Coarse PM Methods Evaluation Study: Study Design and Results

> 2005 National Air Quality Conference San Francisco, CA Feb 15, 2005

R. Vanderpool, T. Ellestad, and P. Solomon US EPA – ORD – NERL

S. Natarajan, C. Noble, and R. Murdoch RTI International

J. Ambs (Rupprecht & Patashnick Co., Inc.), J. Tisch (Tisch Environmental, Inc.), and G. Sem (TSI Inc.)

#### **BACKGROUND**

U.S. courts have ruled that PM<sub>10</sub> represents a "poorly matched indicator" of PM because it includes the PM<sub>2.5</sub> fraction. EPA has consented to establish separate standards for the fine and coarse fractions of PM<sub>10</sub>

#### **STUDY OBJECTIVES**

- Conduct multi-site performance evaluations of leading methods (integrated and semi-continuous) for monitoring the coarse fraction of PM<sub>10</sub> (PMc = PM<sub>10</sub> – PM<sub>2.5</sub>). Size fractionation must be based on aerodynamic diameter and measurements must be referenced to mass concentration
- Evaluate the relative performance and precision of PMc samplers under a wide range of weather conditions and aerosol types

## **PM<sub>2.5</sub> and PM<sub>10</sub> FRM Samplers**



- Standard low-vol PM<sub>10</sub> inlets aspirating at 16.7 lpm (actual conditions)
- PM<sub>2.5</sub> aerosol fractionation using a WINS equipped with DOS impaction oil
- Filters were conditioned at 22C and 35% RH, analyzed gravimetrically. Postsampling filters archived at
  -30C for subsequent chemical analysis
- 3 FRM pairs from BGI, R&P, and Thermo-Andersen equipped with teflon filters (4<sup>th</sup> FRM pair equipped with quartz filters) 3

### **R&P Partisol-Plus 2025 Dichot**





- Standard PM<sub>10</sub> inlet aspirating at 16.7 lpm (actual)
- Aerosol fractionation by custom virtual impactor (15 lpm and 1.67 lpm)
- PM<sub>2.5</sub> and PMc mass collected on 47 mm teflon filters for gravimetric analysis
- Sequential sampler with multi-day capability
- 4 units used in our study (3 teflon and 1 quartz)

## **R&P Coarse Particle TEOM**



- Modified PM<sub>10</sub> inlet aspirating at 50 lpm (actual)
- PM<sub>10</sub> aerosol is fractionated by a custom virtual impactor (2 lpm coarse flow and 48 lpm fine flow)
- PMc fraction is heated to 50 C to remove particle bound water
- Coarse aerosol is collected and quantified by a standard TEOM sensor
- 3 units used in our study

## **Tisch SPM-613D Dichot Beta Gauge**





- Standard PM<sub>10</sub> inlet aspirating at 16.7 lpm
- Aerosol heated if <25C</p>
- Aerosol fractionation by custom virtual impactor
- PM<sub>2.5</sub> and PMc mass collected on polyflon tape roll
- PM<sub>2.5</sub> and PMc mass quantified hourly using separate beta sources and detectors
- 3 units used in our study

### **TSI Model 3321 Aerodynamic Particle Sizer**





- Standard PM<sub>10</sub> inlet aspirating at 16.7 lpm (actual)
- Isokinetic fraction of PM<sub>10</sub> aerosol removed at 5 lpm and enters the APS inlet
- APS sizes individual particles aerodynamically using time of flight approach
- Single particle volume converted to mass using mean density provided by user
- Total aerosol mass is sum of individual particle masses
- APS provides only PMc; not applicable for PM<sub>2.5</sub> or PM<sub>10</sub>
- Only sampler in study which provides detailed size distribution information
- 2 units used in our study

## Gary, IN





Mean daily temperature = 32.3 C

#### PHOENIX, AZ SIZE DISTRIBUTION DATA May - June, 2003 1.00 0.90 ---- PHOENIX, AZ FRM DATA 0.80 0.70 PM<sub>2.5</sub>/PM<sub>10</sub> Ratio 0.00 0.00 0.00 0.00 0.00 0.00 PM<sub>2.5</sub>/PM<sub>10</sub> Range = 0.10 to 0.27; Mean = 0.18 0.30 0.20 0.10 0.00 0 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2 3 Sample Day

#### **Riverside**, CA

#### **UCR Ag Ops Facility**





#### **PM<sub>2.5</sub> and PM<sub>10</sub> FRM Performance**

Phoenix versus RTP FRM Weighing May - June 2003



Dichot versus FRM PM<sub>2.5</sub> Concentrations Gary, IN (March - April, 2003)



## **R&P Dichots vs. FRM**

| Metric            | Gary, IN               | Phoenix, AZ           | Riverside, CA                     |
|-------------------|------------------------|-----------------------|-----------------------------------|
| PM <sub>2.5</sub> | Slope = 0.99           | Slope = 1.24          | Slope = 0.998                     |
|                   | Int. = +0.0            | Int. = -1.6           | Int. = +0.0                       |
|                   | R <sup>2</sup> = 0.998 | R <sup>2</sup> = 0.97 | R <sup>2</sup> = 0.995            |
|                   | Ratio to FRM = 0.99    | Ratio to FRM = 1.09   | Ratio to FRM = 1.00               |
| РМс               | Slope = 0.87           | Slope = 0.70          | Slope = 0.95                      |
|                   | Int. = +0.39           | Int. = +5.0           | Int. = +0.25                      |
|                   | R <sup>2</sup> = 0.969 | R <sup>2</sup> = 0.98 | R <sup>2</sup> = 0.98             |
|                   | Ratio to FRM = 0.89    | Ratio to FRM = 0.79   | Ratio to FRM = 0.96               |
| PM <sub>10</sub>  | Slope = 0.95           | Slope = 0.75          | Slope = 1.00                      |
|                   | Int. = -0.47           | Int. = +5.9           | Int. = -1.21                      |
|                   | R <sup>2</sup> = 0.981 | R <sup>2</sup> = 0.98 | R <sup>2</sup> = 0.99             |
|                   | Ratio to FRM = 0.94    | Ratio to FRM = 0.84   | Ratio to FRM = 0.97 <sub>(3</sub> |

## **R&P 2025 Update**

#### **Redesigned Cassette Transfer Mechanism**







#### **New Product: Single Event 2025 Dichot**





#### R&P COARSE TEOM AND FRM TIMELINE (PMc) Gary, IN (March - April, 2003)



| Metric | Gary, IN               | Phoenix, AZ<br>(May – June, 2003) | Riverside, CA          | Phoenix, AZ<br>(Jan 2004) |
|--------|------------------------|-----------------------------------|------------------------|---------------------------|
| РМс    | Slope = 0.68           | Slope = 0.79                      | Slope = 0.74           | Slope = 0.77              |
|        | Int. = +0.18           | Int. = +12.8                      | Int. = -0.64           | Int. = +0.70              |
|        | R <sup>2</sup> = 0.982 | R <sup>2</sup> = 0.951            | R <sup>2</sup> = 0.948 | R <sup>2</sup> = 0.995    |
|        | CV = 4.4%              | CV = 6.6%                         | CV = 1.7%              | CV = 2.6%                 |
|        | Ratio to FRM = 0.69    | Ratio to FRM = 1.05               | Ratio to FRM = 0.76    | Ratio to FRM = 0.80       |

#### **Idealized Ambient Distribution**

Fine Mode: MMD = 0.5 um, SG = 2 Coarse Mode: MMD = 15 um, SG=2



**Aerodynamic Diameter (micrometers)** 

### **Coarse TEOM Update**

- Diameter of the 50 lpm inlet's PM<sub>10</sub> impaction nozzle has been increased to increase cutpoint from approximately 9 micrometers to 10 micrometers
- Redesigned inlet will be evaluated under static conditions in the laboratory by USC using primary calibration aerosols
- Recommended operating temperature of the coarse TEOM has been reduced from 50 °C to 35 °C

#### Tisch, & FRM PM2.5 Concentrations Phoenix AZ: May - Jun, 2003



### **Tisch Beta Gauge Dichot vs the FRM**

| Metric            | Gary, IN               | Phoenix, AZ<br>(May – June, 2003) | Riverside, CA          | Phoenix, AZ<br>(Jan 2004) |
|-------------------|------------------------|-----------------------------------|------------------------|---------------------------|
| PM <sub>2.5</sub> | Slope = 1.17           | Slope = 2.03                      | Slope = 2.07           | Slope = 1.43              |
|                   | Int. = +1.6            | Int. = -3.4                       | Int. = -6.9            | Int. = -0.11              |
|                   | R <sup>2</sup> = 0.945 | R <sup>2</sup> = 0.946            | R <sup>2</sup> = 0.904 | R <sup>2</sup> = 0.939    |
|                   | Ratio to FRM = 1.26    | Ratio to FRM = 1.70               | Ratio to FRM = 1.64    | Ratio to FRM = 1.43       |
| РМс               | Slope = 0.885          | Slope = 0.92                      | Slope = 1.17           | Slope = 0.99              |
|                   | Int. = +0.34           | Int. = +5.9                       | Int. = -2.7            | Int. = +1.66              |
|                   | R <sup>2</sup> = 0.978 | R <sup>2</sup> = 0.995            | R <sup>2</sup> = 0.957 | R <sup>2</sup> = 0.994    |
|                   | Ratio to FRM = 0.91    | Ratio to FRM = 1.04               | Ratio to FRM = 1.08    | Ratio to FRM = 1.05       |
| PM <sub>10</sub>  | Slope = 1.02           | Slope = 1.02                      | Slope = 1.53           | Slope = 1.07              |
|                   | Int. = +2.5            | Int. = +7.8                       | Int. = -10.6           | Int. = +2.9               |
|                   | R <sup>2</sup> = 0.987 | R <sup>2</sup> = 0.996            | R <sup>2</sup> = 0.880 | R <sup>2</sup> = 0.998    |
|                   | Ratio to FRM = 1.09    | Ratio to FRM = 1.16               | Ratio to FRM = 1.29    | Ratio to FRM = 1.14       |

### **Tisch SPM-613D Update**

- Flow system has been redesigned to provide true volumetric flow control based on actual T and P
- Ambient temperature sensor has been added and can now be calibrated by the user
- Inlet heater has been modified to maintain aerosol RH below 45%
- New virtual impactor has been designed and will be evaluated



| Metric | Gary, IN                                                                     | Phoenix, AZ<br>(May – June, 2003)                                            | Riverside, CA                                                               | Phoenix, AZ<br>(Jan 2004)                                                           |
|--------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| РМс    | Slope = 0.42<br>Int. = +0.48<br>R <sup>2</sup> = 0.80<br>Ratio to FRM = 0.42 | Slope = 0.56<br>Int. = -0.20<br>R <sup>2</sup> = 0.99<br>Ratio to FRM = 0.55 | Slope = 0.66<br>Int. = -2.3<br>R <sup>2</sup> = 0.82<br>Ratio to FRM = 0.58 | Slope = 0.61<br>Int. = +0.16<br>R <sup>2</sup> = 0.993<br>Ratio to FRM = 0.62<br>21 |

### Summary of APS 3321 Results



## **Summary of Results**

- FRMs show strong inter-manufacturer precision (CV<6% for all three metrics) with no tendency for producing negative PMc values
- Precision of the semi-continuous samplers ranged from very good to acceptable
- Correlation (as R<sup>2</sup>) of semi-continuous samplers with the collocated FRMs is usually strong (>0.95)
- All five measurement methods show potential for measuring ambient PMc concentrations. Progress has already been made to address some sampler-specific measurement uncertainties identified during the field studies. New PMc sampler designs have been developed and should be evaluated.

## **Future Work**

- Continue analysis of all collected field data. Compare the relative hourly performance of semi-continuous methods.
- Continue to work with the sampler manufacturers to identify and correct instrument performance issues
- Perform additional field studies to evaluate second generation PMc samplers. Also evaluate any viable new PMc sampler designs.
- Use study results as guidance during regulatory development of PMc testing requirements and acceptance criteria.

## **Acknowledgements**

- Indiana Department of Environmental Management (Gary site)
- Maricopa County Environmental Services Department (Phoenix site)

 University of California-Riverside, Agricultural Operations (Riverside site)

# **Disclaimer**

- This work has been funded in part by the United States Environmental Protection Agency under Contract 68-D-00-206 to ManTech Environmental Technology, Inc. It has been subjected to Agency review and approved for publication.
- Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

