appears not to have been
higher than about 9 ft NGVD. There is very little evidence of the extent of
flooding south of Broadway due to the absence of damage. Water is inferred
to have flooded at least to the Avenue S Bridge, primarily within the channel.
In general, flooding affected marshland of the Neawanna Creek drainage for a
distance of about 1 mile upstream from the bay.

C5. Surge in the Necanicum River

Inundation within the Necanicum River extended from its mouth more than
2 miles upstream to at least the ninth fairway of the Seaside Golf Course, just
south of Avenue U. An eye-witness between Broadway and Avenue A observed
multiple bores advancing over the nearly empty river bottom, each about 2 ft
high and each followed by another within 10 to 30 sec, until the 14-ft-deep river
channel was filled flush to the edge of its banks by a final 4-ft culminating bore.
The culminating bore was observed sweeping up the Necanicum Channel near
4th Avenue beneath a thick mantle of dense foam, essentially as a quiet plateau
of water moving at about 10 miles per hour. The bore struck the main timber
decking of the abandoned 4th Avenue Bridge and tore it from its pilings with
the sound of “giant eggshells cracking.” The decking broke into multiple pieces
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and floated upstream, the largest to lodge beneath the east end of the First
Avenue Bridge and tip up to erect a cofferdam to the on-rushing water. As a
result, water and foam were directed beneath the west end of the bridge and
beyond. Water flowed over the bridge railings and flooded westward across
First Avenue and Necanicum Boulevard, filling parking lots and streets, and
blocking evacuation by many who thought it would be a safer crossing than
farther down stream. Water was several inches deep in Broadway west of
the river. Foam was as high as 7 ft along the sides of buildings along North
Edgewood, apparently having been skimmed off by the deck of the Broadway
Bridge. As the foam broke down later, only silt from the river was left in the
streets, in contrast to beach and bay sands in neighborhoods closer to the river
mouth.

Debris from the 4th Avenue Bridge, or large driftwood, continued upstream
beneath the Broadway Bridge to the First Avenue Bridge, where it struck the
bridge railings and knocked them into the street. Swift currents, possibly with
the assistance of debris dams, swept two sets of pilings from beneath the
Avenue G Bridge, farther to the south. The concrete decking of the bridge
fortunately was able to span the gap and support the loads of evacuating cars
without collapsing. Low areas on the west side of the river flooded with several
inches of water from about Avenue I to about Avenue N, and as far west as
South Downing Street.

Water and/or foam stood on the decks of all bridges from 12th Avenue to
Avenue G. Runup reached more than 14 ft NGVD at 12th Avenue, about 13 ft
at 1st Avenue, and about 12 ft at Avenue A. Water entered the first floor of
the hospital at Avenue S, flooding only several inches deep and establishing
runup at about 10.5 ft. Runup reached 9.8 ft NGVD on the ninth green of the
golf course at Avenue U. Runup near bridges tended to be higher than farther
from the channel, apparently because of surges and splashing related to higher
velocities in the channels.

C6. A Second Surge

There are few recollections of the second surge of the Good Friday tsunami and
no reference to it can be found in the news clippings from that event. Hearsay
accounts of disaster responders suggest that barrels had moved about the
Venice Park neighborhood during the night by waves; however, large driftwood
logs were not affected and no residents of the neighborhood noticed anything
unusual. The primary observation of a second surge was made at the Seaside
Golf Course, where the owner observed, at about 1:30 AM, that a slightly lower
runup debris line had formed on the ninth green well after the first surge had
withdrawn.

An eyewitness who saw bores moving up the Necanicum channel later
moved to the north side of the estuary in Gearhart. There he saw what must
have been the second surge enter the estuary. Easily visible in the moonlight,
he saw multiple waves pouring into the bay from the ocean to strike the east
side of the bay near the high school, between 17th and 24th Avenues. The
waves rebounded and met oncoming surges to amplify and explode upward
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higher than the homes along the shore. Runup was as high as 21 ft NGVD
in this area, or nearly 8 ft higher than runup to the north or south. One
homeowner adjacent to the amplification zone observed that driftwood logs
had floated into her glass-enclosed patio without any damage to the panes,
implying gentle forces at the extreme edge of the runup. She also reported
that considerable rock fill along the shore had been washed away and, further,
that the bank had slumped enough to break irrigation pipes in the lawn and
distort some walls in the house a tiny amount. Another resident at 24th Avenue
estimated that the waves eroded the 15-ft-high bank of dune sand by about
10 ft.

C7. Sand and Debris Deposits

Although significant sand was transported by the tsunami into marshes and
neighborhoods, there was little evidence of intense channel erosion or scour-
ing. Noticeable scouring occurred only along shorelines where rock fill pro-
jected into the bay. These projections allowed eddying, which created shallow
depressions of less than 2 ft deep and no more than 70 ft long and 15 ft wide.
Sand deposition tended to occur along topographic shelves, such as riverbanks
and yards, where water velocities slowed abruptly. Streets and wide level fields
tended not to accumulate much sand, but yards adjacent to streets could
accumulate up to 14 inches of sand. Sand suspended in 30 to 36 inches of
water was able to settle out in houses to form layers of about 2 to 3.5 inches
thick. Many ghost shrimp (Callianassa californiensis) were transported from
the sand flats and river bottoms into yards and streets with the sand. The
shrimp probably were sucked from their burrows by Venturi forces, rather than
excavated by erosion, as their burrows can be more than 2 ft deep and such
extensive erosion was generally not visible. However, significant erosion in
sandy river channels could have occurred. Many fish were stranded as the
water withdrew. Worms came to the surface of the ground to escape the salt
water.

C8. Surges for Twelve Hours

Several surges entered the estuary the next day. They were perhaps as much as
2 to 4 ft high and appeared as rapid increases in the tide that took about 10 min
to peak. Water sped up the main river channels at speeds of 5 to 10 miles per
hour. Standing waves with breaking crests stood perhaps 2 to 3 ft high. Logs
riding in on the water rose out of the water as they crossed the waves, slapping
the water surface as they came back down. Stumps rolled and tumbled in the
rapidly moving water. As water spilled out of the channels and onto the sand
flats, it spread outward at a moderate walking pace without cessation as dark
turbulent sand-filled water several inches deep, crossing about 150 yards in
under 2 min. Shoaling occurred over sand bars in the channels and bores were
observed as far up the Necanicum River as Broadway.
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C9. Wrap-Up

Had the first surge arrived during low tide, much of the damage in Seaside
would most likely not have occurred, as later surges in the tsunami train were
apparently smaller than the earliest ones. It is important to note that had the
tide, the first surge, or the ocean surf of that day been higher, the damage in
Seaside would have resulted in significantly greater property damage. Water
would have poured across the Promenade and into the core of town, flowing
down nearly all streets. Many homes would have been swept from their
foundations and many lives could have been lost. Large numbers of people
evacuated across bridges and roads that were already flooded or were adjacent
to raging rivers. Had the water been any higher, many would have been washed
into deep, swift water, and most likely would have drowned.

This account of the 1964 tsunami in Seaside is based on interviews with
over 75 people, personal observations, at least four sets of excellent photos,
and clippings from various newspapers.





Appendix D. Location of sites
used in this study and presence
of 1964, 1700, and older tsunami
deposits

Source Site # UTM_X (NAD 83) UTM_Y (NAD 83) Date 1964 1700 Older

Jaffe et al., this study SS6-04-1 428207.00000 5092839.00000 06/24/04 yes no no
Jaffe et al., this study SS6-04-2 428244.00000 5092869.00000 06/24/04 yes ? no
Jaffe et al., this study SS6-04-3 428095.00000 5092851.00000 06/24/04 no no no
Jaffe et al., this study SS6-04-4 428094.00000 5092851.00000 06/24/04 no no no
Jaffe et al., this study SS6-04-5 428401.00000 5092858.00000 06/25/04 yes yes no
Jaffe et al., this study SS6-04-6 428401.00000 5092858.00000 06/25/04 no no no
Jaffe et al., this study SS6-04-7 428653.00000 5092807.00000 06/25/04 no no no
Jaffe et al., this study SS6-04-8 428683.00000 5092799.00000 06/25/04 no yes no
Jaffe et al., this study SS6-04-9 428742.00000 5092818.00000 06/25/04 no yes no
Jaffe et al., this study SS6-04-10 428757.00000 5092818.00000 06/25/04 no yes yes
Jaffe et al., this study SS6-04-11 428757.00000 5092828.00000 06/25/04 no yes no
Jaffe et al., this study SS6-04-12 429043.00000 5093031.00000 06/25/04 no yes no
Jaffe et al., this study SS6-04-13 429043.00000 5093026.00000 06/25/04 no no no
Jaffe et al., this study SS6-04-14 429288.00000 5095951.00000 06/26/04 yes no no
Jaffe et al., this study SS6-04-15 429297.00000 5095165.00000 06/26/04 yes no no
Jaffe et al., this study SS6-04-16 429294.00000 5095174.00000 06/26/04 yes no no
Jaffe et al., this study SS6-04-17 429289.00000 5095197.00000 06/26/04 yes no no
Jaffe et al., this study SS6-04-18 429297.00000 5095197.00000 06/26/04 yes no no
Jaffe et al., this study SS6-04-19 429279.00000 5095204.00000 06/26/04 yes no no
Jaffe et al., this study SS6-04-20 429273.00000 5095213.00000 06/26/04 yes no no
Jaffe et al., this study SS6-04-21 428595.00000 5094778.00000 06/26/04 yes no no
Jaffe et al., this study SS6-04-22 428139.00000 5092869.00000 06/27/04 no yes no
Jaffe et al., this study SS6-04-23 429663.00000 5094968.00000 06/27/04 no no yes
Jaffe et al., this study SS6-04-24 429506.00000 5094739.00000 06/27/04 no yes yes
Jaffe et al., this study SS6-04-25 429261.00000 5095231.00000 06/27/04 yes yes no
Jaffe et al., this study SS6-04-26 429303.00000 5095155.00000 06/27/04 yes yes no
Jaffe et al., this study SS9-04-30 428773.00000 5092845.00000 09/24/04 no yes yes
Jaffe et al., this study SS9-04-31 428808.00000 5093005.00000 09/24/04 no yes no
Jaffe et al., this study SS9-04-32 428736.00000 5092992.00000 09/24/04 no no no
Jaffe et al., this study SS9-04-33 428756.00000 5092500.00000 09/24/04 no yes no
Jaffe et al., this study SS9-04-34 429660.00000 5094931.00000 09/24/04 no yes no
Jaffe et al., this study SS9-04-35 429647.00000 5094894.00000 09/24/04 no yes no
Jaffe et al., this study SS9-04-36 429647.00000 5095033.00000 09/24/04 no yes no
Jaffe et al., this study SS9-04-37 427301.00000 5091607.00000 09/25/04 no no yes
Jaffe et al., this study SS9-04-38 427288.00000 5091519.00000 09/25/04 no no yes

D1
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Source Site # UTM_X (NAD 83) UTM_Y (NAD 83) Date 1964 1700 Older

Jaffe et al., this study SS9-04-39 427363.00000 5091396.00000 09/25/04 no no yes
Jaffe et al., this study SS9-04-40 427402.00000 5091267.00000 09/25/04 no no yes
Jaffe et al., this study SS9-04-41 427495.00000 5091107.00000 09/25/04 no no yes
Jaffe et al., this study SS9-04-42 429272.00000 5096272.00000 09/25/04 yes yes yes
Jaffe et al., this study SS9-04-43 428744.00000 5092758.00000 09/26/04 no yes no
Jaffe et al., this study SS9-04-44 428761.00000 5092819.00000 09/26/04 no yes no
Jaffe et al., this study SS9-04-45 428890.00000 5092944.00000 09/26/04 no yes yes
Jaffe et al., this study SS9-04-46 429182.00000 5093416.00000 09/26/04 no yes yes
Jaffe et al., this study SS9-04-47 429181.00000 5093445.00000 09/26/04 no yes no
Jaffe et al., this study SS9-04-48 429165.00000 5093502.00000 09/26/04 no yes no
Jaffe et al., this study SS9-04-49 429002.00000 5094032.00000 09/26/04 no no no
Jaffe et al., this study SS9-04-50 429433.00000 5094076.00000 09/26/04 no yes no
Jaffe et al., this study SS9-04-51 429216.00000 5094168.00000 09/26/04 no yes no
Jaffe et al., this study SS9-04-52 428466.00000 5093918.00000 09/27/04 yes no no
Jaffe et al., this study SS9-04-53 428466.00000 5093918.00000 09/27/04 yes no no
Jaffe et al., this study SS9-04-54 428540.00000 5094150.00000 09/27/04 yes no no
Jaffe et al., this study SS9-04-55 428576.00000 5094279.00000 09/27/04 yes no no
Jaffe et al., this study SS9-04-56 428609.00000 5094400.00000 09/27/04 yes no no
Jaffe et al., this study SS9-04-57 428752.00000 5092329.00000 09/27/04 no yes no
Jaffe et al., this study SS9-04-58 428695.00000 5092256.00000 09/27/04 no yes no
Jaffe et al., this study SS9-04-59 428330.00000 5091895.00000 09/27/04 no yes no
Jaffe et al., this study SS9-04-60 429307.00000 5093988.00000 09/27/04 no yes no
Jaffe et al., this study SS9-04-61 429196.00000 5094244.00000 09/27/04 no ? no
Jaffe et al., this study SS9-04-62 429260.00000 5094331.00000 09/27/04 no ? no
Jaffe et al., this study SS9-04-63 429288.00000 5094387.00000 09/27/04 no ? no
Jaffe et al., this study SS9-04-64 429216.00000 5094168.00000 09/27/04 no yes no
Jaffe et al., this study SS9-04-65 429239.00000 5094260.00000 09/27/04 no ? no
Jaffe et al., this study SS9-04-66 429278.00000 5094155.00000 09/27/04 no ? no
Jaffe et al., this study SS9-04-67 429259.00000 5094162.00000 09/27/04 no ? no
Jaffe et al., this study SS9-04-68 429171.00000 5094278.00000 09/27/04 no ? no
Jaffe et al., this study SS9-04-69 429251.00000 5094326.00000 09/27/04 no ? no
Jaffe et al., this study SS9-04-70 428156.00000 5092146.00000 09/28/04 no ? no
Jaffe et al., this study SS9-04-71 428170.00000 5092345.00000 09/28/04 no yes no
Jaffe et al., this study SS9-04-72 428297.00000 5092714.00000 09/28/04 yes no no
Jaffe et al., this study SS9-04-73 429394.00000 5094075.00000 09/29/04 no yes no
Jaffe et al., this study SS9-04-74 429511.00000 5094120.00000 09/30/04 no yes no
Jaffe et al., this study SS9-04-75 429624.00000 5094156.00000 09/30/04 no yes no
Jaffe et al., this study SS9-04-76 429682.00000 5094125.00000 09/30/04 no yes no
Fedorowitcz and Peterson, 1997 SSX_I 429141.14990 5096568.21467 07/18/96 no no no
Fedorowitcz and Peterson, 1997 SSX_II 429139.15015 5096542.21502 07/18/96 no no no
Fedorowitcz and Peterson, 1997 SSX_III 429136.15039 5096517.21535 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_IV 429134.15063 5096492.21569 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_V 429131.15086 5096467.21602 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_VI 429105.15111 5096441.21622 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_VII 429127.15135 5096416.21670 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_VIII 429124.15157 5096393.21701 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_IX 429122.15180 5096368.21734 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_X 429121.15227 5096319.21802 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_XI 429119.15223 5096323.21795 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_XII 429118.14988 5096570.21450 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_XIII 429115.15009 5096548.21479 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_XIV 429111.15034 5096522.21513 07/19/96 yes no no
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Source Site # UTM_X (NAD 83) UTM_Y (NAD 83) Date 1964 1700 Older

Fedorowitcz and Peterson, 1997 SSX_XV 429108.15058 5096497.21546 07/19/96 no no no
Fedorowitcz and Peterson, 1997 SSX_XVI 429091.15006 5096551.21460 07/18/96 no no no
Fedorowitcz and Peterson, 1997 SSX_XVII 429087.15029 5096527.21491 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_XVIII 429083.15054 5096501.21524 07/18/96 no no no
Fedorowitcz and Peterson, 1997 SSX_XIX 429079.15078 5096476.21557 07/18/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_XX 429104.15081 5096472.21578 07/19/96 no no no
Fedorowitcz and Peterson, 1997 SSX_XXI 429100.15105 5096447.21610 07/19/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_XXII 429096.15128 5096423.21641 07/19/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_XXIII 429092.15152 5096398.21674 07/19/96 yes no no
Fedorowitcz and Peterson, 1997 SSX_XXIV 429085.15045 5096510.21513 07/19/96 no no no
Fedorowitcz and Peterson, 1997 SSX_XXV 429085.15198 5096350.21737 07/19/96 no no no
Fedorowitcz and Peterson, 1997 SSX_XXVI 429089.15219 5096328.21770 07/19/96 no no no
Fedorowitcz and Peterson, 1997 SSX_XXVII 429116.15253 5096292.21836 07/19/96 no no no
Fedorowitcz and Peterson, 1997 SSX_XXVIII 429114.15270 5096274.21860 07/19/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_I 429415.15956 5095544.23052 07/27/96 no no no
Fedorowitcz and Peterson, 1997 SSW_II 429410.15982 5095516.23088 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_III 429405.16013 5095484.23129 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_IV 429400.16036 5095459.23161 07/27/96 no no no
Fedorowitcz and Peterson, 1997 SSW_V 429395.16065 5095429.23200 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_VI 429366.16067 5095428.23184 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_VII 429362.16096 5095397.23225 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_VIII 429359.16124 5095367.23264 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_IX 429332.16098 5095396.23209 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_X 429332.16125 5095367.23249 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XI 429335.16260 5095224.23448 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XII 429334.16281 5095202.23478 07/27/96 no no no
Fedorowitcz and Peterson, 1997 SSW_XIII 429330.16296 5095186.23498 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XIV 429302.16309 5095174.23499 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XV 429302.16282 5095202.23460 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XVI 429269.16311 5095173.23482 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XVII 429270.16281 5095205.23438 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XVIII 429238.16309 5095176.23460 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XIX 429242.16282 5095205.23422 07/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XX 429305.16387 5095091.23615 07/30/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XXI 429302.16410 5095067.23647 07/30/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XXII 429304.16410 5095067.23648 07/30/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XXIII 429277.16388 5095091.23600 07/30/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XXIV 429276.16435 5095042.23667 07/30/96 no no no
Fedorowitcz and Peterson, 1997 SSW_XXV 429276.16456 5095019.23699 07/30/96 no no no
Fedorowitcz and Peterson, 1997 SSW_XXVI 429250.16459 5095017.23687 07/30/96 no no no
Fedorowitcz and Peterson, 1997 SSW_XXVII 429252.16435 5095043.23652 07/30/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XXVIII 429253.16413 5095066.23621 07/30/96 yes no no
Fedorowitcz and Peterson, 1997 SSW_XXIX 429248.16483 5094992.23720 07/30/96 no no no
Fedorowitcz and Peterson, 1997 SSW_XXX 429228.16503 5094972.23737 07/30/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 712 429224.16817 5094147.24199 06/20/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 713 429243.16815 5094146.24209 06/20/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 714 429229.16732 5094730.24073 06/21/96 no no no
Fedorowitcz and Peterson, 1997 SSW 715 429259.16732 5094729.24091 06/21/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 716 429145.16594 5094880.23819 06/21/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 717 429148.16635 5094837.23880 06/21/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 718 429300.16419 5095057.23660 06/21/96 yes no no
Fedorowitcz and Peterson, 1997 SSW 719 429287.16397 5095081.23619 06/21/96 yes no no
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Source Site # UTM_X (NAD 83) UTM_Y (NAD 83) Date 1964 1700 Older

Fedorowitcz and Peterson, 1997 SSW 720 429272.16391 5095088.23601 06/21/96 yes no no
Fedorowitcz and Peterson, 1997 SSW 721 429275.16416 5093559.23656 06/21/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 722 429401.16034 5095461.23159 06/22/96 yes no no
Fedorowitcz and Peterson, 1997 SSW 723 429318.16131 5095362.23248 06/22/96 yes no no
Fedorowitcz and Peterson, 1997 SSW 724 429306.16121 5095372.23227 06/22/96 yes no no
Fedorowitcz and Peterson, 1997 SSW 725 429298.16317 5095165.23509 06/22/96 yes no no
Fedorowitcz and Peterson, 1997 SSW 726 429248.16263 5095225.23398 06/22/96 yes yes no
Fedorowitcz and Peterson, 1997 SSW 727 429086.16720 5094001.23978 06/22/96 no no no
Fedorowitcz and Peterson, 1997 SSW 728 428786.15976 5092942.22762 06/22/96 no no no
Fedorowitcz and Peterson, 1997 SSW 729 428618.15363 5092096.21823 06/25/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 730 428570.15327 5092053.21750 06/25/96 no yes yes
Fedorowitcz and Peterson, 1997 SSN 731 428244.15900 5092874.22369 06/25/96 yes ? no
Fedorowitcz and Peterson, 1997 SSN 732 428269.15858 5092815.22325 06/25/96 no yes no
Fedorowitcz and Peterson, 1997 SSS 733 429768.15954 5095536.23269 06/26/96 no no no
Fedorowitcz and Peterson, 1997 SSS 734 429758.16065 5095417.23425 06/26/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 735 428810.15618 5092432.22274 06/26/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 736 428843.15738 5092600.22459 06/26/96 no yes yes
Fedorowitcz and Peterson, 1997 SSN 737 428261.16010 5093022.22527 06/27/96 yes ? no
Fedorowitcz and Peterson, 1997 SSN 738 428262.16056 5093083.22589 06/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 739 428256.16069 5093101.22603 06/27/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 740 428238.16039 5093062.22554 06/28/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 741 428221.16000 5093010.22492 06/28/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 742 428171.15961 5092961.22413 06/28/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 743 428261.16091 5093131.22636 06/28/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 744 428359.16248 5093340.22903 06/28/96 yes yes no
Fedorowitcz and Peterson, 1997 SSN 745 428369.16268 5093368.22937 06/28/96 yes yes no
Fedorowitcz and Peterson, 1997 SSN 746 428345.16220 5093303.22858 06/28/96 yes yes no
Fedorowitcz and Peterson, 1997 SSN 747 428378.16226 5093310.22884 06/28/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 748 428393.16233 5093319.22902 06/28/96 yes yes no
Fedorowitcz and Peterson, 1997 SSN 749 428405.16222 5093304.22894 06/29/96 yes yes no
Fedorowitcz and Peterson, 1997 SSN 750 428406.16266 5093364.22955 06/29/96 yes no no
Fedorowitcz and Peterson, 1997 SSX 751 429127.15069 5096485.21574 06/29/96 yes no no
Fedorowitcz and Peterson, 1997 SSX 752 429130.15053 5096502.21552 06/29/96 yes no no
Fedorowitcz and Peterson, 1997 SSX 753 429133.15031 5096525.21522 06/29/96 yes no no
Fedorowitcz and Peterson, 1997 SSX 754 429138.15019 5096538.21507 06/29/96 yes no no
Fedorowitcz and Peterson, 1997 SSW 755 429121.16595 5093821.23822 07/02/96 no no no
Fedorowitcz and Peterson, 1997 SSW 756 429126.16610 5093843.23847 07/02/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 757 429218.16663 5093921.23976 07/02/96 no yes no
Fedorowitcz and Peterson, 1997 SSN 758 428447.16330 5093450.23064 07/03/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 759 428452.16342 5093467.23084 07/03/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 760 428326.16182 5093252.22796 07/03/96 no no no
Fedorowitcz and Peterson, 1997 SSN 761 428356.16043 5093061.22623 07/03/96 yes no no
Fedorowitcz and Peterson, 1997 SSW 762 429145.16461 5093626.23646 07/03/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 763 429150.16446 5093604.23627 07/03/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 764 429198.16475 5093646.23696 07/03/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 765 429197.16460 5093624.23674 07/03/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 766 429191.16448 5093607.23654 07/10/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 767 429207.16429 5093579.23636 07/11/96 no no no
Fedorowitcz and Peterson, 1997 SSW 768 429274.16404 5093541.23638 07/11/96 no yes no
Fedorowitcz and Peterson, 1997 SSX 769 429114.15045 5096510.21531 07/11/96 yes no no
Fedorowitcz and Peterson, 1997 SSX 770 429125.15141 5096409.21679 07/11/96 yes no no
Fedorowitcz and Peterson, 1997 SSX 771 429105.15113 5096439.21625 07/11/96 yes no no
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Source Site # UTM_X (NAD 83) UTM_Y (NAD 83) Date 1964 1700 Older

Fedorowitcz and Peterson, 1997 SSX 772 429097.15077 5096477.21567 07/11/96 yes no no
Fedorowitcz and Peterson, 1997 SSX 773 429081.15052 5096503.21520 07/11/96 yes no no
Fedorowitcz and Peterson, 1997 SSX 774 429086.15026 5096530.21486 07/11/96 yes no no
Fedorowitcz and Peterson, 1997 SSW 775 429306.16642 5093893.23999 07/12/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 776 429275.16646 5093898.23986 07/12/96 no ? no
Fedorowitcz and Peterson, 1997 SSW 777 429292.16645 5093897.23995 07/12/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 778 429306.16696 5093973.24077 07/12/96 no ? no
Fedorowitcz and Peterson, 1997 SSW 779 429326.16694 5093970.24085 07/12/96 no ? no
Fedorowitcz and Peterson, 1997 SSW 780 429239.16918 5094296.24353 07/12/96 no no no
Fedorowitcz and Peterson, 1997 SSW 781 429142.16963 5094492.24356 07/12/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 782 429180.16248 5093314.23361 07/12/96 no no no
Fedorowitcz and Peterson, 1997 SSW 783 429237.16239 5093299.23380 07/12/96 no no no
Fedorowitcz and Peterson, 1997 SSW 784 428750.15733 5092602.22405 07/13/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 785 428775.15735 5092602.22420 07/13/96 no no no
Fedorowitcz and Peterson, 1997 SSW 786 428827.15736 5092599.22449 07/13/96 no no no
Fedorowitcz and Peterson, 1997 SSW 787 428825.15793 5092679.22526 07/13/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 788 428851.15799 5092686.22549 07/13/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 789 428834.15836 5092740.22592 07/13/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 790 428836.15898 5092828.22680 07/13/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 791 429012.16225 5093287.23236 07/17/96 no no no
Fedorowitcz and Peterson, 1997 SSW 792 429121.16247 5093314.23327 07/17/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 793 428963.16117 5093133.23056 07/25/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 794 429010.16055 5093041.22993 07/25/96 no no no
Fedorowitcz and Peterson, 1997 SSW 795 428980.16070 5093064.22998 07/25/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 796 428955.16014 5092986.22907 07/25/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 797 428740.15717 5092580.22377 07/26/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 798 428731.15732 5092602.22393 07/26/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 799 428746.15832 5092742.22541 07/26/96 no ? no
Fedorowitcz and Peterson, 1997 SSW 800 428741.15887 5092820.22615 07/26/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 801 428883.16050 5093042.22919 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 802 429000.16253 5093327.23268 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 803 429025.16265 5093344.23299 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 804 429062.16285 5093371.23348 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 805 429100.16305 5093400.23398 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 806 429145.16301 5093392.23417 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 807 429136.16329 5093434.23453 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 808 429202.16351 5093465.23522 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 809 429165.16378 5093505.23539 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 810 429149.16399 5093536.23560 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 811 428806.16118 5093142.22971 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 812 428877.16171 5093214.23084 07/31/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 813 428919.16162 5093199.23094 07/31/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 814 428945.16164 5093201.23112 07/31/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 815 428927.16186 5093234.23134 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 816 428937.16204 5093259.23164 07/31/96 no no no
Fedorowitcz and Peterson, 1997 SSW 817 428769.15711 5092568.22383 08/07/96 no no no
Fedorowitcz and Peterson, 1997 SSW 818 428856.15710 5092558.22426 08/07/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 819 429172.16033 5093000.23050 08/07/96 no no no
Fedorowitcz and Peterson, 1997 SSW 820 429259.16160 5093182.23279 08/07/96 no no no
Fedorowitcz and Peterson, 1997 SSW 821 429241.16121 5093125.23213 08/07/96 no no no
Fedorowitcz and Peterson, 1997 SSW 822 428927.16009 5092980.22884 08/07/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 823 428945.16003 5092971.22886 08/07/96 no yes no
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Fedorowitcz and Peterson, 1997 SSW 824 429051.15989 5092943.22922 08/07/96 no no no
Fedorowitcz and Peterson, 1997 SSW 825 429049.16048 5093029.23005 08/07/96 no yes no
Fedorowitcz and Peterson, 1997 SSN 826 427303.14815 5091572.20470 08/07/96 no no yes
Fedorowitcz and Peterson, 1997 SSN 827 427272.14763 5091511.20388 08/08/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 828 428439.15262 5091982.21598 08/08/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 829 428446.15293 5092024.21644 08/08/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 830 428405.15230 5091943.21538 08/08/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 831 428335.15215 5091933.21484 08/08/96 no no yes
Fedorowitcz and Peterson, 1997 SSW 832 428277.15175 5091887.21402 08/08/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 833 428676.15398 5092138.21900 08/08/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 834 428690.15427 5092177.21948 08/08/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 835 428692.15459 5092222.21993 08/08/96 no yes yes
Fedorowitcz and Peterson, 1997 SSW 836 428692.15493 5092269.22040 08/09/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 837 428704.15474 5092241.22020 08/09/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 838 428676.15493 5092271.22032 08/09/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 839 428715.15505 5092283.22068 08/09/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 840 428729.15540 5092331.22124 08/09/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 841 428743.15545 5092336.22138 08/09/96 no no no
Fedorowitcz and Peterson, 1997 SSW 842 428752.15567 5092367.22174 08/09/96 no no no
Fedorowitcz and Peterson, 1997 SSW 843 428764.15609 5092424.22237 08/09/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 844 428756.15666 5092506.22314 08/09/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 845 429046.16109 5093117.23089 08/09/96 no no no
Fedorowitcz and Peterson, 1997 SSW 846 429063.16151 5093177.23158 08/10/96 no no no
Fedorowitcz and Peterson, 1997 SSW 847 429249.16518 5093709.23787 08/10/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 848 428973.16807 5094124.24034 08/14/96 no no no
Fedorowitcz and Peterson, 1997 SSXa 849 429279.15242 5096303.21921 08/14/96 yes no no
Fedorowitcz and Peterson, 1997 SSXa 850 429266.15277 5096266.21964 08/14/96 yes yes no
Fedorowitcz and Peterson, 1997 SSXa 851 429295.15302 5096239.22020 08/14/96 yes ? no
Fedorowitcz and Peterson, 1997 SSXa 852 429272.15307 5096234.22012 08/14/96 yes no no
Fedorowitcz and Peterson, 1997 SSXa 853 429268.15305 5096236.22007 08/14/96 yes yes no
Fedorowitcz and Peterson, 1997 SSXa 854 429256.15306 5096235.22001 08/14/96 yes yes no
Fedorowitcz and Peterson, 1997 SSXa 855 429227.15200 5096347.21828 08/14/96 yes ? no
Fedorowitcz and Peterson, 1997 SSXa 856 429247.15199 5096348.21839 08/14/96 yes no yes
Fedorowitcz and Peterson, 1997 SSXa 857 429263.15162 5096387.21795 08/15/96 no no no
Fedorowitcz and Peterson, 1997 SSXa 858 429276.15373 5096164.22112 08/15/96 yes ? no
Fedorowitcz and Peterson, 1997 SSN 859 428645.16626 5094873.23552 08/15/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 860 428638.16636 5094863.23562 08/15/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 861 428591.16726 5094772.23665 08/15/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 862 428542.16805 5094694.23748 08/15/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 863 428535.16769 5094731.23692 08/15/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 864 428617.16637 5094863.23551 08/15/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 865 428608.16625 5094876.23527 08/15/96 no no no
Fedorowitcz and Peterson, 1997 SSS 866 429723.15977 5095512.23275 08/15/96 no yes no
Fedorowitcz and Peterson, 1997 SSS 867 429717.16023 5095463.23339 08/16/96 no yes no
Fedorowitcz and Peterson, 1997 SSS 868 429694.16053 5095432.23368 08/16/96 no yes no
Fedorowitcz and Peterson, 1997 SSN 869 428847.16462 5095033.23439 08/16/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 870 428887.16343 5095155.23291 08/16/96 yes no no
Fedorowitcz and Peterson, 1997 SSN 871 428642.16539 5094963.23423 08/16/96 yes no no
Fedorowitcz and Peterson, 1997 SSS 872 429638.16593 5094855.24126 08/16/96 no no yes
Fedorowitcz and Peterson, 1997 SSS 873 429676.16484 5094970.23990 08/16/96 no no yes
Fedorowitcz and Peterson, 1997 SSS 874 429699.16377 5095084.23847 08/16/96 no yes no
Fedorowitcz and Peterson, 1997 SSS 875 429677.16255 5095216.23654 08/17/96 no yes no
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Fedorowitcz and Peterson, 1997 SSS 876 429506.16700 5094748.24200 08/17/96 no yes yes
Fedorowitcz and Peterson, 1997 SSN 877 428173.15573 5092439.21891 08/23/96 no yes no
Fedorowitcz and Peterson, 1997 SSN 878 428201.15567 5092427.21896 08/23/96 no no no
Fedorowitcz and Peterson, 1997 SSS 879 429681.15870 5095628.23092 08/23/96 no yes no
Fedorowitcz and Peterson, 1997 SSS 880 429704.15832 5095668.23051 08/23/96 no yes no
Fedorowitcz and Peterson, 1997 SSS 881 429670.15803 5095700.22987 08/23/96 no yes no
Fedorowitcz and Peterson, 1997 SSN 882 428337.15890 5092854.22405 08/23/96 no yes no
Fedorowitcz and Peterson, 1997 SSN 883 428353.15892 5092855.22416 08/23/96 yes yes no
Fedorowitcz and Peterson, 1997 SSN 884 428326.15888 5092851.22396 08/23/96 no yes no
Fedorowitcz and Peterson, 1997 SSS 885 429553.16868 5094567.24474 08/23/96 no no no
Fedorowitcz and Peterson, 1997 SSS 886 429503.16870 5094568.24445 08/23/96 no ? no
Fedorowitcz and Peterson, 1997 SSS 887 429483.16868 5094571.24430 08/24/96 no yes no
Fedorowitcz and Peterson, 1997 SSS 888 429459.16867 5094574.24413 08/24/96 no ? no
Fedorowitcz and Peterson, 1997 SSS 889 429505.16844 5094595.24409 08/22/96 no yes no
Fedorowitcz and Peterson, 1997 SSW 890 428193.15121 5091827.21290 08/22/96 no yes yes

UTM: Universal Transverse Mercator coordinates in North American Datum 1983, zone 10, in meters
yes = tsunami deposit of specified age present
no = tsunami deposit of specific age not present
? = evidence for tsunami origin for deposit of specified age inconclusive





Appendix E. Incorporating tides
into probability calculations

Including tides in the probability calculation is essentially a source of aleatory
uncertainty, because it is unknown at what tidal stage the tsunami wavetrain
will arrive at Seaside (Mofjeld et al., 1997; Mofjeld et al., in press). First,
consider the far-field case where only one rupture scenario (magnitude, slip,
area) is considered per source region ( j ). For each tsunami amplitude A j (cor-
responding to each j source), the tides produce a probability density function
f (y, A) that describes the distribution in height of the maximum waves, where
y is the total wave height, including tsunami and tidal amplitudes. To get
the exceedance rate for the j th source as a function of y , we integrate the
corresponding probability density function (PDF) as follows:

F j
(
y, A j

)≡
∞∫

y

f
(

y ′, A
)
d y ′. (E1)

To get an explicit form for F (y, A), a Gaussian distribution (Mofjeld et al., in
press) is a reasonable approximation to the PDF:

f (y, A) =B exp
[−(y −η0)2/2σ2]

, B−1 =�
2πσ, (E2)

where
η0(A) = A+MSL+C (MHHW−MSL)exp

[
−α(A/σ0)β

]
(E3)

and
σ(A) =σ0 −C ′σ0 exp

[
−α′ (A/σ0)β

′]
. (E4)

The parameters C , α, β, C ′, α′, and β′ are specific to the tides at a given location
(see Appendix A). The integral F (y, A) is then

F (y, A) = 1

2
erfc

[(
y −η0

)/�
2σ

]
,erfc(z) ≡ 1−erf(z). (E5)

Here, erf(z) = (
2
/�

π
)∫z

0 exp
(−t 2

)
d t is the standard form of the error function.

The rate at which y ′ ≥ y for a given source (λ j ) is the mean recurrence rate
of that design earthquake (ν j ) multiplied by F j :

λ j
(

y ′ ≥ y
)=ν j F j

(
y ′ ≥ y

)
. (E6)

If for all source regions there is only one design earthquake per region, then
the aggregate exceedance rate would be (since we are dealing with discrete
regions):

λ
(
y ′ ≥ y

)=∑
j
λ j

(
y ′ ≥ y

)
. (E7)

E1
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The exceedance probability at Seaside, assuming that the arrival times are
Poissonian, is

P
(

y ′ > y
)= 1−e−λT , (E8)

where T is the exposure time of interest (1 year).
Next, consider just the local case where a distribution of tsunami ampli-

tudes is obtained from multiple slip distributions available for a specified mag-
nitude, average slip, area. If p(Alocal) is the PDF for local tsunami amplitudes,
then

Elocal
(
y ′ ≥ y

)=
∫∞

0
p (Alocal)F

(
y, Alocal

)
d A. (E9)

p(Alocal) can be determined from a normalized histogram as in Mofjeld et al.
(in press) or by approximation to a Gaussian distribution, similar to f (y, A).
Inclusion of multiple realizations for local rupture (aleatory uncertainty of the
source) is discussed further in Section 5.2, “Source Specification,” for Cascadia
subduction zone earthquakes below. It follows that the local exceedance rate is
given by

λlocal
(

y ′ ≥ y
)=νlocalElocal

(
y ′ ≥ y

)
. (E10)

Therefore, the “Grand Total” exceedance rate (local + far field) can be given by

λ
(
y ′ ≥ y

)=λlocal
(
y ′ ≥ y

)+ far−field∑
j

λ j
(

y ′ ≥ y
)
. (E11)

The objective, of course, is to find y corresponding to λ = 0.01 yr−1 and λ =
0.002 yr−1.
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Appendix F. Determining
earthquake recurrence rates

For each earthquake, a set of source parameters must be chosen that deter-
mines the initial condition for propagation modeling. Earthquake magnitude is
the primary parameter that links other source parameters such as rupture area
and average amount of slip. Unlike deterministic modeling in which recurrence
rates are not considered, probabilistic modeling requires the determination of
recurrence rate for each source used in inundation modeling. Recurrence rates
can be determined from frequency-magnitude distributions as follows.

F1. Characteristic vs. Gutenberg-Richter

A persistent controversy in seismology is whether the frequency-magnitude
distribution for earthquakes follows a characteristic model at the largest mag-
nitudes or a modified Gutenberg-Richter (G-R) distribution. Although broad
generalizations are not always accurate, observational seismology tends to
support the modified G-R model, whereas paleoseismology studies tend to
follow, at least implicitly, the characteristic model. Figure F-1a, modified
from Wesnousky (1994), shows the two models for both the discrete and
cumulative form, where Ma is the magnitude of the largest aftershock for the
characteristic distribution. Note that for both models, smaller earthquakes
follow a power-law scaling relationship. In Wesnousky’s (1994) conception that
is typical for paleoseismic studies, there is a significant gap in intermediate
earthquake magnitudes between Ma and Mmax for the characteristic model
such that a given fault typically ruptures in Mmax earthquakes with the rest of
the distribution M < Ma representing foreshocks, aftershocks, and background
seismicity. In contrast, the G-R model predicts a power-law scaling relationship
that is valid for all magnitudes up to Mmax.

Both models are often employed in the development of the USGS National
Seismic Hazard Maps. For example, in the seismic hazard maps for Alaska
(Wesson et al., 1999) the Aleutian segment of the Pacific-North American in-
terplate thrust is characterized by a G-R distribution for M = 7–9.2, whereas the
Prince William Sound segment (1964 source region) is characterized by both a
G-R distribution (M = 7–8) and a characteristic rupture model (M = 9.2) with an
average return time of 750 years derived from paleoseismology studies (400–
500 years estimated by Bartsch-Winkler and Schmoll, 1992). For earthquakes
along the Cascadia interplate thrust, the National Seismic Hazard Maps use
two different models that are equally weighted (Frankel et al., 2002): (1) a
M = 9.0 characteristic earthquake with an average repeat time of 500 years

F1
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(a)
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Figure F1: Characteristic and Gutenberg-Richter earthquake distributions as described
in different studies: (a) Wesnousky (1994); (b) Kagan (2002a).

and (2) a series of M = 8.3 earthquakes that fill the seismogenic region of
the interplate thrust every 500 years, resulting in a repeat time of 110 years
for a M = 8.3 earthquake to occur anywhere in the seismic zone. A G-R
distribution is not used for Cascadia interplate thrust earthquakes. It should be
stressed, however, that the paleoseismic data used in characteristic earthquake
models needs to be carefully analyzed with respect to the possible magnitude
range that geologic markers represent and to account for open intervals in
calculating average repeat times (Parsons, 2004, submitted) (see also Savage,
1991; Schwartz, 1999 for specific concerns regarding the characteristic model).

A different definition of characteristic and Gutenberg-Richter models is
presented more recently by Kagan (2002a) as shown in Fig. F1b. The charac-
teristic distribution is a power-law distribution truncated at the characteristic
magnitude (cumulative form). This is similar to Wesnousky’s (1994) definition
of Gutenberg-Richter distribution (Fig. F1a) and hence is an obvious source
of confusion. The other distributions shown above are modified Gutenberg-
Richter distributions where there is an accelerating fall-off in earthquake re-
currence rates with increasing magnitude. The tapered Gutenberg Richter and
Gamma distributions have a “soft” corner magnitude, whereas the characteris-
tic and truncated Pareto (also called truncated Gutenberg-Richter because the
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probability density distribution is truncated) have “hard” cutoff magnitudes
(Kagan, 2002b).

For tsunamis, we are primarily concerned with establishing recurrence
rates for large magnitude earthquakes that occur at the tail of these distribu-
tions. The distributions derived by Kagan are statistically more defensible using
observed seismicity and seismic moment balances (Bird and Kagan, submitted;
Kagan, 2002a; Pisarenko and Sornette, 2004; Sornette and Sornette, 1999).
Even so, there is substantial uncertainty in establishing recurrence rates at
the distribution tails because of a lack (thankfully) of very large magnitude
earthquakes (hence, the reason there are multiple distributions).

F2. Modified G-R Distributions

The original form of the G-R distribution is

log N (m)= a −bm, (F1)

where N (m) is the number of earthquakes with magnitude ≥ m and a and b
are scaling parameters. The parameter a is often associated with the seismic
activity of a particular region and b is the power-law exponent of scaling.
Kagan (2002a), Sornette and Sornette (1999), and other earlier studies indicate
that source finiteness requires that there must be an upper bound to the
G-R distribution (Equation 1). This leads to the modified G-R distributions
described by Kagan (2002a) and shown in Fig. F1b.

In a simplified version involving the truncated G-R distribution, Ward
(1994) derives an expression for the average repeat time for earthquakes of
magnitude m:

T (m) =
[

b

1.5+b

]
10(1.5+b)mmax+9.5

Ṁs
[
10bmmax −10bm

] , (F2)

where Ṁs is the seismic moment release rate in Nm/yr. Note that the a-
value (Equation 1) does not appear in this expression. The seismic activity is
determined by Ṁs as described below. Recurrence rates calculated from (2) are
associated with a sharp distribution corner with a hard cutoff at mmax.

An equivalent expression for the tapered G-R (TGR) distribution can be
derived from Kagan (2002b, eqn. 7):

T (M0) =
[

1

1−β

]
M

β
0 M

1−β
cm

Ṁs
Γ(2−β)ξm , (F3)

where β = 2
3 b,Γ is the gamma function and ξm = exp(M0/Mcm). M0 and Mcm

are given in Nm (corresponding magnitudes m0 and mcm are given by m =
2
3 log M −6.0). Similar expressions can be derived for the other distributions.

F3. Seismic Moment Conservation

The seismic moment rate Ṁs in Equations (2) and (3) can be determined for
a particular seismic zone from historic earthquakes, as long as the catalog
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contains the largest seismic moment events. Otherwise, Ṁs can be determined
from fault slip rates (ṡgeol) and estimates of geometric parameters. The formula
for geologically determined Ṁs is given below (Ward, 1994):

Ṁs =μLHs ṡgeol (F4)

where μ is the shear modulus, L is the fault length, and Hs is the effective
seismogenic thickness. The latter parameter is the most difficult to estimate
because it involves determination of the base of seismicity (transition from
unstable to stable frictional properties) and the seismic coupling coefficient
(χ) that accounts for the portion of fault movement that occurs aseismically.
Studies by Bird and Kagan (submitted), Kagan (2002b), and Ward (1994) all seek
to ensure that the seismic moment rates are consistent with plate tectonic rates
and physical parameters.

F4. Seismic Zonation

In calculating frequency-magnitude distributions, a seismic zonation scheme
is used such that the scaling parameters can be considered more or less
uniform. For example, the zonation scheme used by Ward (1994) for evaluating
onshore seismic hazards in southern California entailed defining 66 regions
with definable characteristics. For the purpose of the tsunami pilot study,
much larger zones need to be considered. For far-field sources, the Flinn-
Engdahl regions are probably most suitable. Kagan (1997) and Sornette and
Sornette (1999) determine b-values, moment rate, and corner magnitudes for
Flinn-Engdahl regions relevant to far-field tsunamis. In a later paper, Kagan
(2002b) considers smaller circum-Pacific seismic zones defined by McCann et
al. (1979) and Nishenko (1991). For the smaller zones, however, the statistics
are not as reliable and accommodation for interacting zones (cf., Ward, 1994)
needs to be included for larger earthquakes that span multiple zones.

A question may be raised as to whether the estimated scaling parameters
are applicable for the subset of tsunamigenic earthquakes. The earthquakes
analyzed by Kagan (1997; 2002b) are in the depth range of 0–70 km, though
most are in the 0–40 km range. The primary condition that limits the transfer
of seismic to tsunami energy is deformation that occurs onshore rather than
offshore. This effect should be accounted for in existing tsunami propagation
models that use realistic bathymetry and topography over the source region.

F5. Approach Used in This Study

As outlined above, there are several choices of frequency-magnitude distri-
butions that one could choose to determine earthquake recurrence rates.
Whereas the scaling and recurrence rates of small earthquakes are usually
well defined, the tail of the distribution is difficult to constrain with statistical
confidence (Pisarenko and Sornette, 2004). Unfortunately, it is the large
earthquakes that exist at the distribution tail that are of primary interest for
far-field tsunami studies.
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One possible approach is to calculate inundation maps based on Mmax,
some of which have historic precedent, such as the 1964 Alaska, 1960 Chile,
1957 Aleutian, and 1700 Cascadia earthquakes. This serves the dual purpose of
constraining the aggregate 0.01 or 0.002 annual probability from high return-
period events and using these historic events for model validation. How-
ever, how do we establish the return period for these events? Sykes and
Quittmeyer (1981) use the time-predictable model (Shimazaki and Nakata,
1980) to estimate recurrence rates for large earthquakes in most of the regions
of interest. Murray and Segall (2002), however, recently call into question the
time-predictable model. As another option, we can use characteristic rates
for the 1964 Alaska source and 1700 Cascadia source regions (similar to the
National Seismic Hazard Maps) estimated from paleoseismology and use a
modified G-R distribution for other regions defined by Flinn-Engdahl zonation.
If characteristic sources are used, however, it would be most consistent to also
use historic and paleoseismic studies for other regions, such as Japan, that are
considerably more complex (e.g., Nanayama et al., 2003; Rikitake, 1999; Utsu,
1984). This also introduces the previously mentioned problems in using pale-
oseismic data to establish recurrence rates for specific earthquake magnitudes.
A third approach would be to simply use a modified G-R distribution for all
regions that are constrained by plate tectonic/fault slip rates. In this case,
the seismic moment rate for the Cascadia interplate thrust would have to be
derived from fault slip rates (Equation 4) and an assumed b-value. In contrast
to the paleoseismic/characteristic earthquake approach, both the magnitude
and recurrence rates are well defined, though there is significant uncertainty in
estimating recurrence rates for the largest earthquakes.

F6. Summary

One of the obvious difficulties with specifying far-field sources for this and
any tsunami probability study is obtaining accurate estimates for Mmax and
the associated recurrence rates for each source region. Several problematic
examples include wide variations in the estimated seismic moment for the 1957
Andreanof earthquake (Boyd et al., 1995) and differences between tsunami
and seismic estimates for events such as the 1952 Kamchatka and 1960 Chile
earthquakes. One way to incorporate these uncertainties is to estimate a
reasonable distribution of source parameters and run additional models to
determine the effect on inundation at Seaside. Given the time constraint of the
pilot study, however, we rely on sensitivity studies such as Titov et al. (1999) to
determine if and how this type of analysis should proceed.

Finally, an example of how these sources may combine for determining the
100-year and 500-year inundation zones is given below. If we assume a time-
independent (Poissonian) probability model and that the largest inundation
zone will be from a M = 9 Cascadia earthquake with an average return time
of 500 years, then the Cascadia earthquake alone (along with its variations) will
determine the 500-year tsunami flood at Seaside. Suppose, furthermore, that
the four largest inundation zones at Seaside were from a M = 9.0 Cascadia event
(500 yr), a M = 9.2 Gulf of Alaska event (750 yr), a M = 8.8 Kamchatka event (300
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yr), and a M = 9.5 Chile event (300 yr) Then, the 100-year tsunami flood would
be where the inundation zones from all four of these earthquakes overlap (i.e.,

1
500 + 1

750 + 1
300 + 1

300 = 1
100 ). These numbers are approximate for the purposes of

the example. Also, the combination of events constraining the 100-year flood
may change when time-dependent probabilities are considered.
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Appendix G. Surface and area
calculation for the 100-year and
500-year floods

The results of the probabilistic tsunami hazard analysis (PTHA) are grids of
probability values for a series of tsunami wave heights in 0.5-m increments
from 0.5 m to 10.5 m. The cell size is defined by the near-field tsunami source
models and is 0.000558 degree in geographic coordinates or approximately
60 m in projected coordinates. The cell values were exported from PTHA as
x y z (longitude, latitude, probability) values and reformatted as ArcGIS grids.
The grid for each wave height was contoured with an interval of 0.2% or 0.002
probability (Figs. G1a–c). The 1.0% contours for each wave height were merged
into one file representing an annual probability of exceedance of 1.0% or the
100-year tsunami (Fig. G1d). The 0.2% contours were similarly merged to
represent the annual probability of exceedance of 0.2% or the 500-year tsunami
(Fig. G1e).

The wave height contours overlap or are closely spaced (sub-pixel sepa-
ration) in coastal and inshore areas (Fig. G2d). The overlaps of the 100-year
contours were clarified in the plate that accompanies this report by selective
labeling, but overlaps for the 500-year contours are more complex and were
processed to smooth the surface, taking into account the maximum wave
height values at grid cell resolution (Fig. G2d–f).

Several ArcGIS surface interpolation methods were tested (with the over-
lapping and nonoverlapping contours separated or combined) to isolate one
that most closely reproduced the maximum grid values. Combining contour
data from the non-overlapping area and the extracted maximum points from
the overlapping area in the TOPOGRID tool provided final wave heights with
a standard deviation 0.25 m around the maximum PTHA wave heights. The
TOPOGRID command is an interpolation method designed for the creation of
digital elevation models (DEMs) (Hutchinson, 1993) from both line and point
input.

Each of the 500-year wave height contours was converted to a grid, the
grids were merged by descending wave height to capture the maximum value
in each grid cell. The maximum grid values were converted to points and
clipped to the overlap area for input to TOPOGRID (Fig. G2b). Contours that
do not overlap are clipped and input to TOPOGRID as line features without
modification. Contours of the resulting grid are used in the final representation
of these flood surfaces (Fig. G2c, Plate 1).

G1
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The eastern edge of the data portrays a maximum wave height of no less
than 2.5 m. This artificial thickness of water may be addressed by going
to a smaller grid spacing and/or modeling finer increments of wave height
exceedance from PTHA.

The extents of the 100- and 500-year maps are combined with the mean
lower low water line (or_seaside1_3navd) (Venturato, 2005) to produce the
tsunami-based flood zone map (Fig. G3).
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