National Personal Protective Technology Laboratory

End-of-Service Life Program

Jay Snyder

Contact Info

zpx5@cdc.gov

412-386-6775

NIOSH

NPPT

Research to Practice

through Partnerships

Presentation Outline

Present Work (electronic system)

- Cartridge-Sensor Integration/Testing/Evaluation
- Future Work (electronic system)
 - System Redesign
- Optical System
 - An Alternative to the Chemiresistor

End-of-Service Life Detection System

Collaboration with Respirator Manufacturers

- Dräger
- MSA
- North Safety Products
- Scott Health & Safety
- Sundström Safety AB
- Survivair

Examples of Sensor Integrated Cartridges

MEMS Sensor Generations

Sensor Assembly

NIOSH

Cover glass

Equivalent circuit

Vmod+

Sensor

Small is Beautiful: From Bulk to Nano Scale

Used with permission from Carnegie Mellon University

Performance of a CGNP

NIOSH

Properties

• Easy to handle

- Air stable.
- Soluble in organic solvents*.
- Can be coated on substrates by ink-jetting, dipping, spinning and spraying.

• Can be modified

- Size and shape.
- Functional end groups of organic monolayer.
- *Solubility determined by the nature of the monolayer.
- Reusable

Solvents and Test Setup

- Toluene (500 & 200 ppm)
- DuPont Enamel Reducer (500 ppm)
 - 19+ groups of compounds
- Trichloroethylene (500 ppm)
- 25 & 80 % RH

- Custom chamber
- 32 l/min flow
- · Controlled analyte and humidity

Thick/Thin Film Toluene Response

Test Results

Preliminary Conclusions from Cartridge Testing

- Uniform film thickness devices were more sensitive than earlier device.
- Detection of contaminants at high RH levels was not acceptable.
- Sensor location (side vs center) made little difference.
- Inconsistent sensor performance.
- No failures due handling and transportation?
- Did not observe aging effects.

Tasks for 2009

Materials task

- develop new nanoparticle materials (gold nanocrystals and nanoclusters) for chemiresistive response to analytes of interest
- support generation of nanoparticle materials for chemiresistive device and system development
- test materials for chemiresistive response

Manufacturing task

- jetting development of nanoparticle inks
- inkjetting support for chemical sensor device and system development

Sensor task

- integrated gravimetric sensor characterization to analytes
- integrated capacitive humidity sensor characterization and refinement
- chemiresistor device design support

Tasks for 2009

System Integration task

- preconcentrator design and implementation
- chip bonding of preconcentrator onto passive chip system incorporating chemiresistors
- testing with analytes of passive chip system
- incorporation of chemiresistors, humidity sensor and gravimetric sensor onto integrated chip platform with active circuitry

Wireless task

- system power estimation
- design and on-chip implementation of wireless power conditioning circuitry
- near-field antenna design for power transfer
- design of output communication circuits

Wireless Power and Communication

Phased Implementation

NIOSH

3-4 years

Gen Six Configuration

Next Generation MEMS Device

Nanosensors from Porous Si

- Low Power
- Mass produced, low cost
- Tunable Optics

- Sensitivity: high surface area
- Surface easily modified
- Impervious to electrical interference

Plan View

Wide range of pore sizes possible

10nm

100nm

1 µm

General Sensing Scheme

Workplace Safety and Health

NPPTL Research to Practice through Partnerships

Attachment to Optical Fiber

NPPTL Research to Practice through Partnerships

Optical Fiber Sensing Scheme

NIOSH

NPPTL Research to Practice through Partnerships

Optical Fiber Sensing Scheme

Carnegie Mellon Team, Past and Present

- MEMS and system: Gary Fedder
 - Sarah Bedair, Kristen Dorsey, Nathan Lazarus, Suresh Santhanam, John Wu
- Nanoparticles: Rongchao Jin
 - Niti Garg
- Polymer characterization: Tomek Kowalewski
 - Rui Zhang
- Sensors: David Lambeth
 - Greg Barchard, Bo Li
- Polythiophenes: Richard McCullough
 - Jessica Cooper, Mihaela Iovu, Genevieve Sauvé
- Wireless: Jeyanandh Paramesh
- Jetting: Lee Weiss, Larry Schultz

Collaborators

- Tony Rozzi, EG&G
- Michael Sailor, UCSD
- Anne Ruminski, UCSD
- Brian King, UCSD
- Jay Snyder, NIOSH

Contributory Programs

• CDC/NIOSH

- USAF Multidisciplinary University Research Initiative
- Sensors for a Safer America
- University of California Research Funds

Quality Partnerships Enhance Worker Safety & Health

Visit Us at: <u>http://www.cdc.gov/niosh/npptl/default.html</u> *Disclaimer:*

The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy.

Thank you

NIOSH

