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Estimating Reliability Trends for the World’s Fastest Computer 

Kenneth J.  Ryan and C. Shane Reese * 

September 6 ,  2000 

ABSTRACT 

Los Alarnos National Laboratory is home to the World’s fastest computer-Blue Mountain. This 

machine was created by parallelizing “desktop” computers, To determine whether or not this 

type of architecture represents the future of super-computing, reliability must be estimated. 

This paper presents and analyzes failure data of Blue Mountain. Non-homogeneous Poisson 

processes are fit to the data within a Bayesian hierarchical framework. The task of selecting 

hyperparameters is discussed, and Bayes factors are used to compare models. 

Key Words: Bayesian Hierarchical Model, Bayes Factor, Poisson Process. 

1 Introduction 

When modeling failure time data, a distinction must be made between one-time-use and multiple- 

time-use or repairable systems. When a one-time-use system fails, it is simply replaced by a 

new system of the same type. A light bulb is an example of a one-time-use system. To study 

the failure-time properties of a one-time-use system, suppose n of these systems are tested. In 
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50011-1210. C. Shane Reese is a Technical St& Member in the Statistical Sciences group at Los Alamos National 
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this case, treating the failure times as an 2.i.d sample from some population usually suffices. 

However, models for the failure times of a single repairable system need to be able to quantify 

the reliability growth or decay of the system. For example, consider a complex piece of computer 

software. When the program “fails” because it is presented with a set of inputs that it is not 

able to properly handle, programmers add and alter the code so that the bug that caused the 

failure is (hopefully) gone. The software should thus have a reliability growth-there should be 

fewer failures occurring with decreasing frequency. 

To deal with failure time data from a single repairable system, we will need some notation. 

First, let Ti be the time at which the ith failure occurs. The failure times of a single repairable 

system satisfy 0 < 2’1 < T2 < . . . . Next, we define the inter-failure times as 6 = Ti - Ti-1 (with 

To = 0). Finally, let 

0 N ( a ,  b) be the number of failures in an interval (a ,  b] 

0 N ( t )  be the number of failures in ( O , t ] .  

A simple model for the failure times of a repairable system are renewal processes. For a 

renewal process, the inter-failure times yi are an i.i.d sample from some population. Under a 

renewal process, the time to the next failure has the same distribution whether the system is 

brand new or has just been repaired for the 100th time. The terminology “as-good-as-new” is 

thus associated with a renewal process. Although a renewal process may adequately describe 

the failure times of a repairable system, the point of studying many repairable systems is to 

determine whether the system is experiencing reliability growth or decay, and a renewal process 

is unable to capture these aspects of a repairable system. 

Another class of models for failure times of a repairable system is that of the non-homogeneous 

Poisson processes (NHPP). An NHPP is defined by its intensity v(t) .  For an NHPP, 
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0 N ( a ,  b) is a Poisson random variable with mean p(u, b) = s,” v(t)dt 

. N ( 0 )  = 0 

0 for disjoint intervals (a l ,  b l )  and (a2, b2) (i.e. intervals for which either bl < a2 or b2 < a l ) ,  

N(a1, b l )  and N(a2, b2)  are independent. 

NHPPs have received much attention in the literature. Duane (1964) conducted an empirical 

study to determine a general relationship for the failure times of a repairable system undergoing 

a testing process that involves a repair with engineering modification at each failure. For five 

different electromechanical and mechanical repairable systems, Duane collected failure data and 

noted that plots of cumulative failure rates versus cumulative operating hours were approxi- 

mately linear on log-log paper. Crow (1974) suggested modeling a repairable system under such 

“find it and fix it” conditions conforming to the Duane relationship using an NHPP with a power 

law intensity 

where both and q5 are positive parameters. In the literature, this model is referred to as a 

Weibull or power law process (PLP). Note that for a PLP, the mean number of failures up to 

time t is 

We will also use the notation that p(a, b) is the mean number of failures in the interval (a ,  b) .  

Under a PLP, Crow discussed classical point and interval estimation and hypothesis testing. 

This was done in a variety of situations assuming both time truncated and failure truncated 

data. He also considered the case where properties of multiple repairable systems (of the same 
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type) need to be estimated or tested and provided numerical examples and discussed a variety 

of applications where a PLP may be a useful model. 

Finkelstein (1976) provided exact 100( 1 - a)% confidence intervals for the two parameters 

of a PLP based on exact failure times where the data for a single repairable system are failure 

truncated. The intervals are based on pivotal quantities involving the maximum likelihood 

estimators. A table of necessary cut-off points (calculated by Monte Carlo methods) is provided. 

Lee and Lee (1978) provided an exact l O O ( 1  - a)% prediction interval for T,+I, based on 

exact failure times for a single repairable system where the data are failure truncated (Le., the 

first n failures are observed). T’+h may be useful in determining the length of a failure truncated 

study with “sample size” n + k .  

If the “find it and fix it” stage of a development process concludes at the end of a study, 

it may be reasonable to assume that thereafter the system can be modeled as a homogeneous 

Poisson process (HPP) (Le,, an NHPP with constant intensity). In this case, v(T,) would be 

the constant future intensity and directly related to the system’s “production time” reliability. 

Lee and Lee also provided an exact l O O ( 1  - a)% confidence interval for v(T,). Cut-off points 

(calculated by numerical integration) for inference for both T,+h and v(T,) are provided. 

A log-linear NHPP is an NHPP with intensity 

v( t )  = exp(y I- S t ) ,  

where the parameters 6, y E lR. Meeker and Escobar (1998) plotted maximum likelihood fits of 

p(t )  versus t for both the PLP and log-linear NHPP for two different data sets. They noted that 

the fits for these two models are similar for both data sets. This suggests that the log-linear 

intensity is flexible like the power intensity. Aven (1989) derived uniformly most power tests to 

compare the parameters of two repairable systems modeled using log-linear NHPPs. 
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We have noted that a renewal process is not capable of modeling reliability decay or growth 

in a repairable system because (under a renewal process) the system is “as-good-as-new” after 

a repair. A parallel criticism of the PLP is that after repair the system is “as-bad-as-old”. The 

reason for this is that if system repair time is negligible then the intensity before the failure is 

the same as that after the repair. A compromise seems in order as it may be the case that a 

repair does not make the system brand new but does improve it. 

To model this possibility, Black and Rigdon (1996) suggested what he called a modulated 

PLP (MPLP) which is a special case of a class of models presented by Berman (1981). An MPLP 

is essentially a PLP, but has another positive parameter K ,  called the shock parameter. Berman 

presented methods for simulating failure times from a MPLP and provided an interpretation for 

the shock parameter in the case when it is a positive integer. For example, if K = 4, a failure 

occurs at every fourth occurrence of a PLP with parameters q3 and q.  Thus, if the intensity of an 

MPLP is increasing (Le. 4 > 1) and K > 1, then the probability of a failure in a small interval 

just after a failure is smaller than the probability of a failure in an interval of the same length 

before the failure but larger than the probability of a failure in an interval of this length when 

the system was brand new. Black and Rigdon stated that an MPLP reduces to 

0 a gamma renewal process when q3 = 1 

0 a PLP when K = 1 

0 an HPP when q3 = K = 1. 

Black and Rigdon also considered inference for MPLPs. He presented approximate l O O ( 1  - 

a)% confidence intervals for the parameters of a MPLP based on the asymptotic properties of 

maximum likelihood estimators. A simulation study assessed the coverage probabilities of these 
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interval estimators. Approximate likelihood ratio tests were used as goodness of fit tests to 

compare PLPs, renewal processes, and HPPs to MPLPs. A simulation study assessed the power 

function for these tests. Numerical examples of both the intervals and tests are provided. 

Sen (1998) introduced a reliability growth model where the inter-failure times yZ are inde- 

pendent exponential random variables with hazard function 

where p > 0 and S > 1. Note that pi is a strictly decreasing sequence in i. Thus, the system 

after a repair is “better than brand new”. Obvious extensions to the parameter space of 6 would 

allow the pi to be an increasing sequence in i. This would allow Sen’s model to exhibit the worse 

than “brand new” but better than “as-good-as old” property of some MPLPs. Sen restricted 

his parameter space to model only reliability growth because the system being studied was in 

a design phase. Thus, a repair with engineering modification was only supposed to make the 

system “better than brand new”. 

Sen also derived maximum likelihood and least squares estimators for p and 6. Large-sample 

properties of these estimators were also derived. As a test of robustness for the statistical 

methods he crafted, Sen used the maximum likelihood estimator of the PLP intensity to estimate 

the hazard function for his own model. This estimator-even under the wrong model-was found 

to be consistent. But, under this model misspecification, Sen found that precision may be 

underestimated. 

Bayesian approaches for the PLP also have a history in the reliability growth literature. 

Higgins and Tsokos (1981) proposed a quasi-Bayesian estimator of v(t) for a PLP. This esti- 

mator is easy to compute, allows for use of prior knowledge, and performs well compared to 

the corresponding maximum likelihood estimator. Littlewood and Verrall (1989) introduced a 
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Bayesian reliability growth model for computer software. 

Kyparisis and Singpurwalla (1985) presented a data analysis on software failure times using 

a Bayesian PLP model. Guida e t  al. (1989) and Calabria e t  al. (1990) presented both non- 

informative and informative priors for a PLP. The description of the informative priors allows 

for an easy transfer from informal prior knowledge to a prior distribution. Guida e t  al. compared 

Bayesian point and interval estimation for the PLP parameter to maximum likelihood methods. 

Calabria e t  al. considered the problem of predicting T,+I, from 2’1, T2,. . . , Tn and compared 

their methods to maximum likelihood methods. Coverage probabilities and relative average 

interval length were used as comparison criteria. 

Using priors presented by Guida e t  al. and Calabria et. al, Bar-Lev e t  a2. (1992) fit a 

Bayesian PLP to two different data sets. The data and posterior summaries are provided. Bar- 

Lev e t  al. pointed out that the Bayesian method provides a “unified methodology” for dealing 

with exact failure data, since the method is the same regardless of whether the data are time 

or failure truncated. Maximum likelihood methods, however, depend on the data collection 

met hod. 

We present a reliability study of a supercomputer consisting of 48 sub-computers. Essentially, 

these 48 sub-computers are 48 repairable systems in series. A job submitted to this computer 

will finish only if none of the sub-computers requested fail while the job is processing. (Jobs on 

this supercomputer are not always run on all 48 sub-computers.) Since the sub-computers are of 

the same brand, a Bayesian PLP hierarchical model is a natural choice because it makes sense 

to think of these sub-computers as coming from some population for which we do not know the 

values of the parameters. To our knowledge, this type of model has never been introduced in 

the literature. In Section 2, we present a description of the supercomputer. In Section 3.1, we 



8 

review the literature for a Bayesian PLP model for a single system. In Section 3.2, we introduce 

our Bayesian hierarchical PLP model for multiple repairable systems. This model is defined in 

a way such that elicitation of the hyperparameters is simple-given some expert opinion. Section 

4.1 shows summaries from the fit of the model described in Section 3.2. Also in Section 4.1, we 

determine the current reliability of the supercomputer. We define reliability to be the probability 

that a job of length I submitted to all 48 sub-computers at start time s will finish. We will use 

this metric to assess the reliability growth (or decay) of the supercomputer over time. In Section 

4.2, to assess whether or not the hierarchy in the model is needed, simpler Bayesian models are 

also fit. Then, Bayes factors are used to compare the fits of these competing models. 

2 The Blue Mountain Supercomputer 

The basic repairable system that we study is a sub-computer. Assume that there are C sub- 

computers in all. Also, suppose that, Ni(0, t ) ,  Ni(t, 2t), . . . , N i ( ( M  - l ) t ,  M t )  is recorded for 

each computer i = 1 , 2 , .  . . , C ,  where t > 0 is fixed and known. Note that the times at which 

data are collected are equally spaced. Figure 1 is a diagram of these times. To make latter 

notation more concise, let x i j  be the number of failures for the i th computer during the j t h  time 

interval. That is, let x i j  = N i ( ( j  - l ) t ,  j t )  for i = 1 , 2 , .  . . , C and j = 1 , 2 , .  . . , M .  

The Blue Mountain supercomputer consists of 48 “desktop” or sub-computers. There are 

128 processors per sub-computer, and there is a complicated interconnect that links the sub- 

computers together. Periodically, a sub-computer will “fail”. These failures are hardware re- 

lated. For example, a memory module may need to be replaced. When one of the sub-computers 

fails, the sub-computer is repaired. Then, the sub-computer is restarted. If a job is submitted 

to a sub-group of the 48 sub-computers and one of the sub-computers in the sub-group fails, the 
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job will not finish and will need to be resubmitted. The number of failures per month for each 

sub-computer is recorded. These data for the first 9 months of operation are provided in Table 

1. (Thus, in our case, N = 48 sub-computers, and M = 9 equally spaced data collection times 

that are t = 1 month apart.) 

3 Bayesian PLP Models 

3.1 One-System Models 

Consider the data collection scheme described in Section 2, and consider modeling the ith sub- 

computer with a PLP with parameters # and q. Let E = ( s i l ,  x i 2 , .  . . , ZiM) be the vector of 

failure counts for the i th sub-computer. Then, the sampling distribution for the failure counts 

for the ith sub-computer in time interval j is 

and g has probability mass function 

j=1 

As mentioned in Section 1, Guida et al. (1989) presented an easy to elicit informative prior 

on ( 4 , ~ ) .  The suggested procedure places a gamma distribution on the expected number of 

failures up to some specified time T ,  p ( T ) .  All the expert needs to do is provide a value for T 

and a mean p and standard deviation cr for p ( T ) .  After a change of variables, the prior density 

for ql# is 
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where p, 0, and T are given by an expert. With the conditional prior for qlb, specified, all that 

is needed is a marginal prior distribution for 4. Guida e t  al. suggested a uniform distribution 

with end points 

0 (0 .3 , l . l )  when there is a “strong conviction of a reliability growth, but no information on 

what the 4 value ( 5  1) is” 

0 (0.3,3.0) when there is “weak information about the failure process” 

0 (1.0,5.0) when there is a “strong conviction of a degradation phenomena, but weak infor- 

mation on what the 4 value (> 1) is”. 

Note that when t = q, p ( t )  = 1. Thus, q can be interpreted as the time in which you expect the 

first failure. If 4 = 3, you expect one failure in the first q time units, and you expect 23 - 1 = 8 

failures in the second q time units. So, in many applications, it seems reasonable that 4 > 3 

would indicate more decay than expected and that an expert would be able to rule these values 

out. Thus, the Guida et  aZ. choice of priors for 4 seems to make sense. 

A more flexible prior for 4 was suggested by Kyparisis and Singpurwalla (1985). Kyparisis 

and Singpurwalla suggested a scaled beta distribution with density 

where 0 5 Z < 4 < u and lcl, k2 > 0. For a scaled beta distribution with mean p E (Z,u), the 

variance a2 must be less than (u - Z)2p(1 - p) .  Beginning with a valid mean and variance for a 

scaled beta distribution, the parameters lc1 and IC2 are 
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3.2 A Multiple-System Hierarchical Model 

Suppose the number of failures for the ith sub-computer follows a PLP with intensity parameters 

4i and qi. Define - 4 = (41,42, . . . , &) and 9 = (VI, 772, . . . , qc). Furthermore, suppose that given 

- 4 and - r), sub-computers fail independently. That is, 

xijli,B 2nd N Poisson ( (z)'~ - ( ' ( j  - 11)'~) for i = 1,. . . , N ,  j = 1,. . . , M .  
vi 

Thus, the sampling distribution for the data X = [xij] (an N x M matrix) has probability mass 

function 

Next, we suggest a gamma prior distribution for 4 that is parameterized in terms of the - 
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mean p4 and variance ~ 4 .  That is, we use density 

So, the distribution of ( $ , g I p ~ ,  UT, p4, u4) has density - 

Finally, let 

PT N Weibul l (apT,  bpT)  

UT N Weibull(a,,, buT) 

pd N Weibull(ap,,bpd) 

04 N Weibull(a,,, bud) 

where the Weibull(a,  b) distribution has density 

a x a-1 
P ( 4  = T ;  ( T ; )  exP [- ' 
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3.3 H:yperparamet er Specificat ion 

For the model defined in Section 3.2, a,,, bPT , auT , b,, , a,, , b,, , ua, , and b, are hyperparam- 

eters that need to be specified. To choose a,, and b,,, suppose that an expert provides T and 

gives a prior with the desired properties. In our example, the computer expert believes that, for 

T = 1, PT is in the interval (0.5,15.0). Taking these values as the 0.05 and 0.95 quantiles of the 

prior distribution for ,UT, Equations 1 and 2 imply that a,, = 1.20 and b,, = 5.99. Similarly, 

the expert believes that, for T = 1, UT is in the interval (0.01,5.0), and, thus, Equations 1 and 

2 imply that auT = 0.654 and bOT = 0.935. 

Since Guida et al. suggest that (0.3,3) is a non-informative range for a 4 parameter, suppose 

that $i are in (0.3,3) for i = 1 ,2 , .  . , , C. Then, ,u4 would also be in this interval. Taking 0.3 

and 3 as the 0.05 and 0.95 quantiles for p4 implies a,, = 4.07 and b,, = 0.623. Also, u4 would 

be at most the standard deviation of a population with half of the 4is at 0.3 and the other half 

at 3. That is, 

( .3 - 1.65)2 + (3 - 1.65)2 
2 04  I 

= 1.35. 

Thus, with 0.01 and 1.35 as the 0.05 and 0.95 quantiles for u+ implies aad = 0.829 and bgd = 

0.359. 
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4 Results 

4.1 Fitting the Hierarchical PLP Model 

To simulate draws from the posterior distribution of the hierarchical model described in Section 

3.2 calculations were done using MCMC methods described in Section A.3. Basically, we used a 

forward substitution Markov Chain Monte Carlo Algorithm (Gilks et. al, 1996). To determine 

if the Markov Chain had mixed, time series plots of the parameters and the methods introduced 

by Raftery and Lewis (1996) were used. Summaries of the posterior distribution presented in 

this section are based on a sample size of 10,000. To obtain this sample, one chain of 1,010,000 

iterations was generated. The first 10,000 iterations were discarded. Every 100th iteration was 

kept thereafter. 

A way of assessing the fit of a PLP model is to plot nonparametric estimates and PLP 

estimates of the mean cumulative function p(t)  on the same plot. A nonparametric estimate for 

the ith computer’s mean cumulative function at time j is simply the number of failures up to 

times j .  That is, the nonparametric estimate is simply N i ( j )  for j = 1 , .  . . , M .  For hierarchical 

PLP estimates of the mean cumulative function for the ith computer, we use 

where ,!iVli and &pj are the posterior means of pi and 4i from the posterior sample of size 10,000. 

Figure 2 is a plot of nonparametric and hierarchical PLP based estimates of the mean cumulative 

function for all 48 computers. Note that the hierarchical PLP estimates “shrink” toward the 

center of the nonparametric estimates. This is known as “borrowing of strength.” Since the 48 

computers are thought to have come from an underlying population, each computer provides 

information about the other 47. Thus, the estimates are “pulled” toward the center. On the 
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other hand, the nonparametric estimates are computed separately for each computer. 

A l O O ( 1  - a)% highest posterior density region (HPDR) for a parameter 8 with posterior 

density p(8ldata) is (8 : p(B(data) > XI-,}, where X I - ,  is such that 

In the case when an HPDR is an interval, it is the shortest interval with a posterior probability 

of (1 - a). From the posterior sample of size 10,000, an analog of a 90% HPD interval can be 

calculated by 

(1) ordering the sample B1, 02, . , . , 8loToo0 

(2) finding i* such that 8i*+g9000 - Oi* = ,l,ooo) ~iS9,OOO - 8i 

Table 2 contains numerical summaries of the posterior sample of size 10,000 for some of the 

parameters. As described above, (ei* , 8i*+99000) is reported as the 90% HPD interval. Since the 

90% HPD interval for $1 is below 1, this indicates that sub-computer 1 seems to be undergoing 

reliability growth. Also note that the 90% HPD interval for p+ is below 1. This indicates that, 

on average, the population of sub-computers will undergo reliability growth. Since T = 1 was 

used in specifying the model, the fact that the posterior mean for p~ is about 3.5 indicates that 

we expect a new sub-computer to fail about 3.5 times in the first month of use. 

For some unobserved quantity of interest, its posterior predictive distribution is its condi- 

tional marginal distribution given the data. Under a Bayesian hierarchical model, population 

parameters are random variables. Thus, it is possible to simulate from the posterior predictive 

distribution for the “next” sub-computer-sub-computer 49. Figure 3 shows the posterior pre- 

dictive distribution of $49 and ~ 4 9 .  Since there is little posterior density for $49 greater than 1, 

this suggests that the “next” sub-computer will undergo reliability growth in the early stages 
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of its implementation. Also, since the posterior mode for r/49 is about 0.2, expect the "next" 

sub-computer to fail for the first time in just under a week. 

The goal of this modeling effort was to determine the reliability of the Blue mountain super- 

computer. For the i th sub-computer, Ni(a, b) is a Poisson random variable with mean pi(a, b) .  

Thus, the probability of no failures for the ith sub-computer in (a ,  b) is 

With our definition of reliability as the probability that a job of length 1 and starting time s 

finishes, since the Blue mountain is a series system in the 48 sub-computers, reliability R(2, s) is 

Figure 4 is a plot of reliability for 6 hour jobs with different starting times. These times are at 

the end of months 1, 5,  and 10. As the starting time is increased, reliability increases-further 

evidence of reliability growth. 

4.2 A Comparison of Models 

Suppose that we have Bayesian models for data Y. In other words, for a given model, we have 

a joint distribution for the data and parameters. For the ith 

- Si, let (Y,&) have joint density pi(Y,&). Then, if data Y = y 

bi = 

Bayesian model with parameters 

are observed 
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is a measure of how likely the data are under model i. The Bayes factor for comparing model i 

to model j is 

Bayes factors can be used to compare the fit of two models, where a “large” value of Bij 

suggests that model i provides a better fit to the data than model j. A nice property of 

Bayes factors is that they can be used to compare two entirely different models. Getting a 

corresponding frequentist measure to compare models can be difficult when the models are not 

nested. Interpretation of a Bayes factor is nevertheless somewhat problematic (Le., how large 

is a “large” Bayes factor). Kass and Raftery (1994) provided some guidelines for how large is 

“large”. For example, they argued that a Bayes factor greater than 10 is strong evidence that 

one model is better than another. 

Computing a Bayes factor in closed-form is not always possible. DiCiccio e t  al. (1997) 

provided ways of approximating Bayes factors and discussed the asymptotic properties of these 

approximations. To approximate a Bayes factor, we use the Laplace approximation 

where p is the number of parameters in the model, 2 is the posterior variance-covariance matrix 

of the parameters, h(.) is the (possibly unnormalized) posterior and 6 is the posterior mean. 

Table 3 is a list of Bayesian PLP models. Model 1 is the hierarchical PLP model described 

in Section 3.2. Model 2 does not allow the shape parameter q5 to vary over the 48 computers. 

Model 3 does not allow the scale parameter 7 to vary over the 48 computers. Model 4 allows 

neither the scale nor shape parameters to vary over the 48 computers. Model 5 is an HPP that 

allows the scale parameter to vary over the 48 computers. Model 6 is an HPP that does not 
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allow the scale parameter to vary over the 48 computers. Table 4 has the Bayes factors for 

Models 1-6. For example, the Bayes factor to compare the model 1 to model 4 is 17.62. This 

suggests the need for the hierarchical PLP model over a common q5 and q model. 

5 Conclusions 

This paper presented a PLP in a Bayesian hierarchical framework. Prior distributions were 

defined to facilitate the transfer of qualitative prior information to quantitative prior distribu- 

tions. The model was used to access the reliability of the Blue mountain supercomputer. The 

data indicate that the Blue mountain is undergoing reliability growth. Also, since reliability is 

increasing at a decreasing rate, the supercomputer may be entering a “flat spot”. Thus, the 

Supercomputer may be attaining an asymptotic reliability. Models that estimate this limiting 

reliability is a topic for future research. The Bayesian hierarchical model presented allowed 

for the estimation of quantities that are important to a computer scientist. Bayes factors were 

used to show the need for a hierarchical model as opposed to simpler, non-hierarchical Bayesian 

models. 
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A Posterior Simulation Methods 

A. l  Markov Chain Monte Carlo (MCMC) 

Suppose we are interested in making statistical inference about a parameter (possibly vector 

valued) 0. We may have some information (or lack of information) about the distribution of 0 

which we will call n(0 )  (prior distribution). Data are collected and represented by the likelihood 

or f(x10). In any Bayesian analysis, inference on the parameters is carried out by calculating 

the posterior distribution 

In many situations, the denominator of (3) is not a well known integral and must be calculated 

numerically. In cases where the denominator cannot be calculated explicitly, a technique known 

as Markov Chain Monte Carlo (MCMC) can often be employed. The technique proceeds by 

letting 8 = {&,&, . . . ,&} be an k dimensional vector, and 0-, be 0 with the vth element 

removed. A successive substitution implementation of the MCMC algorithm proceeds as follows: 

(1) Initialize do) and set t = 1. 

(2) Set v = 1. 

(3) Generate an observation Of' from the distribution of [flvlO'til'], replacing recently 

generated elements of with elements of el"', if they have been generated. 

(4) Increment v by 1 and go to (3) until v = k .  

( 5 )  

As t 3 00 and under conditions outlined in Hastings (1970), the distributionof {el"', . . . , Of'} 

If v = k increment t by 1 go to (2). 

tends to the joint posterior distribution of 0, as desired. 
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Typical implementation of the algorithm generates an initial “large” number of iterations 

(called the burn-in) until the behavior of the algorithm has stabilized. The burn-in samples are 

discarded, and the observations generated thereafter are used as observations from the posterior 

distribution of 0. Nonparametric density estimators (Silverman 1980) can then be used to 

approximate the posterior distribution. 

A.2 Metropolis-Hastings 

Some complete conditional distributions may not be available in closed form. That is, it may 

be difficult to sample from [O,~O!~l’] cx g(O,). Obtaining observations from such distributions 

is facilitated by implementing a Metropolis-Hustings step (Hastings 1970) for step (3) in the 

algorithm above. This is difficult because the distribution is only known up to a constant. 

(1) Initialize and set j = 0. 

(2) Generate an observation O$i, from a candidate distribution q(OvOld, ( A  O,,,,), (j) where q(z, y) 

is a probability density in 2~ with mean z. 

(3) Generate a uniform (0,l) observation u. 

(4) Let 

where a(z ,  9)  = min { wj, l}. 

( 5 )  Increment j and go to (2). 

The candidate distribution can be almost any distribution (Gilks et al. 1996), although a sym- 

metric distribution such as the normal results in a simplification of the algorithm, and is called 
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a MetropoZis step (as opposed to a Metropolis-Hastings step). A common choice for q(z ,y )  is a 

normal distribution with mean x and some variance which allows the random deviates to be a 

representative sample from the entire complete conditional distribution. 

A.3 Implementing MCMC Methods for the Computer Problem 

Define = ( p ~ ,  OT, p4, 04). The posterior distribution of the parameters (4, - -  q, BIX) has density 

where the final equality follows from the hierarchical model assumption that 
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The conditional distributions needed to implement the MCMC algorithm are 

Since none of these conditional distributions have known normalizing constants, parameters can 

be updated in the MCMC algorithm with one iteration of a Metropolis-Hastings algorithm as 

described in Sections A.1 and A.2. 

B Tables and Figures 
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Table 1: Number of Failures Per Month for Each Sub-computer 

Month 
1 2 3 4 5 6  7 8 9  
1 5 2 1 0 1  1 2 0  
5 4 6 1 2 1  4 4 0  
1 5 3 0 0 0  0 2 2  
4 3 2 1 2 1  1 3 0  
2 2 2 0 1 1  1 4 0  
3 4 3 1 1 4  1 4 0  
1 7 3 6 1 2  3 3 0  
3 3 3 1 0 3  2 4 0  
6 2 3 1 0 1  0 5 0  
4 4 5 1 1 1  2 7 1  
4 7 3 2 0 0  0 4 0  
4 4 3 3 0 0  1 4 0  
2 4 3 1 0 0  0 3 0  
3 4 3 2 0 3  1 2 0  
2 5 3 3 1 0  1 5 0  
2 2 3 1 2 1  1 4 1  
4 3 3 2 0 1  2 3 0  
5 4 3 0 1 4  1 2 0  
5 2 3 3 2 4  2 5 0  
2 3 1 1 0 3  0 1 0  

10 5 3 6 6 4 10 5 0 
5 2 5 1 1 1  1 2 0  
3 3 2 1 1 1  2 5 0  
2 3 2 1 2 3  0 3 0  
2 3 2 0 1 1  1 3 1  
3 2 3 0 2 5  4 1 0  
1 2 1 2 2 4  3 1 0  
1 2 2 1 2 2  0 3 1  
2 3 1 2 2 3  0 1 1  
5 4 1 1 1 4  0 1 2  
1 5 1 3 1 4  3 3 0  
1 3 4 1 3 4  0 2 1  
4 3 4 0 1 1  1 3 6  
1 2 1 2 0 1  0 2 0  
1 3 2 1 2 1  0 2 0  
2 6 3 1 0 2  0 2 1  
1 3 1 2 0 0  1 2 0  
3 2 1 1 2 0  1 2 0  
2 2 1 0 0 0  2 3 0  
5 3 2 0 2 2  2 2 0  
3 3 3 3 4 2  0 4 0  
5 4 2 2 5 0  0 3 0  
2 4 3 0 4 2  0 3 3  
5 2 3 2 3 0  1 3 0  
1 3 1 1 5 1  0 3 0  
1 2 2 0 2 1  0 3 0  
5 2 2 1 1 1  0 2 0  
2 2 1 0 2 0  1 2 0  
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Figure 3: Posterior Predictive Distributions for Computer 49. 
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Parameter 
41 
q1 

p~ 
UT 

p+ 
U+ 

Mean Median Standard Error 90% HPD Interval 
0.721 0.724 0.057 (0.628,0.814) 
0.211 0.201 0.070 (0.106,0.321) 
3.509 3.499 0.259 (3.088,3.931) 
0.647 0.663 0.247 (0.229,1.059) 
0.739 0.740 0.029 (0.691,0.786) 
0.055 0.054 0.026 (0.011,0.094) 

Table 3: A List of Bavesian PLP Models 

j 
1 2 3 4 5 6 

1 1.00 NA NA 17.62 6.07e+12 1.31e+15 
2 1.00 NA NA NA NA 

i 3  1.00 NA NA NA 
4 1.00 3.44e+11 7.46e+13 
5 1-00 216.72 
6 1.00 

Model Number I di vi 


