Air Pollution and Children's Health

Jim Gauderman, Ph.D. University of Southern California Keck School of Medicine

JimG@usc.edu

Does breathing air pollution cause health effects in children?

Don't we already know air pollution is bad for us?

Well Established

- Air pollution causes <u>acute</u> (short-term) effects, e.g.
 - Physician visits
 - Lung function changes
 - Acute symptoms in asthmatics and other susceptible subgroups

Less-Well Understood

- Are <u>chronic</u> health effects caused by exposure to outdoor air pollution?
 - Reduced Lung Development?
 - Onset of Asthma?
 - Pre-natal effects?

Why Study Children?

Exposure

- They spend more time outdoors
- They are more active

Physiology

- They have higher ventilation rates
- They are still growing

Logistics

Easier to find...kids go to school

The USC Children's Health Study

Principal Investigator: John Peters Co-investigators: Ed Avol Kiros Berhane Jim Gauderman Frank Gilliland Mike Jerrett Fred Lurmann Nino Kuenzli **Rob McConnell Duncan Thomas**

The USC Children's Health Study

Funding: California Air Resources Board NIEHS U.S. EPA NHLBI The Hastings Foundation

CHS Goals

- Is childhood exposure to ambient pollutants associated with:
 - –Lung function development?
 - -Chronic respiratory symptoms?
 - -School absence?
 - -Onset of asthma?

Child groups studied and their ages each year

Grad	de (#)	1993	1994	1995	1996	1997	1998	1999	2000	2001
4 th	(1,800)	10	11	12	13	14	15	16	17	18
7 th	(900)	13	14	15	16	17	18			
10 th	(900)	16	17	18						
4 th	(2,000)				10	11	12	13	14	15

12 CHS Study Communities

Summary of Pollutants

- Continuous monitoring at a central site in each study community since 1994
 - -<u>Particulate Matter</u>: PM₁₀, PM_{2.5}, EC, OC
 - –<u>Nitrogen Dioxide</u> (NO₂)
 - Acid vapor: Primarily nitric acid
 - -<u>Ozone</u> (O₃)

What is PM?

How Small is Particulate Matter?

The Effect of Air Pollution on Lung Development from 10 to 18 Years of Age

(Gauderman et al., New Eng J Med, 351:1057-67, 2004)

Grad	de (#)	1993	1994	1995	1996	1997	1998	1999	2000	2001	
4 th	1,759	10	11	12	13	14	15	16	17	18	
7 th	(900)	13	14	15	16	17	18				
10 th	(900)	16	17	18							
416											
4 th	(2,000)				10	11	12	13	14	15	

Annual Spirometry

Lung function measures:

Forced expiratory volume in 1 second (FEV₁)

Forced vital capacity (FVC)

Maximal mid-expiratory flow (MMEF)

Additional Data...

Active smoking?Height?Asthma?Gas store?Respiratory illness?Passive Smoking?

Mean PM_{2.5} levels, 1994-2000

Mean pollutant levels, 1994-2000

The L.A. Basin has elevated levels of all of these pollutants

Pollutant Correlations (R) Across Communities

Table 1. Correlation of Mean Air-Pollution Levels from 1994 through 2000 across the 12 Study Communities.*

Pollutant	O₃ (10 a.m.–6 p.m.)	NO2	Acid Vaporj	PM ₁₀	PM _{2.5}	Elemental Carbon	Organic Carbon
			R valu	8			
O3							
1-Hour maximal level	0.98	0.10	0.53	0.31	0.33	0.17	0.25
10 a.m.–6 p.m.		-0.11	0.35	0.18	0.18	-0.03	0.13
NO ₂			0.87	0.67	0.79	0.94	0.64
Acid vapor†				0.79	0.87	0.88	0.76
PM ₁₀					0.95	0.85	0.97
PM _{2.5}						0.91	0.91
Elemental carbon							0.82

 $R \approx 0.0$, little or no correlation R > 0.0, positive correlation (max is 1.0) R < 0.0, negative correlation (min is -1.0)

Characteristics of the Study Subjects

		No of	Mean No	Female	Asthma ^b	Any Smoking ^c
Community		Subjects ^a	PFT's	Sex (%)	(%)	(%)
Alpine	(AL)	145	6.1	50	13	27
Atascadero	(AT)	128	7.0	54	24	32
Lake Elsinore	(LE)	144	6.0	44	13	31
Lake Arrowhead	(LA)	166	6.3	54	13	30
Lancaster	(LN)	137	5.5	51	12	30
Lompoc	(LM)	115	6.1	43	8	34
Long Beach	(LB)	160	6.0	49	13	24
Mira Loma	(ML)	163	5.9	50	10	25
Riverside	(RV)	179	5.8	49	17	15
San Dimas	(SD)	138	6.0	51	11	28
Santa Maria	(SM)	147	5.9	48	15	27
Upland	(UP)	137	7.1	53	15	34
All		1,759	6.1	50%	14%	28%

Sample Sizes Over Time

- 1993: 1,759 (4th grade)
- 1995: 1,414
- 1997: 1,252
- 1999: 1,031
- 2001: 747 (12th grade)

Approximately 10% loss per year

FEV₁ Growth Over 8 Years

Girls

Average FEV₁ in Girls and Boys

Average FEV₁ in Girls and Boys

Key Question: Does 8-year growth vary across communities with respect to pollution?

8-yr FEV₁ Growth in Girls and Boys vs. 7-year average NO₂ levels

8-yr FEV₁ Growth in Girls and Boys vs. 7-year average NO₂ levels

NO₂ (ppb)

Pollution Effects on 8-yr Growth

- 8-year lung growth deficits associated with:
 NO₂, Acid vapor, PM mass, Elemental Carbon
- Robust to adjustment for:
 - Indoor pollutants (gas stove, parental smoking, pets)
 - Parental education
- Associations in all types of kids:
 - Boys and girls
 - Non-asthmatics
 - Non-smokers
- No associations with ozone

8-year growth deficits

• What is the net effect?

Are the results clinically meaningful?

Cumulative Pollutant Effects

 Does 8-years of exposure to air pollution cause clinically significant deficits in lung function at age 18?

Girls

Boys

Attained Lung Function

- What should lung function be at age 18?
 - Computed EXPECTED FEV₁ at age 18 based on sex, race/ethnicity, height, BMI, and asthma
- How does actual lung function compare to expected?
 - Computed OBSERVED/EXPECTED for each child
 - 'Low FEV₁' = OBSERVED/EXPECTED < 80%</p>
- Is 8 years of breathing polluted air related to a greater chance of having clinically Low FEV₁?

Low FEV₁ at Age 18 vs. Pollution

(Gauderman et al., 2004)

Low FEV₁ at Age 18 vs. Pollution

Why we care about annual lung growth rates...

(Adapted from Strachan et al 1997)

Additional Results

4-year Lung Function Development

Grade	1993	1994	1995	1996	1997	1998	1999	2000	2001
4 th	10	11	12	13	14	15	16	17	18
7 th	13	14	15	16	17	18			
10 th	16	17	18						
⊿ th				10	11	12	13	14	15

Lung function growth vs. NO₂ Cohort I: 1993-1997

Gauderman at al., 2000

4-year Lung Function Development: Replication Study

Grade	1993	1994	1995	1996	1997	1998	1999	2000	2001
4 th	10	11	12	13	14	15	16	17	18
7 th	13	14	15	16	17	18			
10 th	16	17	18						

4th

10 11 12 13 14 15

Lung function growth vs. Acid Cohort 2: 1996-2000

Gauderman at al., 2002

Other studies of lung function and pollution

Longitudinal studies (growth)

- Young children in Poland (Jedrowski et al., 1999)
- Young children in Austria (Horak et al., 2002)

Cross-sectional studies

- 6-cities study
- 24-cities study
- NHANES II

(Dockery et al., 1989) (Raizenne et al., 1996) (Schwartz, 1989)

CHS: School Absence

- 20 ppb increase in O₃ was associated with an 83% increase in school absence due to acute respiratory disease (Gilliland et al., 2001)
- Large economic impact of pollution-related absences (Hall and Lurmann, 2003)

CHS: PM₁₀ and **Bronchitis in Asthmatics**

(McConnell, et al., 1999; see also McConnell et al., 2003)

CHS: Ozone and New-onset Asthma

	<u>Low O₃ Towns</u>	<u>High O</u>	<u>3 Towns</u>
	#	#	
<u>Sports</u>	<u>asthma</u> RR	<u>asthm</u>	<u>a</u> RR
0	58 1.00	46	1.00
1	50 1.28	40	1.28
2	20 0.82	16	1.28
≥3	9 0.79	20	3.31

(McConnell et al., 2002)

Will reductions in pollution improve health?

CHS Movers Study Where have CHS children moved?

Some to higher pollution, some to lower

CHS Movers Study

We tested lung function of 110 movers in the western U.S.

Lung Function Growth in Movers

(Avol et al., 2001)

Air Pollution and Health

- High pollution communities vs. low pollution
 - Lower lung function
 - Increased symptoms
 - Increased asthma

What About Local Exposures?

Local Exposures: Living within 300m of major roadways affects lung function

Lung Function FEV1 (Liters)

Local Exposures

- Several studies in Europe linking traffic exposure to respiratory symptoms
- S.F. bay area study relating pollution exposure at schools to symptoms (Kim et al. 2004)
- CHS study of residential NO₂, traffic, and asthma (Gauderman et al., *Epidemiology*, in press)

CHS: Ongoing Studies

- Lung function in young adults
 Do deficits persist into adulthood?
- Local exposures

 New cohort of ~6,000 K–1st grade children
 Monitoring NO, NO₂, O₃ at homes, schools
 Asthma, Exhaled NO
- Genetics
 - Are some more susceptible to pollutant effects?

Air Pollution and Adverse Birth Outcomes in the South Coast Air Basin, 1989-1993

Beate Ritz, M.D., Ph.D. Michelle Wilhelm. Ph.D. UCLA, Dept. of Epidemiology & Environmental Health Sciences

Why Study Air Pollution and Pregnancy?

Developing organism is uniquely sensitive to environmental toxins within a short time window

Adverse outcomes are common; in US:

~10% are preterm

~ 5% are low weight

South Coast Air Basin

Large number of births (~ half of all CA births, most in LA county)

Birth certificates are readily available

Dense air pollution monitoring network

Exposure assessment 1989-1993 study

Mothers residing within a 2-mile radius of stationary ambient CO (PM₁₀) monitors at the time of birth

> (relaxed to 10 miles for birth defects)

For each child, calculated the last trimester or last 6 week etc average CO (PM₁₀) using the closest monitoring station

Map of SCAQMD Monitoring Stations and Zip Codes Included in Analysis

Adjusted Odds Ratios (95%CI) for Term LBW 3rd trimester ambient CO levels

	All children	Higher parity children	Young Women
	case N=2,809	case N=1,454	case N=420
	non-case N=122,7640	non-case N=73,687	non-case N=15,111
CO-level (pp < 2.2	m): 1.0	1.0	1.0
2.2 - <5.5	1.04	1.03	1.02
	(0.96, 1.13)	(0.92, 1.15)	(0.83, 1.26)
> 5.5	1.22	1.33	1.54
	(1.03, 1.44)	(1.07, 1.65)	(1.07, 2.22)

(Ritz et al., 1999)

Adjusted Rate Ratios (95% CI) for Preterm Birth by Quartile of Ambient CO and PM₁₀ (9 Inland Stations only) (Ritz et al., 2000)

Birth Defects

Data from CA Birth Defect Monitoring Program (1989-1993)

Evaluated 6 different common heart defects

Exposure during first 3 months of pregnancy for each infant

CO and Ventricle Septum Effects

(Ritz et al., 2001)

Pregnancy m	onth	Odds Ratios (95% CI)		
С	O (ppm)	Case N=234 Control N=7944		
1 st month				
	<1.14	1		
1.	.14-<1.60	1.05 (0.66-1.68)		
1.	.60-<2.47	1.12 (0.59-2.12)		
	>=2.47	1.23 (0.53-2.82)		
2 nd month)		
	<1.14	1		
1.	.14-<1.57	1.63 (1.00-2.66)		
1.	.57-<2.39	1.97 (1.00-3.91)		
	>=2.39	2.84 (1.15-6.99)		
3 rd month				
	<1.12	1		
1.	.12-<1.51	0.77 (0.49-1.22)		
1.	.51-<2.27	0.54 (0.29-1.02)		
	>=2.27	0.70 (0.31-1.58)		

Pre-Natal Effects Summary Southern California, 1989-1993

- CO and term low birth weight (third trimester)
 - Most weight gain in fetus during third trimester
- CO/PM₁₀ and preterm birth (6 weeks prior to birth)

• Birth defects

- CO and cardiac ventricular septal birth defects
- Ozone also linked to birth defects
- Effects during 2nd month when heart formation occurs

Air pollution associated with acute and chronic effects

 Health effects observed at pollution levels that meet current US/EPA standards

Summary

- Children are a susceptible group
 - Rapid growth
 - More exposure than adults
- Regional and local exposures are important

Summary

• Reductions in air pollution will likely lead to measurable improvements in children's health

