#### Part II: Particle dynamics in the Eastern Mediterranean Sea

Dr Aristomenis (Aris) P. Karageorgis ak@ath.hcmr.gr

World Data Center for Oceanography, OCEAN CLIMATE LABORATORY Silver Spring, MD, USA, 30 September 2008

## Origin of marine particles



## Why do we study suspended particles?

- Origin and fate of materials in the ocean
- Tracers of productivity
- Tracers of circulation
- Pollution and eutrophication
- Carbon budget
- Coastal-deep sea interactions

## Study area



## R/V AEGAEO



Methods

Optical sensors

Transmissometers

Fluorometers







fluorometer

Chelsea 25-cm path-length Transmissometer, 660 nm (red)



#### Methods

- Laboratory analyses
  - Particulate matter concentration
  - Particulate organic carbon concentration
- Scanning electron microscopy
- X-ray Diffraction
- Thin-film X-ray Fluorescence

Dynophysis spp.

## PM dynamics studies

- 1. First studies in the early 1990's
  - CINCS, EURECOMARGE
- 2. 1996-1999
  - Metro-Med
- 3. 2000-present day
  - Routine measurements

**Dolomite crystal** 

## Status at the beginning of 2000

- Particulate matter distribution and their properties were random in time and space
- Many light transmission profiles had been collected, but they were virtually unexplored
- LT data were accompanied by standard CTD measurements
- LT data were collected without proper care of the instruments used

#### The idea

- The idea was to collect all available LT measurements, from all sensors
- And to create a data base
- Including bottle data, wherever available (PMC and POC)

## The opportunity

- In 2002, a proposal was submitted to Fulbright Foundation aiming at collecting and processing the data, in collaboration with Prof. W.D. Gardner from Texas A&M University
- The grant was approved and a 3-months work was funded
- The work was supervised by W.D.
   Gardner and A. Mishonov

Magn 20 µm 1000x

## Data homogenization

- By definition LT measurements are strictly cruise dependent due to the differences of particle populations prevailing in the water column
- Data collected covered a period of 11 years (1991-2001) – 3193 stations
- Data were inconsistent even within the same cruise
- First task was to put data under the same format and store them in Ocean Data View

### Data set quality control

- Cruise metadata were obtained
- Casts were manually inspected for spikes and other apparent errors
- Duplicate casts (common for water) sampling) were removed
- Data set was reduced to 2463 downcasts
- Final data set came from 12 research projects, and a total of 40 oceanographic cruises

Acc.V Spot Magn Det WD Exp | 5 μm 25.0 kV 3.0 5000x SE 12.6 7 ADE1 <mark>Kaolinite and E. huxley</mark>i

#### Conversions

- LT readings were converted to beam attenuation coefficient c, which is independent of the transmissometer's path-length: c = -1/L \* ln(LT/100)
- $C = C_w + C_p + C_{cdom}$
- Beam c<sub>p</sub> was the parameter studied, i.e. light attenuation due to particles

Assumption: During a single cruise the minimum beam C recorded corresponds to C<sub>w</sub>

#### Profile shift



Left: total beam attenuation coefficient c from Chelsea transmissometer and right: beam attenuation due to particles only,  $c_{P}$  from the same instrument after shift and correction of the profiles

## Data set spatial coverage



#### Transmissometers



SeaTech 10-cm path-length and Chelsea 25-cm path-length transmissometers, both emitting in the red part of the spectrum showed marked relationship (R<sup>2</sup> = 0.918, n = 525335)

## Sampling frequency distribution



#### General circulation



AIS - Atlantic-Ionian Stream, MMJ - Mid-Mediterranean Jet, AMC - Asia Minor Current, MAW - Modified Atlantic Water, ASW - Adriatic Sea Water, LSW - Levantine Surface Water, ISW - Ionian Sea Water, BSW - Black Sea Water, CC - Cretan Cyclone, IA - Ionian Anticyclone, PA - Pelops Anticyclone

## Beam Cp during the 'wet' period



## Beam Cp during the 'dry' period



## Beam C<sub>p</sub> near the bottom



Wet

Dry

## The Rhodes cyclon I



## The Rhodes cyclon II



## PMC vs C<sub>p</sub> regression



## POC vs C<sub>p</sub> regression





Available online at www.sciencedirect.com



Deep-Sea Research I 55 (2008) 177-202

DEEP-SEA RESEARCH PART I

www.elsevier.com/locate/dsri

#### Particle dynamics in the Eastern Mediterranean Sea: A synthesis based on light transmission, PMC, and POC archives (1991–2001)

Aristomenis P. Karageorgis<sup>a,\*</sup>, Wilford D. Gardner<sup>b</sup>, Dimitris Georgopoulos<sup>a</sup>, Alexey V. Mishonov<sup>c</sup>, Evangelia Krasakopoulou<sup>a</sup>, Christos Anagnostou<sup>a</sup>

<sup>a</sup>Hellenic Centre for Marine Research, 46.7km Athens-Sounio Avenue, Mavro Lithari, 19013 Anavyssos, Greece

<sup>b</sup>Department of Oceanography, Texas A&M University, College Station, TX 77843, USA

<sup>c</sup>NODC/NOAA, 1315 East West Highway, Silver Spring, MD 20910-3282, USA

Received 28 June 2007; received in revised form 7 November 2007; accepted 12 November 2007 Available online 23 November 2007

#### The future

- The data base needs to be updated including all beam c readings obtained from 2001 until present day
- A compilation of LT measurements is underway for the NW Black Sea
- Fluorescence data and chlorophyll-a bottle data are collected and will be analyzed together with satellite images
- Simultaneous measurements in the red and blue parts of the spectrum may provide additional information about PM composition (CDOM)
- An in-situ grain-size laser analyzer (LISST-Deep) will provide information about the behavior of light attenuation vs particle size.

# Thank you for the invitation and your attention