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IQA Disclaimer

• “My agency pays me to do this job and 
entrusts me with a lot of responsibility, but 
what I say should be considered only my 
personal opinion and observations, should 
not be interpreted as agency policy, and if 
you don’t like what I say they’ll claim they 
never heard of me” – Robert A. Taylor, 2006
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Why Predictive Models?

• Models provide a continuous response from 0 to 1, 
rather than individual thresholds, which allow users to 
establish the level of effect (probability of toxicity,  
magnitude of effect) to meet  their objectives

• Models can take into account site-specific mixtures, 
and model output can be calibrated to site-data

• Calibrated models can be applied to other sediment 
chemistry data from the site/region without matching 
toxicity data
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Approaches to Predicting Risk From 
Sediment Mixtures

• Mechanistic approach (EqP, SEM/AVS):  
• Mechanistically-based approaches are designed to 

predict sediment toxicity based on an understanding of 
the chemical and biological processes that influence 
toxicity.  

• Requires understanding bioavailability and toxicity of all 
constituents, common mode of action, contaminant 
interactions to address mixtures (e.g., PAH toxic unit 
approach)

• Empirical approach:
• Derived from field-collected environmental sediment 

samples with matching measures of chemistry and 
biological effects

• Requires association between concentrations and effects, 
where each constituent is considered an estimator of the 
toxicity of the mixture
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Outline of Presentation

• Overview of logistic regression model (LRM) 
derivation and approach

• Application of LRM predictions of toxicity to 
Site- or Regional-specific assessments

• Using predictive models to scale benthic 
injury



6

Logistic Regression Modeling 
Development Approach

• Compile/standardize/QA database of matching 
sediment chemistry and toxicity for specific test 
endpoints

• Derive and evaluate individual chemical-specific 
logistic regression models that estimate the 
probability of toxicity for a given chemical 
concentration

• Combine acceptable individual models into single 
mixture model for estimating probability and 
magnitude of toxicity on a per sample basis
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Database Used to Derive LRMs

• >3200 samples of matching sediment chemistry and 
marine amphipod toxicity from coastal North America

• 10-day lethality endpoint for two species of marine 
amphipods:  Ampelisca abdita (N=2012) and 
Rhepoxynius abronius (N=1211)

• Most of data from large programs with standardized 
methods 



8

T80

T50

T20

10 10 10 10 10

0.2

0.4

0.6

0.8

1.0

Concentration (mg/kg)

Pr
op

or
tio

n 
To

xi
c

0 1 2 3 4
0.0

Individual Chemical Logistic 
Regression Models

• Logistic model estimates the 
proportion of samples expected to 
be toxic at a given concentration

• Normalized chi-square statistic 
provides a relative measure of the 
goodness-of-fit for the individual 
chemical models

• Point estimates (e.g.,  T20, T50, 
T80) represent the concentration 
at which 20, 50, or 80% of the 
samples would be predicted to be 
toxic

Lead



Individual Chemical Models
Metals 
Antimony
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Silver
Zinc

PCBs/ Pesticides
Total PCBs
Dieldrin
p,p'-DDD
p,p'-DDE
p,p'-DDT

PAHs
1-Methylnaphthalene
1-Methylphenanthrene
2,6-Dimethylnaphthalene
2-Methylnaphthalene
Acenaphthene
Acenaphthylene
Anthracene
Benz(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(g,h,i)perylene
Benzo(k)fluoranthene
Biphenyl
Chrysene
Dibenz(a,h)anthracene
Fluoranthene
Fluorene
Indeno(1,2,3-c,d)pyrene
Naphthalene
Perylene
Phenanthrene
Pyrene
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Mixture Models

• Predict the probability of observing toxicity in 
samples that contain a mixture of chemicals 
(most environmental samples) 

• LRM approach uses the maximum probability 
of observing toxicity taken from the set of 
probabilities calculated for each individual 
chemical in a sample (P_Max model)
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Predicted Probability of Toxicity vs. 
Observed Proportion of Toxic Samples
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The probability of toxicity is predicted using the P_Max model.  Each 
point represents the median predicted probability of a minimum of 50 

individual samples within the interval (n=3223)
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As the Predicted Probability of Toxicity Increases, 
Control-Adjusted Survival Decreases 
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Application of LRMs to Specific 
Sites or Regions

• Site-specific matching chemistry-toxicity data 
to evaluate model performance always 
recommended

• If limited available data, model output 
predicting incidence and/or magnitude of 
toxicity can be used to establish framework 
for scaling benthic injury
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Application of LRM to Newark Bay 
Watershed Data:  

Ampelisca 10-d Survival
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Application of LRM to Puget Sound 
Data for Rhepoxynius abronius and 

Ampelisca abdita 10-d Survival 

Each point represents the median sample probability of toxicity for 
samples within the interval
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Application of LRM to Calcasieu Estuary 
for Ampelisca 10-d and Hyalella 28-d 

Survival
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Calcasieu Estuary 
Comparison with original PMax Model
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Approaches to Using LRM Models to 
Scale Benthic Injury

• Interpolated surface
• LRM model output of predicted probability of 

toxicity or percent survival
• Spatial weighting of individual data points
• Use of numeric values vs defined levels of injury

• Grid
• allows weighting of multiple lines of evidence (eg., 

LRM predictions and sediment bioassay results)
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Advantages of LRM Approach

• Defined scale of probability from 0 – 1
• Less affected by number of chemicals 

analyzed than mean quotient approaches
• Model output can be used to define scale of 

injury based on incidence of toxicity or 
magnitude of response

• Models can be calibrated to site-specific data 
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Limitations of LRM Approach

• Bioavailability not explicitly accounted for
• Causality not directly attributable to individual 

chemicals without additional evidence
• Based on acute lethality endpoint
• Successful development of LRMs typically 

requires large database representing multiple 
chemical gradients 
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Spiked-sediment Amphipod Bioassay 
LC50 Values and Probability of Toxicity 

from Chemical-specific LRMs
Chemical LC50 

Probability of 
Toxicity Source 

      
    
Cadmium (mg/kg) 9.81 0.90 Mearns et al.1986 
 8.8 - 10.0 0.88 - 0.90 Kemp et al. 1986 
 8.2 - 11.5 0.88 - 0.91 Robinson et al.1988
 6.9 0.85 Swartz et al.1985 
    
Mercury (mg/kg) 13.1 0.97 Swartz et al. 1988 
    
Zinc (mg/kg.) 276 0.54 Swartz et al. 1988 
    
Fluoranthene (mg/kg) 4.2 0.71 Swartz et al. 1988 
 3.3 - 10.5 0.68 - 0.82 Swartz et al. 1987 
    
Phenanthrene (mg/kg) 3.68 0.82 Swartz et al. 1989 
    
Total PCBs (mg/kg) 8.8 0.87 Swartz et al. 1988 
    
p,p'-DDT (ng/g) 11.2 - 125 0.50 - 0.85 Word et al. 1987 
       
 

From U.S. EPA (2005).   Predicting toxicity to amphipods from sediment 
chemistry. NCEA.  Washington, DC; EPA/600/R-04/030
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Summary 
• The LRM approach provides a consistent basis for 

evaluating environmental sediment mixtures
• The models are not dose-response relationships for 

individual chemicals, but can be considered 
indicators of toxicity based on field-collected 
sediment chemical mixtures.

• Site- or regional-specific applications of the models 
should include an evaluation with matching sediment 
chemistry and toxicity data

• The LRM approach enables users to select the level 
of protectiveness (as measured by the probability of 
toxicity and/or the magnitude of toxicity) appropriate 
for their objectives.
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Additional Information on LRM Approach

• U.S. EPA (2005).   Predicting toxicity to amphipods from 
sediment chemistry. National Center for Environmental 
Assessment, Washington, DC; EPA/600/R-04/030.

• Field LJ, MacDonald DD, Norton SB, Ingersoll CG, Severn CG, 
Smorong D, Lindskoog R.  2002.  Predicting amphipod toxicity 
from sediment chemistry using logistic regression models.  
Environ Toxicol Chem 21(9): 1993-2005.

• Field LJ, MacDonald DD, Norton SB, Severn CG, Ingersoll CG.  
1999.  Evaluating sediment chemistry and toxicity data using 
logistic regression modeling.  Environ Toxicol Chem 18:1311- 
1322.
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