Allocating Allowances to Renewable Energy: Overview and Alternatives

Joel Bluestein Energy and Environmental Analysis, Inc.

January 12, 2006

Overview

- Structure and operation of emission trading programs
- Why allocate to renewables
- Allowance allocation options

Command and Control Programs

- Specific emission limit set for each plant.
 - Emission rate or technology requirement
- Each plant must meet specific limit.
- Total emissions can increase as new plants are built.
- Implementation and enforcement can be complicated.

Allowance Trading Programs

- Establish emissions tonnage cap for group of affected sources.
- Distribute emission allowances equal to the cap.
- Each plant must hold allowances equal to its emissions at the compliance point.
- ♦ Plants can buy or sell allowances.

Principles of Cap and Trade Programs

- ♦ The emission cap/level of emissions is established up front can't increase.
- The goal of the program is to minimize the compliance cost for this cap.
- ♦ Higher cost plants can purchase allowances.
- The program should promote clean generation by providing economic value to clean generators.

Relationship to Attainment Demonstration SIPs

- States that do not meet air quality standards are required to develop State Implementation Plans (SIPs) to demonstrate how they will meet the requirements.
- The cap and trade program is one component of a SIP. Cap and trade allowances are usually not used to offset emissions from other sectors.

Role of Renewables in Market-Based Programs

 Zero-emitting generation does not reduce overall emissions

– They are set by the cap.

- Renewable generation helps reduce the cost of allowances/compliance by displacing polluting generators.
- Allocating to renewables helps to reduce overall compliance cost.

Retiring Allowances

- Renewable generators can create reductions under a cap by retiring allowances.
 - This allows emission reduction claims for capped pollutants.
 - Can be used by states to meet clean air goals.
- Only makes sense if renewables receive allowance allocations.
- Choice should be left to the generators.

The Role of Allocation

- Emission allowances must be distributed at the beginning of the program - distributing the "chips" in the trading system.
- Allocation does not determine the near-term compliance strategy but does affect profitability of individual plants or companies.
 - Can encourage the development of new, clean technologies.

Goals for Allocation

♦ Transparent

♦ Not overly complicated.

- ♦ Not create arbitrary winners and losers.
- Promote desirable policy outcomes.
 - Efficiency, new technology, balanced energy mix, low cost.

Past Approaches to Including Renewables

- Trading programs have established allowance set-asides for renewable generation.
 - A fixed pool of allowances that renewable generators could request based on operation.
 - Limited availability.
 - Burden for application and verification was on the generators.

Examples of Set-Asides

♦ Title IV SO₂ trading program

- Only for early action (now expired)
- Only for *regulated utilities*

\bullet NO_x SIP call

- Six states have established NO_x allowance setasides in their seasonal trading programs.
- Very limited allowances.
- Varying, complex application processes.

Requirements for Set-Asides

- ♦ How big
- ♦ Eligibility
- ♦ Basis for allocation
- ♦ Longevity
- ♦ Overrun/underrun

- Allowances can be allocated to renewable generation on the same basis as other generators.
- Direct allocation from main allocation pool proportional to generation.
 - Simpler than set-aside.
 - More direct.

For Example: CAIR

- Clean Air Interstate Rule regulates NO_x, SO₂ in 28 eastern states.
 - $-NO_x$ is the primary target for allocation.
- Allocation process left to the states. EPA has provided model language.
 - Can be easily extended to include renewables.

CAIR Coverage

Energy and Environmental Analysis, Inc.

Direct Allocation to Renewables

- EPA model rule has output-based allocation for new (2001+) generators.
 - Allocation is proportional to electricity generation.
 - Can be directly applied to renewables simply by including new renewables in the 2001+ allocation pool.
 - Eliminates need for setaside pool, separate allocation process.
 - Can also apply to end-use efficiency.
 - Set-aside can be used for smaller renewables.

STAPPA/ALAPCO Model

- Provides model rule language for direct allocation and renewable energy setasides as well as other NO_x allowance allocation options.
- Alternative NO_x Allowance Allocation Language for the Clean Air Interstate Rule (August 2005)
 <u>http://www.4cleanair.org/Bluestein-</u> cairallocation-final.pdf

Summary

- Renewable generation should be an integral part of cap and trade programs.
 - Supports goal of reducing compliance cost.
- Set-aside approach has been used in the past. Direct allocation is simpler under the EPA model rule for CAIR.
- If allocated, allowances can be used for SIP alternatives.
- Can work in parallel with RPS.

