
1

MPI-IO Test User’s Guide

Version 1.0

May 24, 2007

1. Introduction

Although there are a host of existing file system and I/O test programs available, most were not

designed with parallel I/O in mind and are not useful at the scale of our clusters. Los Alamos

National Lab’s MPI-IO Test was written with parallel I/O and scale in mind. The MPI-IO test is

built on top of MPI’s I/O calls and is used to gather timing information for reading from and

writing to file(s) using a variety of I/O profiles; N processes writing to N files, N processes writing

to one file, N processes sending data to M processes writing to M files, or N processes sending data

to M processes to one file. A data aggregation capability is available and the user can pass down

MPI-IO, ROMIO and some file system specific MPI hints.

By default, the MPI-IO Test will write a specific pattern to a file, close the file, open the file for

read, read the data, check for data integrity and close the file. Timing information is reported for

file open, close, read and write data rates, and effective bandwidths.

The MPI-IO Test can be used for performance benchmarking and, in some cases, to diagnose

problems with file systems or I/O networks.

2. Running The Benchmark

The user is allowed to input program variables on the command line or as an input file (-setup). If a

set up file is provided, it is read first and then all command line variables are read in. This way, the

user can have a master file with all standard inputs, but vary one or a small number of variables by

specifying them on the command line and, thus, overwriting the variables in the setup file.

The user can provide MPI info hints that are loaded into the MPI_info stucture by using the “-

hints” flag. Any hint can be input to the routine, such as standard MPI -IO hints; striping_factor,

striping_width, cb_buffer_size, and cb_nodes; ROMIO specific hints; start_iodevice,

ind_rd_buffer_size, ind_wr_buffer_size, direct_read, and direct_write; and file system specific

hints are recognized. According to the MPI-2 standard, an implementation of MPI-IO may choose

to silently ignore any hint. Thus, any hint that is entered and not recognized by MPI-IO will be

silently discarded. Although there is overlap between some of the program inputs and MPI-IO

hints, such as the input routine parameter “-num_io” and the MPI-IO hint “-cb_nodes”, a hint will

be loaded into the MPI info structure only if the hint flag is used, i.e. the -num_io parameter will

not trigger the hint cb_nodes to be set. Thus, it is up to the user to specify the correct hints and

routine parameters for the desired test.

For data aggregation, processes are chosen to perform I/O based on if the user supplies a list of

hosts to do I/O (-host). If a host list exists, and a number of I/O processors (-num_io) is specified

for that host, say P, then the first P processes on that host will do I/O. Any processes on that host

that does not do I/O, i.e. any processes beyond the first P, will send data to an I/O process on its

own host. If there are processes on hosts that do not perform I/O, they will send data to an I/O

2

process on an I/O host. This situation can lead to an imbalance of I/O processes per host. If the user

does not specify what hosts will do I/O and P processes are specified to do I/O, then every process

with rank a multiple of (P - 1) will do I/O. Thus, non-I/O processes with rank K will send data to

the I/O processor with the greatest rank not exceeding K.

When sending more than one object (-nobj), memory is allocated for just one object and that same

object is sent -nobj times. In order to get around objects being sent from cache, the user is allowed

to specify if the object is touched (-touch) before being sent. The user can choose to:

 (1) not touch the object at all, meaning the same object is sent -nobj times with no

modification,

 (2) touch every object once, meaning the byte offset of the object in the file is written to the

first element of each object or

 (3) touch every object once per page, meaning the byte offset of the object in the file is

written to the first element of each page in the object.

In order to run the N to M test, “-type” 3, 4, 5, …

3. Input Parameters

The following flags are command-line input parameters for the MPI-IO Test routine with brief

descriptions of each of the flags. The “#” represents a number and “%” represents a string input.

-type # Type of data movement:

(1) N processors to N files

(2) N processors to 1 file

(3) N processors to M processors to M files

(4) N processors to M processors to 1 file

(5) N processors to M files

-collective Use collective read and write calls (MPI_File_read/write_at_all) instead of

independent calls (MPI_File_iread/iwrite). (Default: Use independent read/write calls)

-num_io "# # ... #" Total number of I/O processors. If using the -host flag, this is the number of

I/O processors on each host. For type 5, this is the number of files to write to. (Default: all N

processors will do I/O)

-nobj # Number of objects to write to file or to send to each of the M I/O processors

(Default: 1)

-strided # All processors write in a strided, all processors write to one region of the file

 and then all seek to the next portion of the file, or non-strided, all processors

 have a region of the file that they exclusively write into, pattern.

 0. Non-strided (Default)

 1. Strided - not implemented for use with aggregation (-type 3 and 4)

-size # Number of bytes that each object will send to the I/O processors or write to file.

3

Must be a multiple of sizeof(double). Allows for (Linux) dd-like expressions; w 2, b 512,

KB 1000, K 1024, MB 1,000,000, M 1,048,576, GB 1,000,000,000, and G 1,073,741,824.

A positive number followed by one of the above letter will result in the two multiplied, i.e.

2b => 1024.

-csize # Size of each I/O processors circular buffers

-target % Full path and file name to write and read test data. The following in the file name or

path will resolve to:

%r processor rank

%h host name

%p processor ID

 (Default: ./test_file.out)

-targets % File name of file containing one file name for each processor. File should have one

 file name on each line and an IO processor with IO rank N will read the file name from line

 N+1. The special characters for -target flag are valid. Test type 5 must use this flag and the

 first M (-num_io) file names will be read from the targets file.

-deletefile Causes the target file to be deleted at the end of the program. (Default: FALSE)

-touch # All data objects a processors sends/writes will contain the (double) values processor

rank to size+processor rank. Some of these values can be overwritten by the following:

the file offset will overwrite the rank (first element):

(1) Never (default)

(2) Once per object

(3) Once per page per object

-sync Sync the data before file close on writes (Default: FALSE - do not sync data)

-sleep # Each processor will "sleep" for this number of seconds between when the file is

closed from writing and opened to read. (Default: 0 seconds)

-barrier When specified, processors will do a barrier before each write. (Default: off)

-bopen When specified, processors will do a barrier before opening the file. (Default: off)

-sync When specified, processors will sync the file after closing it. (Default: off)

-chkdata # When reading the data file, check that every element equals the expected value,

which depends on the "touch" option. Check the following data elements:

 (0) None

 (1) First data element of each object (Default)

 (2) First two data elements of each object

 (3) All data elements

Checking data will decrease the read bandwidth.

4

-preallocate # Preallocate this number of bytes before write.

-ahead # Number of circular buffers for asynchronous I/O (Default: 0)

-host "% % ... %" List of host names to do I/O (Default: all hosts)

-lhosts Print out all hosts running this program.

-dio (optional) Use direct read and write for all read and write operations. This is a

ROMIO specific hint("direct_read" and "direct_write")

-hints %s %s ... %s %s Multiple MPI-IO key value hint pairs. Any MPI, ROMIO or file

 system specific hint can be specified here.

-op % (Optional) Only read or write the target file.

1. "read" - only read the target files jjjjjjjjjk

2. "write" - only write out the target files

-nofile Only allocate memory and send message, do not write the messages to file.

-norsend In normal aggregation operation, all processors send data to an IO processor. Even

IO processors send data to themselves. This flag indicates that IO processors do not send data to

themselves.

-output % File to write timing results, input parameters, and MPI environment variables.

(Default: stdout)

-errout % File to write all errors encountered while running the program. (Default: stderr)

-verbose Print out all times for each process. (Default: Off)

-help (optional) Display the input options

4. Return Values

 The MPI-IO test will return 0 on success and -1 otherwise.

5. Hints

Since the user is allowed to input any key, value pair using the “-hints” command line parameter,

any MPI-IO, ROMIO, or file system specific hints can be used. Since the MPI-2 standard allows

for hints to be silently rejected if they are not recognized, input hints may not be recognized by

MPI and no warning will be issues. For this reason, if a hint is specified by the user, all hints will

be printed out after the write phase of the test is run.

5

For a full list of hints specified by the MPI-2 standard, please consult a reference on MPI-IO or the

MPI-2 standard. The following is a list of hints that may be useful for I/O:

striping_factor - Hint specifying the number of I/O devices across which the file should be striped

striping_unit - Hint specifying the number of consecutive bytes of a file that are stored on a

particular I/O device

cb_buffer_size - Hint specifying the size of the temporary buffer that can be used on each processor

for collective I/O

cb_nodes - Hint specifying the number of processor that should actually perform collective I/O

The following are ROMIO specific hints.

cb_config_list - Hint specify what hosts and how many processors on those hosts perform I/O

start_iodevice = Hint specifying the I/O device from which file striping should begin.

ind_rd_buffer_size - Hint specifying the temporary buffer ROMIO uses for data sieving.

ind_wr_buffer_size - Hint specifying the temporary buffer ROMIO uses for data sieving.

Some hints specific to the MPI implementation of Quadrics MPI:

serialize_open – Serialize the call to POSIX open in MPI_File_open().

Some hints specific to the Panasas file system; PanFS:

panfs_concurrent_write - When set to 1, PanFS concurrent write mode is enabled.

panfs_raid_group_enable - When set to 1, files are created using PanFS raid groups.

panfs_raid_group_stripe_unit - The size of the stripe unit in bytes for the PanFS raid group.

panfs_raid_group_stripe_width - The number of Storage Blades in a PanFS raid group.

panfs_raid_group_stripe_depth - The number of stripes stored contiguously in a PanFS raid group.

panfs_raid_group_total_blades - The total number of Storage Blades in which a file is striped. The

of raid groups will be (panfs_raid_group_total_blades /panfs_raid_group_stripe_width)

6. Database integration via mysql

The test supports dumping results into a mysql database for later querying. The results contain the

timing values (the same that are printed to the stdout), the input parameters, and various such

environmental information as can be obtained such as version information for the file system (if it

is Panasas), hostnames of the processes, operating system information, etc.

6

Various environment variables control whether the test is built with the mysql integration:

a. MYSQL_HOST: If set, this is the hostname where the mysql server is running.

This assumes that the name of the database is mpi_io_test and the table is named

experiment and that authentication is completely open.

b. MYSQL_FILE: If set instead of MYSQL_HOST, this is the path to a file where the

test will write out queries. If the base assumptions of MYSQL_HOST are incorrect,

of if the test is run on a system without a connection to the mysql server, then this

file can be later uploaded.

c. MPI_INC: If the MYSQL_HOST variable is set, then the Makefile must be

instructed about how to compile with the mysql libraries. In addition to using the

standard Makefile variables, MPI_INC can also be used to pass information about

how to find the mysql include files.

d. MPI_LD: Similarly, if the MYSQL_HOST variable is set, the MPI_LD variable can

be used to provide link information about the mysql libraries to the Makefile.

e. MY_MPI_HOST: This value can be set to the fullpath to the MPI implementation

being used. Doing so allows comparisons between different MPI versions.

7. Examples

a. SAMPLE COMMAND LINE

===============

Example 1:

mpirun -np 50 mpi_io_test.x -type 4 -nobj 3 -size 131072 -csize 393216 \

-num_io "6" -target /scratch/jnunez/test_file_t2 -touch 2 -dio \

-hints striping_factor 4 cb_nodes 6 -output ./output_t2.txt -errout ./error_t2.txt \

-deletefile

8. Timing Results

All times reported have a minimum, average and maximum time that any process took to complete

the operation. The following are the times that are reported to the output file:

Effective Bandwidth: The aggregate bandwidth in Megabytes per second for reading or for writing data

including time to open and close the output data file. Computed as: (number processors * object

size * number of objects * sizeof(double))/ (total elapsed time) / (1024.0 * 1024.0)

Total Time: Elapsed time, including time to open and close the output data file, to complete the

read or write phase.

Write (or Read) Bandwidth: The aggregate bandwidth in Megabytes per second for reading or for

writing data excluding time to open and close the output data file. Computed as: (number

processors * object size * number of objects * sizeof(double))/ (total elapsed time - time to open

file – time to close file) / (1024.0 * 1024.0)

7

Write (or Read) Time: Elapsed time, excluding time to open and close the output data file, to

complete the read or write phase.

MPI File Open Time: Time to open the output data file(s).

MPI File write (or read) wait time: Amount of time any I/O processor took waiting to write to the

output data file(s). Since the independent read and write calls are non-blocking, this is time a

process waited for previous write to complete. Since the collective calls are blocking, this value is

just the time it takes to complete the collective read or write call.

MPI File Preallocate Time: Amount of time it took to preallocate the file.

MPI File Close Wait Time: Amount of time it took to close the output data file(s).

MPI File Sync Wait Time: Amount of time it took to sync the output data file(s).

MPI Processor send wait time = The maximum time any one processor took to send all data

objects. Only valid for tests using aggregation.

MPI Processor receive wait time = The maximum time any one processor waited to receive all data

objects. Only valid for tests using aggregation.

a. SAMPLE OUTPUT

===============

Sample Output:

Input Parameters:
I/O Testing type N -> N: 1
Total number of processors (N): 96
Total number of I/O processors (M): 96
Host Name List: None
Number of circular buffers (-ahead): 0
Number of objects (-nobj): 106
Number of bytes in each object (-size): 4194304
Circular buffer size (-csize): 4194304
Preallocate file size (-preallocate): -1
Check data read (-chkdata): 3
Use collective read/write calls (-collective): 0
Flush data before file close (-sync): 0
Strided data layout (-strided): 0
Delete data file when done reading (-deletefile): 1
Write output data to file (-nofile): 1
Aggregators send data to themselves (-norsend): 1
Test data written to (-target): /panfs/REALM1/scratch/jnunez/test_4194304_106.0
Touch object option (-touch): 3
Timing results written to (-output):
/home2/jnunez/Panasas/results/client2.3.0/tests_20050822/nn_p96_s4194304_o106_r1
Errors and warnings written to (-errout): stderr

Environment Variables (MPI):
MPIRUN_DEVICE=ch_p4

8

=== MPI write [96->96->96 /panfs/REALM1/scratch/jnunez/test_4194304_106.0]
Starting ...
=== Effective Bandwidth (min [rank] avg max [rank]): 1.734188e+03 [80]
2.026611e+03 2.817814e+03 [0] Mbytes/s.
=== Total Time (min [rank] avg max [rank]): 1.444524e+01 [0] 2.008476e+01
2.347150e+01 [80] sec.
=== Write Bandwidth (min [rank] avg max [rank]): 2.007613e+03 [80] 2.386687e+03
3.121080e+03 [0] Mbytes/s.
=== Write Time (min [rank] avg max [rank]): 1.304164e+01 [0] 1.705460e+01
2.027482e+01 [80] sec.
=== MPI File Open Time (min [rank] avg max [rank]): 3.811100e-02 [0]
2.135186e+00 2.518727e+00 [37] sec.
=== MPI File Write Wait Time (min [rank] avg max [rank]): 4.060000e-04 [95]
1.628927e-03 2.344900e-02 [27] sec.
=== MPI File Preallocate Time (min [rank] avg max [rank]): 2.000000e-06 [15]
2.437500e-06 3.000000e-06 [1] sec.
=== MPI File Close Wait Time (min [rank] avg max [rank]): 6.816700e-02 [57]
8.949620e-01 2.347709e+00 [73] sec.
=== Completed MPI-IO Write.
=== MPI read [96->96->96 /panfs/REALM1/scratch/jnunez/test_4194304_106.0]
Starting ...
=== Effective Bandwidth (min [rank] avg max [rank]): 1.955103e+03 [28]
2.800417e+03 6.659021e+04 [95] Mbytes/s.
=== Total Time (min [rank] avg max [rank]): 6.112610e-01 [95] 1.453498e+01
2.081937e+01 [28] sec.
=== Read Bandwidth (min [rank] avg max [rank]): 1.955134e+03 [28] 2.800652e+03
6.756456e+04 [0] Mbytes/s.
=== Read Time (min [rank] avg max [rank]): 6.024460e-01 [0] 1.453376e+01
2.081903e+01 [28] sec.
=== MPI File Open Time (min [rank] avg max [rank]): 2.760000e-04 [28] 1.134844e-
03 4.264400e-02 [0] sec.
=== MPI File Read Wait Time (min [rank] avg max [rank]): 3.690000e-04 [95]
2.950417e-03 2.887000e-02 [43] sec.
=== MPI File Preallocate Time (min [rank] avg max [rank]): 0.000000e+00 [0]
0.000000e+00 0.000000e+00 [0] sec.
=== MPI File Close Wait Time (min [rank] avg max [rank]): 4.900000e-05 [95]
7.812500e-05 7.680000e-04 [6] sec.
=== Completed MPI-IO Read.

MAKEFILES

=========

Makefiles have been provided for Linux, Tru64, and IRIX64 operating systems.

ALSO INCLUDED

=============

9. CONTACT

=======

Please report any bugs to

James Nunez (jnunez@lanl.gov) at Los Alamos National Labs

Please address any questions about the mysql integration to

 John Bent (johnbent@lanl.gov) at Los Alamos National Labs

