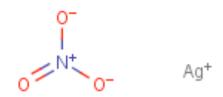


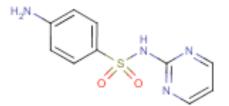
Research Concept: Nanoscale silver

Project leader: Nigel Walker Ph.D.

NIEHS/NTP

Nomination: Nanoscale materials


- Colloidal gold and nanoscale silver
- Nominated by the US Food and Drug Administration based on
 - Increasing widespread use in drug, food and cosmetic products
 - General lack of data on the toxicology and pharmacokinetics of these materials



Background: Forms of Silver

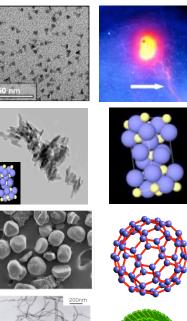
- Transition metal
- Metallic- Ag⁰
- Ag(I), Ag (II), Ag(III)
 - Silver nitrate (highly ionized)
 - Silver drugs-Silver sulfadiazine
- Colloidal Silver
 - Colloid of nanoscale Ag⁰ particles and ionic Ag⁺
 - 10nm Ag⁰ particle=30978 Ag atoms
 - Silver protein complexes

Ag

Properties and uses of nanoscale silver

- Add antibacterial/antifungal properties
 - Release of Ag⁺ in aqueous environments
 - Interaction of ionic Ag⁺ with bacterial/fungal proteins
- FDA-approved wound dressings
- Dietary supplements
 - Commercial suppliers of colloidal silver
 - Homemade electro-colloidal preparations
- Consumer products
 - Woodrow Wilson Center database
 - Nanoscale Ag (n-Ag)
 - 93 of 475 consumer products

http://www.nanotechproject.org

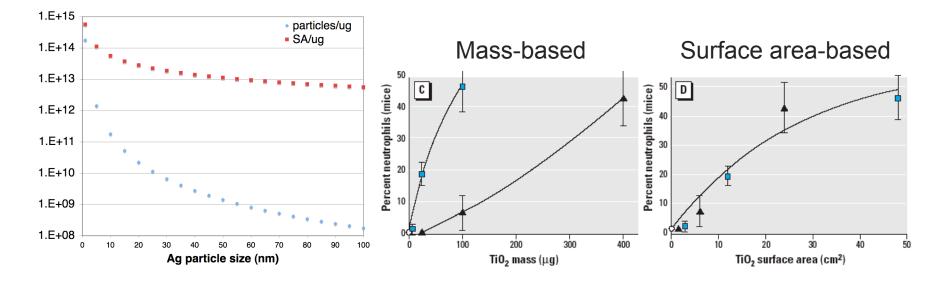

Rationale for NTP studying nanoscale silver

- Significance and Public Health Impact
 - Widespread uncertainty in how to assess health risk of nanomaterials
 - Identified research need by FDA, EPA, CPSC
 - May be used in their interpretation of the potential adverse biological and toxicological effects associated with exposure to nanoscale silver or products containing nanoscale silver
 - Anticipated that potential for exposure will increase as use increases
 - · Actual exposure to nanoscale silver has not been quantified
- Project integrates with the NTP Nanotechnology Safety Initiative
 - Need to understand the effects of nanoscale materials in general before widespread exposure and/or effects have occurred
 - Identify key physicochemical properties that govern nanomaterial safety
 - Examine how nanomaterials enter, travel through, and deposit in the body

NTP Nanotechnology Safety Initiative

- Ongoing program of multiple classes of nanomaterials
- Studies ongoing/in development
 - Core shell structure
 - Quantum dots
 - Carbon fullerenes
 - Carbon nanotubes
 - Metal Oxides
 - Titanium dioxide
 - Ceric oxide
 - Dendrimers
 - Nanoscale metals
 - Nanoscale silver
 - Colloidal gold

ntp.niehs.nih.gov/go/nanotech


Information on health effects for silver

- Silver salts
 - Argyria
 - Deposition in multiple tissues; conjuctiva,liver spleen, skin, kidney, brain
 - Deposition of silver (requires accumulation of gram levels of Ag)
 - Hypoactivity in mice after oral exposure
 - Limited number of standard rodent acute/subchronic toxicology studies
 - Biochemical effects
 - metallothionein induction
 - lipid peroxidation
 - inhibition of glutathione peroxidase and gamma-aminolevulinic acid dehydratase

- Nanoscale silver
 - No publicly available *in vivo* toxicity studies of nanoscale silver of known particle size and/or knowledge of ionization status (Ag⁰:Ag⁺)
 - Human-case reports- high levels of exposure to colloidal silver
 - Argyria
 - Myoclonic status epilepticus
 - Transient elevated liver enzymes after use of wounds dressings containing nanoscale silver in burn victim
 - Anti-inflammatory effects in animals models of allergic contact dermatitis
 - In vitro cytotoxicity of nanoscale silver particles in a variety of cells lines

Key considerations for nanoscale materials: Dose metrics

- Particle number-based and surface area-based metrics increase with decreasing particle size
- Mass-based potency may differ, but surface area-based potency may not
- Requires studying particles of similar composition but varying particle size, coatings, shape or other physicochemical parameter

Hypotheses to evaluate:

- The toxicity profile of nanoscale silver is the same as that of Ag⁺
 - Biological responses are due to the ionization of Ag⁰ to Ag⁺
 - Compare to silver nitrate as a surrogate for Ag⁺, since it is a highly ionized silver salt
- The pharmacokinetics of nanoscale silver are the same as for silver salts such as silver nitrate
- Differences in potency of different sized particles of nanoscale silver are due to the relative differences in ionization to Ag⁺
 - Smaller particles have higher surface area/g and hence a higher proportion of Ag⁺/g

$Ag^0 \longrightarrow Ag^+ \longrightarrow Biological responses$

Aim 1

- Characterize relationship between nanoscale silver particle size and degree of ionization to Ag⁺
 - Determine proportion of Ag^0 that is ionized to Ag^+
 - Use Ag⁰ of at least 3 sizes spanning from <10 nm to > 100 nm
 - Evaluate Ag⁰ and Ag⁺ proportion in vitro and in biological media
 - Use data to inform selection of appropriate particle sizes and to design subsequent in vivo studies such that comparisons can be made on equivalent doses of Ag⁺

Aim 2

- Evaluate the effect of particle size and ionization state on the pharmacokinetic profile of nanoscale silver
 - Compare at least two sizes of Ag⁰ (including <10 nm to > 100 nm) and one Ag+ species (e.g. silver nitrate as a highly ionized silver salt)
 - Conduct time course and tissue disposition studies in rodents (rats and mice)
 - Evaluate multiple routes (oral, dermal and intravenous) of administration
 - Include quantitation of both Ag⁰ and Ag⁺ in tissues using established methods for analyses.
 - If feasible, determine location within tissues of Ag⁰ and Ag⁺

Aim 3

- Evaluate the effect of particle size and ionization state on the toxicological profile of nanoscale silver in vivo
 - Compare two particle sizes of Ag⁰, and one Ag⁺ species
 - Use pharmacokinetic data to inform study design that allows comparisons to be based on both equivalent mass dose and expected internal Ag+ dose
 - Evaluate and compare toxicological profile after subacute, subchronic and chronic exposure in rodents
 - Studies should include an evaluation of potential systemic toxicity and organ specific toxicity and the potential for toxicity to the immune and nervous systems
 - Justified by known effects and distribution of silver salts
 - Include in utero/perinatal exposure paradigm
 - Justified by anticipated use pattern in consumer products
 - Exposure could occur during pregnancy