Thressa C Stadtman's Web Page

(Last updated by Matthew Raschka on 8/4/2008 at 1:29 PM.)

(Please use Microsoft Internet Explorer version 6.0 or higher to run this application)

Publications

1 Ogasawara Y, Lacourciere GM, Ishii K, Stadtman TC.
Characterization of potential selenium-binding proteins in the selenophosphate synthetase system.
Proc Natl Acad Sci U S A 102(4): 1012-6, 2005. [Text Abstract on PubMed]
2 Patteson KG, Trivedi N, Stadtman TC.
Methanococcus vannielii selenium-binding protein (SeBP): chemical reactivity of recombinant SeBP produced in Escherichia coli.
Proc Natl Acad Sci U S A 102(34): 12029-34, 2005. [Text Abstract on PubMed]
3 Stadtman TC.
Selenoproteins--tracing the role of a trace element in protein function.
PLoS Biol 3(12): e421, 2005. [Text Abstract on PubMed]
4 Self WT, Pierce R, Stadtman TC.
Cloning and heterologous expression of a Methanococcus vannielii gene encoding a selenium-binding protein.
IUBMB Life 56(8): 501-7, 2004. [Text Abstract on PubMed]
5 Switzer RL, Stadtman ER, Stadtman TC.
H.A. Barker.
Biogr Mem Natl Acad Sci 84: 2-20, 2004. [Text Abstract on PubMed]
6 Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman TC, Inagaki K.
Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation.
Proc Natl Acad Sci U S A 101(46): 16162-7, 2004. [Text Abstract on PubMed]
7 Wolfe MD, Ahmed F, Lacourciere GM, Lauhon CT, Stadtman TC, Larson TJ.
Functional diversity of the rhodanese homology domain: the Escherichia coli ybbB gene encodes a selenophosphate-dependent tRNA 2-selenouridine synthase.
J Biol Chem 279(3): 1801-9, 2004. [Text Abstract on PubMed]
8 Self WT, Wolfe MD, Stadtman TC.
Cofactor determination and spectroscopic characterization of the selenium-dependent purine hydroxylase from Clostridium purinolyticum.
Biochemistry 42(38): 11382-90, 2003. [Text Abstract on PubMed]
9 Lacourciere GM, Levine RL, Stadtman TC.
Direct detection of potential selenium delivery proteins by using an Escherichia coli strain unable to incorporate selenium from selenite into proteins.
Proc Natl Acad Sci U S A 99(14): 9150-3, 2002. [Text Abstract on PubMed]
10 Mihara H, Kato S, Lacourciere GM, Stadtman TC, Kennedy RA, Kurihara T, Tokumoto U, Takahashi Y, Esaki N.
The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and the selenocysteine-containing formate dehydrogenase H.
Proc Natl Acad Sci U S A 99(10): 6679-83, 2002. [Text Abstract on PubMed]
11 Stadtman TC.
A gold mine of fascinating enzymes: those remarkable, strictly anaerobic bacteria, Methanococcus vannielii and Clostridium sticklandii.
J Biol Chem 277(51): 49091-100, 2002. [Text Abstract on PubMed]
12 Stadtman TC.
Discoveries of vitamin B12 and selenium enzymes.
Annu Rev Biochem 71: 1-16, 2002. [Text Abstract on PubMed]
13 Tamura T, Stadtman TC.
Mammalian thioredoxin reductases.
Methods Enzymol 347: 297-306, 2002. [Text Abstract on PubMed]
14 Bar-Noy S, Gorlatov SN, Stadtman TC.
Overexpression of wild type and SeCys/Cys mutant of human thioredoxin reductase in E. coli: the role of selenocysteine in the catalytic activity.
Free Radic Biol Med 30(1): 51-61, 2001. [Text Abstract on PubMed]
15 Lacourciere GM, Stadtman TC.
Utilization of selenocysteine as a source of selenium for selenophosphate biosynthesis.
Biofactors 14(1-4): 69-74, 2001. [Text Abstract on PubMed]
16 Ogasawara Y, Lacourciere G, Stadtman TC.
Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: possible role of a protein perselenide in a selenium delivery system.
Proc Natl Acad Sci U S A 98(17): 9494-8, 2001. [Text Abstract on PubMed]
17 Gorlatov SN, Stadtman TC.
The penultimate selenocysteine residue at the C-terminus of mammalian thioredoxin reductase plays an obligatory role in the NADPH-disulfide oxidoreductase catalytic mechanism.
Biofactors 11(1-2): 79-81, 2000. [Text Abstract on PubMed]
18 Lacourciere GM, Mihara H, Kurihara T, Esaki N, Stadtman TC.
Escherichia coli NifS-like proteins provide selenium in the pathway for the biosynthesis of selenophosphate.
J Biol Chem 275(31): 23769-73, 2000. [Text Abstract on PubMed]
19 Lee SR, Bar-Noy S, Kwon J, Levine RL, Stadtman TC, Rhee SG.
Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity.
Proc Natl Acad Sci U S A 97(6): 2521-6, 2000. [Text Abstract on PubMed]
20 Self WT, Stadtman TC.
Selenium-dependent metabolism of purines: A selenium-dependent purine hydroxylase and xanthine dehydrogenase were purified from Clostridium purinolyticum and characterized.
Proc Natl Acad Sci U S A 97(13): 7208-13, 2000. [Text Abstract on PubMed]
21 Self WT, Tsai L, Stadtman TC.
Synthesis and characterization of selenotrisulfide-derivatives of lipoic acid and lipoamide.
Proc Natl Acad Sci U S A 97(23): 12481-6, 2000. [Text Abstract on PubMed]
22 Stadtman TC.
Selenium biochemistry. Mammalian selenoenzymes.
Ann N Y Acad Sci 899: 399-402, 2000. [Text Abstract on PubMed]
23 Allan CB, Lacourciere GM, Stadtman TC.
Responsiveness of selenoproteins to dietary selenium.
Annu Rev Nutr 19: 1-16, 1999. [Text Abstract on PubMed]
24 Gladyshev VN, Stadtman TC, Hatfield DL, Jeang KT.
Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase.
Proc Natl Acad Sci U S A 96(3): 835-9, 1999. [Text Abstract on PubMed]
25 Gorlatov SN, Stadtman TC.
Human selenium-dependent thioredoxin reductase from HeLa cells: properties of forms with differing heparin affinities.
Arch Biochem Biophys 369(1): 133-42, 1999. [Text Abstract on PubMed]
26 Lacourciere GM, Stadtman TC.
Catalytic properties of selenophosphate synthetases: comparison of the selenocysteine-containing enzyme from Haemophilus influenzae with the corresponding cysteine-containing enzyme from Escherichia coli.
Proc Natl Acad Sci U S A 96(1): 44-8, 1999. [Text Abstract on PubMed]
27 Gorlatov SN, Stadtman TC.
Human thioredoxin reductase from HeLa cells: selective alkylation of selenocysteine in the protein inhibits enzyme activity and reduction with NADPH influences affinity to heparin.
Proc Natl Acad Sci U S A 95(15): 8520-5, 1998. [Text Abstract on PubMed]
28 Khangulov SV, Gladyshev VN, Dismukes GC, Stadtman TC.
Selenium-containing formate dehydrogenase H from Escherichia coli: a molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer.
Biochemistry 37(10): 3518-28, 1998. [Text Abstract on PubMed]
29 Lacourciere GM, Stadtman TC.
The NIFS protein can function as a selenide delivery protein in the biosynthesis of selenophosphate.
J Biol Chem 273(47): 30921-6, 1998. [Text Abstract on PubMed]
30 Walker H, Ferretti JA, Stadtman TC.
Isotope exchange studies on the Escherichia coli selenophosphate synthetase mechanism.
Proc Natl Acad Sci U S A 95(5): 2180-5, 1998. [Text Abstract on PubMed]
31 Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD.
Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster.
Science 275(5304): 1305-8, 1997. [Text Abstract on PubMed]
32 Kim IY, Guimarães MJ, Zlotnik A, Bazan JF, Stadtman TC.
Fetal mouse selenophosphate synthetase 2 (SPS2): characterization of the cysteine mutant form overproduced in a baculovirus-insect cell system.
Proc Natl Acad Sci U S A 94(2): 418-21, 1997. [Text Abstract on PubMed]
33 Kim IY, Stadtman TC.
Inhibition of NF-kappaB DNA binding and nitric oxide induction in human T cells and lung adenocarcinoma cells by selenite treatment.
Proc Natl Acad Sci U S A 94(24): 12904-7, 1997. [Text Abstract on PubMed]
34 Liu SY, Stadtman TC.
A non-radioactive and two radioactive assays for selenophosphate synthetase activity.
Biofactors 6(3): 305-9, 1997. [Text Abstract on PubMed]
35 Liu SY, Stadtman TC.
Heparin-binding properties of selenium-containing thioredoxin reductase from HeLa cells and human lung adenocarcinoma cells.
Proc Natl Acad Sci U S A 94(12): 6138-41, 1997. [Text Abstract on PubMed]
36 Liu SY, Stadtman TC.
Selenophosphate synthetase: enzyme labeling studies with [gamma-32P]ATP, [beta-32P]ATP, [8-14C]ATP, and [75Se]selenide.
Arch Biochem Biophys 341(2): 353-9, 1997. [Text Abstract on PubMed]
37 Gladyshev VN, Boyington JC, Khangulov SV, Grahame DA, Stadtman TC, Sun PD.
Characterization of crystalline formate dehydrogenase H from Escherichia coli. Stabilization, EPR spectroscopy, and preliminary crystallographic analysis.
J Biol Chem 271(14): 8095-100, 1996. [Text Abstract on PubMed]
38 Gladyshev VN, Jeang KT, Stadtman TC.
Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene.
Proc Natl Acad Sci U S A 93(12): 6146-51, 1996. [Text Abstract on PubMed]
39 Gladyshev VN, Khangulov SV, Stadtman TC.
Properties of the selenium- and molybdenum-containing nicotinic acid hydroxylase from Clostridium barkeri.
Biochemistry 35(1): 212-23, 1996. [Text Abstract on PubMed]
40 Stadtman TC.
Selenocysteine.
Annu Rev Biochem 65: 83-100, 1996. [Text Abstract on PubMed]
41 Tamura T, Stadtman TC.
A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity.
Proc Natl Acad Sci U S A 93(3): 1006-11, 1996. [Text Abstract on PubMed]
42 Glass RS, Stadtman TC.
Selenophosphate.
Methods Enzymol 252: 309-15, 1995. [Text Abstract on PubMed]
43 Kim IY, Stadtman TC.
Selenophosphate synthetase: detection in extracts of rat tissues by immunoblot assay and partial purification of the enzyme from the archaean Methanococcus vannielii.
Proc Natl Acad Sci U S A 92(17): 7710-3, 1995. [Text Abstract on PubMed]
44 Kimura Y, Stadtman TC.
Glycine reductase selenoprotein A is not a glycoprotein: the positive periodic acid-Schiff reagent test is the result of peptide bond cleavage and carbonyl group generation.
Proc Natl Acad Sci U S A 92(6): 2189-93, 1995. [Text Abstract on PubMed]
45 Gladyshev VN, Khangulov SV, Axley MJ, Stadtman TC.
Coordination of selenium to molybdenum in formate dehydrogenase H from Escherichia coli.
Proc Natl Acad Sci U S A 91(16): 7708-11, 1994. [Text Abstract on PubMed]
46 Gladyshev VN, Khangulov SV, Stadtman TC.
Nicotinic acid hydroxylase from Clostridium barkeri: electron paramagnetic resonance studies show that selenium is coordinated with molybdenum in the catalytically active selenium-dependent enzyme.
Proc Natl Acad Sci U S A 91(1): 232-6, 1994. [Text Abstract on PubMed]
47 Kim IY, Stadtman TC.
Effects of monovalent cations and divalent metal ions on Escherichia coli selenophosphate synthetase.
Proc Natl Acad Sci U S A 91(15): 7326-9, 1994. [Text Abstract on PubMed]
48 Stadtman TC.
Emerging awareness of the critical roles of S-phosphocysteine and selenophosphate in biological systems.
Biofactors 4(3-4): 181-5, 1994. [Text Abstract on PubMed]
49 Stadtman TC.
Selenium biochemistry--selected topics.
Adv Inorg Biochem 10: 157-75, 1994. [Text Abstract on PubMed]
50 Veres Z, Kim IY, Scholz TD, Stadtman TC.
Selenophosphate synthetase. Enzyme properties and catalytic reaction.
J Biol Chem 269(14): 10597-603, 1994. [Text Abstract on PubMed]
51 Veres Z, Stadtman TC.
A purified selenophosphate-dependent enzyme from Salmonella typhimurium catalyzes the replacement of sulfur in 2-thiouridine residues in tRNAs with selenium.
Proc Natl Acad Sci U S A 91(17): 8092-6, 1994. [Text Abstract on PubMed]
52 Glass RS, Singh WP, Jung W, Veres Z, Scholz TD, Stadtman TC.
Monoselenophosphate: synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX.
Biochemistry 32(47): 12555-9, 1993. [Text Abstract on PubMed]
53 Kim IY, Veres Z, Stadtman TC.
Biochemical analysis of Escherichia coli selenophosphate synthetase mutants. Lysine 20 is essential for catalytic activity and cysteine 17/19 for 8-azido-ATP derivatization.
J Biol Chem 268(36): 27020-5, 1993. [Text Abstract on PubMed]
54 Garcia GE, Stadtman TC.
Clostridium sticklandii glycine reductase selenoprotein A gene: cloning, sequencing, and expression in Escherichia coli.
J Bacteriol 174(22): 7080-9, 1992. [Text Abstract on PubMed]
55 Kim IY, Veres Z, Stadtman TC.
Escherichia coli mutant SELD enzymes. The cysteine 17 residue is essential for selenophosphate formation from ATP and selenide.
J Biol Chem 267(27): 19650-4, 1992. [Text Abstract on PubMed]
56 Stadtman TC.
Biosynthesis and functions of selenoenzymes.
J Nutr Sci Vitaminol (Tokyo) Spec No: 58-63, 1992. [Text Abstract on PubMed]
57 Stadtman TC.
International Congress on Vitamins and Biofactors in Life Science.
Biofactors 3(4): 269-70, 1992. [Text Abstract on PubMed]
58 Veres Z, Tsai L, Scholz TD, Politino M, Balaban RS, Stadtman TC.
Synthesis of 5-methylaminomethyl-2-selenouridine in tRNAs: 31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus.
Proc Natl Acad Sci U S A 89(7): 2975-9, 1992. [Text Abstract on PubMed]
59 Axley MJ, Böck A, Stadtman TC.
Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium.
Proc Natl Acad Sci U S A 88(19): 8450-4, 1991. [Text Abstract on PubMed]
60 Garcia GE, Stadtman TC.
Selenoprotein A component of the glycine reductase complex from Clostridium purinolyticum: nucleotide sequence of the gene shows that selenocysteine is encoded by UGA.
J Bacteriol 173(15): 4908, 1991. [Text Abstract on PubMed]
61 Garcia GE, Stadtman TC.
Selenoprotein A component of the glycine reductase complex from Clostridium purinolyticum: nucleotide sequence of the gene shows that selenocysteine is encoded by UGA.
J Bacteriol 173(6): 2093-8, 1991. [Text Abstract on PubMed]
62 Hatfield DL, Lee BJ, Price NM, Stadtman TC.
Selenocysteyl-tRNA occurs in the diatom Thalassiosira and in the ciliate Tetrahymena.
Mol Microbiol 5(5): 1183-6, 1991. [Text Abstract on PubMed]
63 Stadtman TC, Davis JN, Ching WM, Zinoni F, Böck A.
Amino acid sequence analysis of Escherichia coli formate dehydrogenase (FDHH) confirms that TGA in the gene encodes selenocysteine in the gene product.
Biofactors 3(1): 21-7, 1991. [Text Abstract on PubMed]
64 Stadtman TC, Davis JN.
Glycine reductase protein C. Properties and characterization of its role in the reductive cleavage of Se-carboxymethyl-selenoprotein A.
J Biol Chem 266(33): 22147-53, 1991. [Text Abstract on PubMed]
65 Stadtman TC.
Biosynthesis and function of selenocysteine-containing enzymes.
J Biol Chem 266(25): 16257-60, 1991. [Text Abstract on PubMed]
66 Axley MJ, Grahame DA, Stadtman TC.
Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component.
J Biol Chem 265(30): 18213-8, 1990. [Text Abstract on PubMed]
67 Politino M, Tsai L, Veres Z, Stadtman TC.
Biosynthesis of selenium-modified tRNAs in Methanococcus vannielii.
Proc Natl Acad Sci U S A 87(16): 6345-8, 1990. [Text Abstract on PubMed]
68 Stadtman TC.
Selenium biochemistry.
Annu Rev Biochem 59: 111-27, 1990. [Text Abstract on PubMed]
69 Veres Z, Tsai L, Politino M, Stadtman TC.
In vitro incorporation of selenium into tRNAs of Salmonella typhimurium.
Proc Natl Acad Sci U S A 87(16): 6341-4, 1990. [Text Abstract on PubMed]
70 Axley MJ, Stadtman TC.
Selenium metabolism and selenium-dependent enzymes in microorganisms.
Annu Rev Nutr 9: 127-37, 1989. [Text Abstract on PubMed]
71 Lee BJ, Worland PJ, Davis JN, Stadtman TC, Hatfield DL.
Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA.
J Biol Chem 264(17): 9724-7, 1989. [Text Abstract on PubMed]
72 Leinfelder W, Stadtman TC, Böck A.
Occurrence in vivo of selenocysteyl-tRNA(SERUCA) in Escherichia coli. Effect of sel mutations.
J Biol Chem 264(17): 9720-3, 1989. [Text Abstract on PubMed]
73 Stadtman TC, Davis JN, Zehelein E, Böck A.
Biochemical and genetic analysis of Salmonella typhimurium and Escherichia coli mutants defective in specific incorporation of selenium into formate dehydrogenase and tRNAs.
Biofactors 2(1): 35-44, 1989. [Text Abstract on PubMed]
74 Stadtman TC.
Clostridial glycine reductase: protein C, the acetyl group acceptor, catalyzes the arsenate-dependent decomposition of acetyl phosphate.
Proc Natl Acad Sci U S A 86(20): 7853-6, 1989. [Text Abstract on PubMed]
75 Axley MJ, Stadtman TC.
Anaerobic induction of Escherichia coli formate dehydrogenase (hydrogenase-linked) is enhanced by gyrase inactivation.
Proc Natl Acad Sci U S A 85(4): 1023-7, 1988. [Text Abstract on PubMed]
76 Böck A, Stadtman TC.
Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanism.
Biofactors 1(3): 245-50, 1988. [Text Abstract on PubMed]
77 Sliwkowski MX, Stadtman TC.
Selenium-dependent glycine reductase: differences in physicochemical properties and biological activities of selenoprotein A components isolated from Clostridium sticklandii and Clostridium purinolyticum.
Biofactors 1(4): 293-6, 1988. [Text Abstract on PubMed]
78 Sliwkowski MX, Stadtman TC.
Selenoprotein A of the clostridial glycine reductase complex: purification and amino acid sequence of the selenocysteine-containing peptide.
Proc Natl Acad Sci U S A 85(2): 368-71, 1988. [Text Abstract on PubMed]
79 DeMoll E, Grahame DA, Harnly JM, Tsai L, Stadtman TC.
Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii.
J Bacteriol 169(9): 3916-20, 1987. [Text Abstract on PubMed]
80 Grahame DA, Stadtman TC.
Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme.
J Biol Chem 262(8): 3706-12, 1987. [Text Abstract on PubMed]
81 Grahame DA, Stadtman TC.
In vitro methane and methyl coenzyme M formation from acetate: evidence that acetyl-CoA is the required intermediate activated form of acetate.
Biochem Biophys Res Commun 147(1): 254-8, 1987. [Text Abstract on PubMed]
82 Hartmanis MG, Stadtman TC.
Solubilization of a membrane-bound diol dehydratase with retention of EPR g = 2.02 signal by using 2-(N-cyclohexylamino)ethanesulfonic acid buffer.
Proc Natl Acad Sci U S A 84(1): 76-9, 1987. [Text Abstract on PubMed]
83 Sliwkowski MX, Stadtman TC.
Purification and immunological studies of selenoprotein A of the clostridial glycine reductase complex.
J Biol Chem 262(10): 4899-904, 1987. [Text Abstract on PubMed]
84 Stadtman TC.
Specific occurrence of selenium in enzymes and amino acid tRNAs.
FASEB J 1(5): 375-9, 1987. [Text Abstract on PubMed]
85 Zhu RX, Ching WM, Chung HK, Rhee SG, Stadtman TC.
Purification of individual tRNAs using a monoclonal anti-AMP antibody affinity column.
Anal Biochem 161(2): 460-6, 1987. [Text Abstract on PubMed]
86 Hartmanis MG, Stadtman TC.
Diol metabolism and diol dehydratase in Clostridium glycolicum.
Arch Biochem Biophys 245(1): 144-52, 1986. [Text Abstract on PubMed]
87 Wittwer AJ, Stadtman TC.
Biosynthesis of 5-methylaminomethyl-2-selenouridine, a naturally occurring nucleoside in Escherichia coli tRNA.
Arch Biochem Biophys 248(2): 540-50, 1986. [Text Abstract on PubMed]
88 Zinoni F, Birkmann A, Stadtman TC, Böck A.
Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli.
Proc Natl Acad Sci U S A 83(13): 4650-4, 1986. [Text Abstract on PubMed]
89 Ching WM, Alzner-DeWeerd B, Stadtman TC.
A selenium-containing nucleoside at the first position of the anticodon in seleno-tRNAGlu from Clostridium sticklandii.
Proc Natl Acad Sci U S A 82(2): 347-50, 1985. [Text Abstract on PubMed]
90 Davis JN, Stadtman TC.
Purification and properties of a quinone-dependent p-nitrophenylphosphatase from Clostridium sticklandii.
Arch Biochem Biophys 239(2): 523-30, 1985. [Text Abstract on PubMed]
91 Sliwkowski MX, Stadtman TC.
Incorporation and distribution of selenium into thiolase from Clostridium kluyveri.
J Biol Chem 260(5): 3140-4, 1985. [Text Abstract on PubMed]
92 Yamazaki S, Tsai L, Stadtman TC, Teshima T, Nakaji A, Shiba T.
Stereochemical studies of a selenium-containing hydrogenase from Methanococcus vannielii: determination of the absolute configuration of C-5 chirally labeled dihydro-8-hydroxy-5-deazaflavin cofactor.
Proc Natl Acad Sci U S A 82(5): 1364-6, 1985. [Text Abstract on PubMed]
93 Ching WM, Wittwer AJ, Tsai L, Stadtman TC.
Distribution of two selenonucleosides among the selenium-containing tRNAs from Methanococcus vannielii.
Proc Natl Acad Sci U S A 81(1): 57-60, 1984. [Text Abstract on PubMed]
94 Stadtman TC.
Occurrence and characterization of selenocysteine in proteins.
Methods Enzymol 107: 576-81, 1984. [Text Abstract on PubMed]
95 Wittwer AJ, Tsai L, Ching WM, Stadtman TC.
Identification and synthesis of a naturally occurring selenonucleoside in bacterial tRNAs: 5-[(methylamino)methyl]-2-selenouridine.
Biochemistry 23(20): 4650-5, 1984. [Text Abstract on PubMed]
96 Stadtman TC.
Some vitamin B12- and selenium-dependent enzymes.
Trans N Y Acad Sci 41: 233-6, 1983. [Text Abstract on PubMed]
97 Ching WM, Stadtman TC.
Selenium-containing tRNAGlu from Clostridium sticklandii: correlation of aminoacylation with selenium content.
Proc Natl Acad Sci U S A 79(2): 374-7, 1982. [Text Abstract on PubMed]
98 Hartmanis MG, Stadtman TC.
Isolation of a selenium-containing thiolase from Clostridium kluyveri: identification of the selenium moiety as selenomethionine.
Proc Natl Acad Sci U S A 79(16): 4912-6, 1982. [Text Abstract on PubMed]
99 Yamazaki S, Tsai L, Stadtman TC.
Analogues of 8-hydroxy-5-deazaflavin cofactor: relative activity as substrates for 8-hydroxy-5-deazaflavin-dependent NADP+ reductase from Methanococcus vannielii.
Biochemistry 21(5): 934-9, 1982. [Text Abstract on PubMed]
100 Jones JB, Stadtman TC.
Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form.
J Biol Chem 256(2): 656-63, 1981. [Text Abstract on PubMed]
101 Valentine RC, Wolfe RS, Tempest DE, Detroy RW, Cooney CL, Laskin AI, Stadtman TC, Zaborsky OR.
Fermentation science: basic and applied research needs. Roundtable discussion.
Basic Life Sci 18: 557-74, 1981. [Text Abstract on PubMed]
102 Chen CS, Stadtman TC.
Selenium-containing tRNAs from Clostridium sticklandii: cochromatography of one species with L-prolyl-tRNA.
Proc Natl Acad Sci U S A 77(3): 1403-7, 1980. [Text Abstract on PubMed]
103 Jones JB, Stadtman TC.
Reconstitution of a formate-NADP+ oxidoreductase from formate dehydrogenase and a 5-deazaflavin-linked NADP+ reductase isolated from Methanococcus vannielii.
J Biol Chem 255(3): 1049-53, 1980. [Text Abstract on PubMed]
104 Stadtman TC.
Selenium-dependent enzymes.
Annu Rev Biochem 49: 93-110, 1980. [Text Abstract on PubMed]
105 Yamazaki S, Tsai L, Stadtman TC, Jacobson FS, Walsh C.
Stereochemical studies of 8-hydroxy-5-deazaflavin-dependent NADP+ reductase from Methanococcus vannielii.
J Biol Chem 255(19): 9025-7, 1980. [Text Abstract on PubMed]
106 Jones JB, Dilworth GL, Stadtman TC.
Occurrence of selenocysteine in the selenium-dependent formate dehydrogenase of Methanococcus vannielii.
Arch Biochem Biophys 195(2): 255-60, 1979. [Text Abstract on PubMed]
107 Stadtman TC.
Some selenium-dependent biochemical processes.
Adv Enzymol Relat Areas Mol Biol 48: 1-28, 1979. [Text Abstract on PubMed]
108 Tanaka H, Stadtman TC.
Selenium-dependent clostridial glycine reductase. Purification and characterization of the two membrane-associated protein components.
J Biol Chem 254(2): 447-52, 1979. [Text Abstract on PubMed]
109 Stadtman TC.
Selenium-dependent clostridial glycine reductase.
Methods Enzymol 53: 373-82, 1978. [Text Abstract on PubMed]
110 Cone JE, del Río RM, Stadtman TC.
Clostridial glycine reductase complex. Purification and characterization of the selenoprotein component.
J Biol Chem 252(15): 5337-44, 1977. [Text Abstract on PubMed]
111 Jones JB, Bowers B, Stadtman TC.
Methanococcus vannielii: ultrastructure and sensitivity to detergents and antibiotics.
J Bacteriol 130(3): 1357-63, 1977. [Text Abstract on PubMed]
112 Jones JB, Stadtman TC.
Methanococcus vannielii: culture and effects of selenium and tungsten on growth.
J Bacteriol 130(3): 1404-6, 1977. [Text Abstract on PubMed]
113 Stadtman TC.
Biological function of selenium.
Nutr Rev 35(7): 161-6, 1977. [Text Abstract on PubMed]
114 Cone JE, Del Río RM, Davis JN, Stadtman TC.
Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety.
Proc Natl Acad Sci U S A 73(8): 2659-63, 1976. [Text Abstract on PubMed]
115 Seto B, Stadtman TC.
Purification and properties of proline reductase from Clostridium sticklandii.
J Biol Chem 251(8): 2435-9, 1976. [Text Abstract on PubMed]
116 Stadtman TC.
Selenium biochemistry.
Science 183(128): 915-22, 1974. [Text Abstract on PubMed]
117 Tanaka M, Haniu M, Yasunobu KT, Jones JB, Stadtman TC.
Amino acid sequence determination of the Clostridium M-E ferredoxin and a comment on the role of the aromatic residues in the clostridial ferredoxins.
Biochemistry 13(26): 5284-9, 1974. [Text Abstract on PubMed]
118 Baker JJ, van der Drift C, Stadtman TC.
Purification and properties of -lysine mutase, a pyridoxal phosphate and B 12 coenzyme dependent enzyme.
Biochemistry 12(6): 1054-63, 1973. [Text Abstract on PubMed]
119 Turner DC, Stadtman TC.
Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein.
Arch Biochem Biophys 154(1): 366-81, 1973. [Text Abstract on PubMed]
120 Morley CD, Stadtman TC.
The role of pyridoxal phosphate in the B 12 Coenzyme-dependent D- -lysine mutase reaction.
Biochemistry 11(4): 600-5, 1972. [Text Abstract on PubMed]
121 Stadtman ER, Stadtman TC, Pastan I, Smith LD.
Clostridium barkeri sp. n.
J Bacteriol 110(2): 758-60, 1972. [Text Abstract on PubMed]
122 Kung H, Tsai L, Stadtman TC.
Nicotinic acid metabolism. 8. Tracer studies on the intermediary roles of -methyleneglutarate, methylitaconate, dimethylmaleate, and pyruvate.
J Biol Chem 246(21): 6444-51, 1971. [Text Abstract on PubMed]
123 Kung HF, Stadtman TC.
Nicotinic acid metabolism. VI. Purification and properties of alpha-methyleneglutarate mutase (B 12-dependent) and methylitaconate isomerase.
J Biol Chem 246(10): 3378-88, 1971. [Text Abstract on PubMed]
124 Morley CG, Stadtman TC.
Studies on the fermentation of p-alpha-lysine. On the hydrogen shift catalyzed by the B 12 coenzyme dependent D-alpha-lysine mutase.
Biochemistry 10(12): 2325-9, 1971. [Text Abstract on PubMed]
125 Schwartz AC, Stadtman TC.
Growth pattern of two types of vitamin B 12 auxotrophic mutants of Clostridium sticklandii.
Z Allg Mikrobiol 11(1): 63-5, 1971. [Text Abstract on PubMed]
126 Stadtman TC.
Vitamin B 12.
Science 171(974): 859-67, 1971. [Text Abstract on PubMed]
127 Kung HF, Cederbaum S, Tsai L, Stadtman TC.
Nicotinic acid metabolism. V. A cobamide coenzyme-dependent conversion of alpha-methyleneglutaric acid to dimethylmaleic acid.
Proc Natl Acad Sci U S A 65(4): 978-84, 1970. [Text Abstract on PubMed]
128 Morley CG, Stadtman TC.
Studies on the fermentation of D-alpha-lysine. Purification and properties of an adenosine triphosphate regulated B 12-coenzyme-dependent D-alpha-lysine mutase complex from Clostridium sticklandii.
Biochemistry 9(25): 4890-900, 1970. [Text Abstract on PubMed]
129 Schwartz AC, Stadtman TC.
Small Colonies of Clostridium sticklandii Resulting from Nitrosoguanidine Treatment and Exhibiting Defects in Catabolic Enzymes.
J Bacteriol 104(3): 1242-1245, 1970. [Text Abstract on PubMed]
130 Retey J, Kunz F, Stadtman TC, Arigoni D.
[On the mechanism of the beta-lysine-mutase reaction]
Experientia 25(8): 801-2, 1969. [Text Abstract on PubMed]
131 Stadtman TC, Renz P.
Anaerobic degradation of lysine. V. Some properties of the cobamide coenzyme-dependent beta-lysine mutase of Clostridium sticklandii.
Arch Biochem Biophys 125(1): 226-39, 1968. [Text Abstract on PubMed]
132 Tsai L, Stadtman TC.
Anaerobic degradation of lysine. IV. Cobamide coenzyme-dependent migration of an amino group from carbon 6 of beta-lysine (3,6-diaminohexanoate) to carbon 5 forming a new naturally occurring amino acid, 3,5-diaminohexanoate.
Arch Biochem Biophys 125(1): 210-25, 1968. [Text Abstract on PubMed]
133 Stadtman TC, Tsai L.
A cobamide coenzyme dependent migration of the epsilon-amino group of D-lysine.
Biochem Biophys Res Commun 28(6): 920-6, 1967. [Text Abstract on PubMed]
134 Stadtman TC.
Methane fermentation.
Annu Rev Microbiol 21: 121-42, 1967. [Text Abstract on PubMed]
135 Blaylock BA, Stadtman TC.
Methane biosynthesis by Methanosarcina barkeri. Properties of the soluble enzyme system.
Arch Biochem Biophys 116(1): 138-52, 1966. [Text Abstract on PubMed]
136 Stadtman TC.
Glycine reduction to acetate and ammonia: identification of ferredoxin and another low molecular weight acidic protein as components of the reductase system.
Arch Biochem Biophys 113(1): 9-19, 1966. [Text Abstract on PubMed]
137 STADTMAN TC.
COBAMIDE COENZYME REQUIREMENT FOR THE ANAEROBIC DEGRADATION OF LYSINE.
Ann N Y Acad Sci 112: 728-34, 1964. [Text Abstract on PubMed]
138 BLAYLOCK BA, STADTMAN TC.
Biosynthesis of methane from the methyl moiety of methylcobalamin.
Biochem Biophys Res Commun 11: 34-8, 1963. [Text Abstract on PubMed]
139 HARDMAN JK, STADTMAN TC.
Metabolism of amega-amino acids. III. Mechanism of conversion of gamma-aminobutyrate to gamma-hydroxybutryate by Clostridium aminobutyricum.
J Biol Chem 238: 2081-7, 1963. [Text Abstract on PubMed]
140 HARDMAN JK, STADTMAN TC.
Metabolism of omega-amino acids. IV. gamma Aminobutyrate fermentation by cell-free extracts of Clostridium aminobutyricum.
J Biol Chem 238: 2088-93, 1963. [Text Abstract on PubMed]
141 HARDMAN JK, STADTMAN TC.
METABOLISM OF OMEGA-AMINO ACIDS. V. ENERGETICS OF THE GAMMA-AMINOBUTYRATE FERMENTATION BY CLOSTRIDIUM AMINOBUTYRICUM.
J Bacteriol 85: 1326-33, 1963. [Text Abstract on PubMed]
142 STADTMAN TC.
ANAEROBIC DEGRADATION OF LYSINE. II. COFACTOR REQUIREMENTS AND PROPERTIES OF THE SOLUBLE ENZYME SYSTEM.
J Biol Chem 238: 2766-73, 1963. [Text Abstract on PubMed]
143 STADTMAN TC.
Lysine fermentation to fatty acids and ammonia: a cobamide coenzyme-dependent process.
J Biol Chem 237: 2409-11, 1962. [Text Abstract on PubMed]
144 HARDMAN JK, STADTMAN TC.
Metabolism of omega-acids. II. Fermentation of delta-aminovaleric acid by Clostridium aminovalericum n. sp.
J Bacteriol 79: 549-52, 1960. [Text Abstract on PubMed]
145 HARDMAN JK, STADTMAN TC.
Metabolism of omega-amino acids. I. Fermentation of gamma-aminobutyric acid by Clostridium aminobutyricum n. sp.
J Bacteriol 79: 544-8, 1960. [Text Abstract on PubMed]
146 HAYWARD HR, STADTMAN TC.
Anaerobic degradation of choline. II. Preparation and properties of cell-free extracts of Vibrio cholinicus.
J Biol Chem 235: 538-43, 1960. [Text Abstract on PubMed]
147 STADTMAN TC.
Synthesis of adenine-B12 coenzyme by Clostridium sticklandii: relationship to one-carbon metabolism.
J Bacteriol 79: 904-5, 1960. [Text Abstract on PubMed]
148 HAYWARD HR, STADTMAN TC.
Anaerobic degradation of choline. I. Fermentation of choline by an anaerobic, cytochrome-producing bacterium, Vibrio cholinicus n. sp.
J Bacteriol 78: 557-61, 1959. [Text Abstract on PubMed]
149 STADTMAN TC.
A menadione-dependent enzymatic hydrolysis of p-nitrophenyl phosphate.
J Biol Chem 234(3): 636-40, 1959. [Text Abstract on PubMed]
150 STADTMAN TC.
Fe++-dependent alkaline phosphatase of yeast.
Biochim Biophys Acta 32(1): 95-8, 1959. [Text Abstract on PubMed]
151 STADTMAN TC, ELLIOTT P, TIEMANN L.
Studies on the enzymic reduction of amino acids. III. Phosphate esterification coupled with glycine reduction.
J Biol Chem 231(2): 961-73, 1958. [Text Abstract on PubMed]
152 STADTMAN TC.
The participation of a quinone in the enzymic reduction of glycine by Clostridium sticklandii.
Biochem Z 331(1): 46-8, 1958. [Text Abstract on PubMed]
153 STADTMAN TC, ELLIOTT P.
Studies on the enzymic reduction of amino acids. II. Purification and properties of D-proline reductase and a proline racemase from Clostridium sticklandii.
J Biol Chem 228(2): 983-97, 1957. [Text Abstract on PubMed]
154 STADTMAN TC, MCCLUNG LS.
Clostridium sticklandii nov. spec.
J Bacteriol 73(2): 218-9, 1957. [Text Abstract on PubMed]
155 STADTMAN TC.
Studies on the enzymic reduction of amino acids: a proline reductase of an amino acid-fermenting Clostridium, strain HF.
Biochem J 62(4): 614-21, 1956. [Text Abstract on PubMed]
156 WRIGHT BE, STADTMAN TC.
The rôle of polyglutamyl pteridine coenzymes in serine metabolism. I. Cofactor requirements in the conversion of serine to glycine.
J Biol Chem 219(2): 863-71, 1956. [Text Abstract on PubMed]
157 STADTMAN TC, CHERKES A, ANFINSEN CB.
Studies on the microbiological degradation of cholesterol.
J Biol Chem 206(2): 511-23, 1954. [Text Abstract on PubMed]
158 STADTMAN TC, WHITE FH.
Tracer studies on ornithine, lysine, and formate metabolism in an amino acid fermenting Clostridium.
J Bacteriol 67(6): 651-7, 1954. [Text Abstract on PubMed]
159 STADTMAN TC.
On the metabolism of an amino acid fermenting Clostridium.
J Bacteriol 67(3): 314-20, 1954. [Text Abstract on PubMed]
160 STADTMAN ER, STADTMAN TC.
Metabolisms of microorganisms.
Annu Rev Microbiol 7: 143-78, 1953. [Text Abstract on PubMed]
161 STADTMAN TC, BARKER HA.
Studies on the methane fermentation. IX. The origin of methane in the acetate and methanol fermentations by methanosarcina.
J Bacteriol 61(1): 81-6, 1951. [Text Abstract on PubMed]
162 STADTMAN TC, BARKER HA.
Studies on the methane fermentation. VIII. Tracer experiments of fatty acid oxidation by methane bacteria.
J Bacteriol 61(1): 67-80, 1951. [Text Abstract on PubMed]
163 STADTMAN TC, BARKER HA.
Studies on the methane fermentation. X. A new formate-decomposing bacterium, Methanococcus vannielii.
J Bacteriol 62(3): 269-80, 1951. [Text Abstract on PubMed]
164 Vaughn RH, Marsh GL, Stadtman TC, Cantino BC.
Decomposition of Tartrates by the Coliform Bacteria.
J Bacteriol 52(3): 311-325, 1946. [Text Abstract on PubMed]
165 Vaughn RH, Stadtman TC.
Note on pH Tolerance of Aerobacter aerogenes and Aerobacillus macerans as Related to Natural Ecology and Decomposition of Acid Food Products.
J Bacteriol 51(2): 263, 1946. [Text Abstract on PubMed]
166 Stadtman TC, Vaughn RH, Marsh GL.
Decomposition of Tartrates by Some Common Fungi.
J Bacteriol 50(6): 691-700, 1945. [Text Abstract on PubMed]
167 Stadtman TC, Blaylock BA.
Role of B12 compounds in methane formation.
Fed Proc 25(6): 1657-61, [Text Abstract on PubMed]
168 Stadtman TC.
New biologic functions--selenium-dependent nucleic acids and proteins.
Fundam Appl Toxicol 3(5): 420-3, [Text Abstract on PubMed]