Advances in Proficiency Testing for Genetic Laboratory Sciences

Brad Popovich

Senior Director, Diagnostics and Pharmacogenetic Xenon Genetics Vancouver, British Columbia, Canada

Sir William Osler, 1892

"If it were not for the great variability among individuals medicine might as well be a science and not an art"

Advances in Proficiency Testing for Genetic Laboratory Sciences

Session Outline:

- 1. Overview of genetic testing
- 2. ACMG/CAP PT programs for genetic testing
- 3. Challenges in genetic PT
- 4. Logistical issues
- 5. Economic challenges
- 6. Conclusions

Three kinds of genetic tests

Hereditary Mutations

Somatic Mutations

Value of Interlaboratory Comparison Program

- Provides reassurance of laboratory quality.
- Performance outside the norm can be identified and corrective action taken even when internal comparisons are consistent over time (good precision/poor accuracy).
- Comparative statistics may detect biases between different instruments/reagents/techniques.
- Overall statistics objectively reflect state of the art in laboratory practice, as opposed to arbitrary standards as set by outside agencies.

Types of Genetic PT Programs

Formal

- American College of Medical Genetics/College of American Pathologists (ACMG/CAP)
- European Molecular Genetics Quality Network (EMQN)
- Human Genetics Society of Australasia
- Informal
 - Interlaboratory exchange programs
 - GeneTests (www.genetests.org)
 - Regional programs
 - PacNoRGG
 - Professional organizations
 - ACMG
 - AMP
 - SIMD

CAP Proficiency Testing Program in Molecular Pathology

- Molecular Oncology (MO)
- In Situ Hybridization (ISH)
- Bacteria, Mycobacteria, Viruses (ID, HIV/HV2, HC5, HC6)
- Fluorescence In Situ Hybridization (CYF, CYG)
- Molecular Genetics (MGL)
- Forensic DNA Databases (DNA)
- Forensic Identity (FID)
- Parentage (PI)
- Molecular HLA-A, B, C Typing (ML)
- Molecular HLA-DR, DQ, DP Typing (DL)
- Bone Marrow Engraftment (ME)

ACMG/CAP Biochemical and Molecular Genetics Resource Committee

CAP

- Wayne Grody (MGL)
 - Chair
- John Eckfeldt (BGL)
- Jeff Kant (MGL)
- Ron McGlennen (MGL)
- Walter Noll (MGL)
- Tim Stenzel (MGL)
- CAP Fellow
 Shuji Ogino (CAP Fellow)

ACMG

- Brad Popovich (MGL)
 - Vice Chair
- Robert Desnick (BGL)
- Steve Goodman (BGL)
- Bill Nyhan (BGL)
- Tom Prior (MGL)
- Karen Snow (MGL)

AACC Liaison
 Elizabeth Rohlfs

Committee Charge

- 1. Develop, maintain and enhance proficiency testing program to reflect the state of the art in both biochemical and molecular genetics
- 2. Function as a resource to a variety of CAP and ACMG committees and commissions
- 3. Develop an interface with various agencies and organizations concerned with defining and maintaining excellence in both biochemical and molecular genetics
- 4. Contribute to the continuing education of the members of the CAP and ACMG through Surveys, critiques, publications, and participation in CAP and ACMG education programs

MGL Survey History 2/2002

Disease	1995	1996	1997	1998	1999	2000	2001	2002
1. CF	A/B	В	А	A	A/B	A/B	A/B	A/B
2. DMD/BMD	А	A	А	А	А	A/B	A/B	A/B
3. FreidreichÕs			В			Α	В	A/B
Altaxia								
4. FVL			А	A	Α	A/B	A/B	A/B
5. Fragile X	В	A	В	В	A/B	A/B	A/B	A/B
6. Hb S/C	В	В				Α	Α	A/B
7. Hemochromatosis				В	В	A/B	A/B	A/B
8. HD		A/B	В	В	В	В	В	A/B
9. Mytonic			А			Α	А	A/B
Dystrophy								
10. Prothrombin					В	A/B	A/B	A/B
11. PWS/AS			В	В	В	В	В	A/B
12. RhD				Α		А	Α	A/B
13. SCA					А	В	В	A/B
14. SMA					Α	A/B	A	A/B
15. MTHFR						A/B	A/B	A/B
16. BRCA1/2							A	A/B
17. MEN2							В	A/B

MGL Enrollment

Year	ParitipantNimebr
1998	136
1999	173
2000	198
2001	217
2002	204 101 14

Demographics of MGL-B 2001

- MGL-B 2001
 217 participating labs
 192 responses received
 US = 143
 International = 74
- Countries represented
 - 1. South Africa
 - 2. Brazil
 - 3. Canada
 - 4. Japan
 - 5. Australia
 - 6. Germany
 - 7. Chile
 - 8. Singapore
 - 9. South Korea
 - 10. France
 - 11. US

MGL Program 1998-2002 Challenges per year (# of samples/challenge)

			1		
Disease	1998	1999	2000	2001	2002
1. DMD	1(3)	1(2)	2(3)	2(3)	2(3)
2. CF	$1(\overline{3})$	2(2)	2(3)	2(3)	2(3)
3. HbS/C			1(3)	1(3)	2(3)
4. FRAX	1(3)	2(2)	2(3)	2(3)	2(3)
5. Huntington (HD)	1(3)	1(2)	2(3)	1(3)	2(3)
6. FVL	1(3)	1(2)	2(3)	2(3)	2(3)
7. DM1			1(3)	1(3)	2(3)
8. PWS/AS	1(3)	1(2)	1(3)	1(3)	2(3)
9. Friedreich			1(3)	2(3)	2(3)
10. RhD	1(3)		1(3)	1(3)	2(3)
11. HFE (HLA-H)	1(3)	1(2)	2(3)	2(3)	2(3)
12. Prothrombin		1(2)	2(3)	2(3)	2(3)
13. SCA		1(2)	1(3)	1(3)	2(3)
14. SMA		1(2)	2(3)	1(3)	2(3)
15. Methylenetetrahydrofolate				2(3)	2(3)
Reductase Deficiency					
(MTHFR)					
16. BRCA 1/2				1(3)	2(3)
17. MEN2				1(3)	2(3)

PROPOSED SPECIMEN MODULARIZATION ACMG/CAP PT PROGRAM

Thrombophilla	Common	Red Blood Cell	Trinucleotide	Neurogenetics
Module	Mutation Module	Module	Repeat Module	Module
FVL	FraX	HbS/C	SCA-1	SMA
PTH	CF	RhD	SCA-2	DMD
MTHFR	HFE	BRCA1/2	HD	MD

MGL-B 2001 Participation / Disease

◆217 Total Participants

◆192 Responses Received

200(B)	
22	
45	
А	
85	
25	
152	
А	
37	
13	
А	
85	
134	
11	
А	
08	
98	
12	
	200(B) 22 45 A 85 25 152 A 37 13 A 37 13 A 85 134 11 A 98 25 134 11 11 12

ADOPTED SPECIMEN MODULARIZATION ACMG/CAP PT PROGRAM 2002

♦ 17 Analytes

- ♦ 3 Specimens per challenge
- ♦ 2 times /year

Module 1	Module 2	Module 3	
FV	CF	BRCA1	
PT	DMD/BM	BRCA2	
MTHFR	FA	MEN2	
FX	HD		
PW/AS	DM		
HH	RhD/E		
	HbA/C		
	SMA		
	SCA		

Participant Costs for MGL and Modularization

Costs:
2000 \$812
2001 \$1,200
2002: Modules introduced
#1 \$800
2 \$1,000
3 \$850

 Modules ultimately designed to keep PT costs lowest for the majority of participants

Participation and Enrollment Fees for 2002 ACMG/CAP PT Program

	Module 1	Module 2	Module 3
	FVL	CF	MEN2
	PT	DMD/BMD	BRCA1
	MTHFR	FA	BRCA2
	FX	HD	
	PW/AS	DM	
	HH	RhD	
		HbA/C	
		SMA	
		SCA	
Number of Participants	204	101	14
Enrollment	\$800	\$1,000	\$850

MGL Grading Started in 2001

- =10 responses necessary for grading
- Grading based on 80% consensus
- Grading for presence or absence of:
 - Proper allele (SNPs): CF, FV, PT, etc.
 - Exons: DMD, SMA, etc.
 - Mutational status (i.e. genotype/phenotype interpretation): SCA, FX, DM, HD, etc.
- Alleles not (yet) graded for some analytes, examples:
 - Fragile X: FRAXA
 - MEN2: RET

Grading Criteria Questions and Challenges

 Is the 80% rule acceptable for labs performing germ line genetic testing?

Should PT performance be "coupled" to lab accreditation?

 Should the ACMG and CAP be proactive in educating MGL participants?
 Should special emphasis be placed on labs with sub-optimal performance?

Special Challenges in Providing PT for Genetic Testing

Lack of validated control materials

 ATCC
 Coriell
 Other cell repositories

Select Genetic Diseases with Characterized Mutations Available Coriell Cell Repository

Disease	Number of Cell Lines Available	Number of Unique Allelic
	with Defined Mutations	Variants
Apolipoprotien A	20	3
Hereditary Breast and / Ovarien Cancer		
• BRCA1	24	20
• BRCA2)	6	6
Cystic Fi brosis	74	40
Dentatorubral-Pallidoluysian Atrophy	3	3
Duchenne Muscular Dystrophy	11	7
Factor V Leiden Mutation	4	1
Familial Adenomatous Polyposis	32	4
Fragile X Syndrome	26	21
Friedrich Ataxia	10	10
Gaucher Disease	10	4
Hemoglobin S	3	1
Hereditary Hemochromatosis	26	2
Huntington Disease	15	14
Medium Chain Acyl-CoA Dehydrogenase Deficiency	10	1
Methylenetetrahydrofolate Deficiency Therolabile	4	2
Variant	4	Z
Multiple Endocrine Neoplasia Type 2A	2	2
Myotonic Dystrophy	31	4
Factor II Thrombohpilia	2	2
RhD Genotyping	2	1
Spinal Muscular Atrophy	2	2
Spinocerebellar Ataxia		
• Type 1	2	2
• Type 3	2	2
Tay-Sachs Disease	11	5

Special Challenges in Providing PT for Genetic Testing

Lack of validated control materials
 ATCC

- Coriell
- Other cell repositories
- Lack of any control materials for some analytes

-CF

ACMG Recommended CF Mutation Panel

◆ACMG 25 Mutation Panel based on >0.1% frequency world wide

$\Delta F508$	R553X	R1162X	2184delA	3120+1G>A
Δ I507	G542X			
621+1G>T	R117H	1717-1G>A	A455E	
G85E	R334W	R347P		
1078delT	3849+10kbC>T	2789+5G>A	3659delC	<mark>I148T</mark>

Available via Coriell

Not available via Coreill

◆ 2 CDC grants awarded to address lack of appropriate control materials

Conclusions

Standards and Guidelines: CRITICAL - Enable "coupling" of PT with accreditation Must be quickly adaptable in fast moving field such as genetic testing Lab inspectors must be knowledgeable - Should board certification be required for inspectors? Should ordering physicians be able to access relevant PT results for genetic testing? EDUCATION, EDUCATION, EDUCATION!!!

Conclusions

