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1. PUBLIC HEALTH STATEMENT

This Statement was prepared to give you information about 2,4,6-trinitrotoluene and to

emphasize the human health effects that may result from exposure to it. The Environmental

Protection Agency (EPA) has identified 1,397 sites on its National Priorities List (NPL).

2,4,6-Trinitrotoluene has been found in at least 20 of these sites. However, we do not know

how many of the 1,397 NPL sites have been evaluated for 2,4,6-trinitrotoluene. As EPA

evaluates more sites, the number of sites at which 2,4,6-trinitrotoluene is found may change.

This information is important for you to know because 2,4,6-trinitrotoluene may cause

harmful health effects and because these sites are potential or actual sources of human

exposure to 2,4,6-trinitrotoluene.

When a chemical is released from a large area, such as an industrial plant, or from a

container, such as a drum or bottle, it enters the environment as a chemical emission. This

emission, which is also called a release, does not always lead to exposure. You can be

exposed to a chemical only when you come into contact with the chemical. You may be

exposed to it in the environment by breathing, eating, or drinking substances containing the

chemical or from skin contact with it.

If you are exposed to a hazardous chemical such as 2,4,6-trinitrotoluene, several factors will

determine whether harmful health effects will occur and what the type and severity of those

health effects will be. These factors include the dose (how much), the duration (how long),

the route or pathway by which you are exposed (breathing, eating, drinking, or skin contact),

the other chemicals to which you are exposed, and your individual characteristics such as age,

sex, nutritional status, family traits, life-style, and state of health.



2,4,6-TRINITROTOLUENE 2

1.   PUBLIC HEALTH STATEMENT

1.1  WHAT IS 2,4,6-TRINITROTOLUENE?

2,4,6-Trinitrotoluene is a yellow, odorless, solid manufactured compound that does not occur

naturally in the environment. It is made by combining toluene with a mixture of nitric acid

and sulfuric acid. 2,4,6-Trinitrotoluene is also known by other names such as symtrinitrotoluene,

TNT, and 1 -methyl-2,4,6-trinitrobenzene. 2,4,6-Trinitrotoluene is produced in

the United States only at military arsenals. It is not produced commercially. 2,4,6-Trinitrotoluene

is an explosive used in military shells, bombs, and grenades, in industrial uses, and in

underwater blasting. For more information on the chemical and physical properties of

2,4,6-trinitrotoluene, see Chapter 3. For more information on its production and use, see

Chapter 4.

1.2 WHAT HAPPENS TO 2,4,6-TRINITROTOLUENE WHEN IT ENTERS THE

      ENVIRONMENT?

2,4,6-Trinitrotoluene enters the environment in waste waters and solid wastes resulting from

the manufacture of the compound, the processing and destruction of bombs and grenades, and

the recycling of explosives. The compound moves in surface water and through soils to

groundwater. In surface water, 2,4,6-trinitrotoluene is rapidly broken down into other

chemical compounds by sunlight. Microorganisms in water and sediment break down the

compound more slowly. Small amounts of 2,4,6-trinitrotoluene can accumulate in fish and

plants. For more information on what happens to 2,4,6-trinitrotoluene when it enters the

environment, see Chapter 5.

1.3 HOW MIGHT I BE EXPOSED TO 2,4,6-TRINITROTOLUENE?

You may be exposed to 2,4,6-trinitrotoluene as a result of its movement from chemical waste

disposal sites to drinking water. Children may also be exposed through eating contaminated

soil. Most exposure would result from drinking contaminated water, breathing contaminated
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air, or eating contaminated foods such as fruits and vegetables. 2,4,6-Trinitrotoluene has been

measured at waste disposal sites in groundwater at 0.32 parts of 2,4,6-trinitrotoluene per

million parts of water (ppm) and in soil at up to 13,000 ppm. We have no data on levels in

air or foods. 2,4,6-Trinitrotoluene can be taken up by plants from contaminated soil and is

probably present in the air as a result of disposal by burning at military sites. Therefore,

intake of air and homegrown fruits and vegetables by people living near military sites may

also be sources of exposure to 2,4,6-trinitrotoluene.

Worker exposure to 2,4,6-trinitrotoluene is possible as a result of its use in the production of

bombs and grenades. Most workplace exposure results from breathing in 2,4,6-trinitrotoluene

dust or vapor and contact with dust on the skin. For additional information on how you can

be exposed to 2,4,6-trinitrotoluene, see Chapter 5.

1.4 HOW CAN 2,4,6-TRINITROTOLUENE ENTER AND LEAVE MY BODY?

2,4,6-Trinitrotoluene rapidly and completely enters your body when you breathe in air or

drink water that is contaminated with this chemical. We have no information on how much

2,4,6-trinitrotoluene enters your body when it gets on your skin. We do know that it enters

your body more slowly through the skin than when it is taken into your mouth.

2,4,6-Trinitrotoluene in your blood travels throughout your body to all of your organs. When

2,4,6-trinitrotoluene reaches your liver, it breaks down and changes into several different

substances. Not all of these substances have been identified, and we do not know whether

they are harmful or not. Most of these substances travel in your blood until they reach your

kidneys and then leave your body in your urine. Studies in animals show that almost all of

the 2,4,6-trinitrotoluene that enters the body breaks down and leaves the body in the urine

within 24 hours. Chapter 2 contains more information on how 2,4,6-trinitrotoluene enters and

leaves your body.
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1.5  HOW CAN 2,4,6-TRINITROTOLUENE AFFECT MY HEALTH?

Workers involved in the production of high explosives experienced many harmful health

effects as a result of exposure to 2,4,6-trinitrotoluene at their jobs. These effects included

disorders of the blood, such as anemia, and abnormal liver function. However, the levels of

2,4,6-trinitrotoluene in the workplace air at the time these effects were seen ranged from less

than 0.01 to 1.49 milligrams of 2,4,6-trinitrotoluene per cubic meter of air (mg/m3). Some of

the concentrations measured are higher than the level currently allowed in the workplace

(0.5 mg/m3). Similar effects on the blood and the liver have been observed in animals that

either breathed or were fed 2,4,6-trinitrotoluene. In addition, studies show that animals forcefed

2,4,6-trinitrotoluene for an intermediate-duration (from 15-364 days) may have

enlargement of the spleen and other harmful effects on the immune system. When people

have prolonged skin contact with 2,4,6-trinitrotoluene, they may develop an allergic reaction

of the skin to this chemical, such as itching and irritation. In addition, long-term exposure to

2,4,6-trinitrotoluene has been associated with the development of cataracts in people.

No information is available to indicate whether 2,4,6-trinitrotoluene causes birth defects.

However, studies in animals that were treated with high doses of 2,4,6-trinitrotoluene have

shown that it can cause serious effects on the male reproductive system. The available

information for determining whether 2,4,6-trinitrotoluene causes cancer in humans is

inadequate. However, rats that ate 2,4,6-trinitrotoluene for long periods developed tumors of

the urinary bladder. Based on this study with rats, EPA has classified 2,4,6-trinitrotoluene in

Group C, a possible human carcinogen.
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1.6 IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN

      EXPOSED TO 2,4,6-TRINITROTOLUENE?

There are tests to determine if you have been exposed to 2,4,6-trinitrotoluene. These tests

measure 2,4,6-trinitrotoluene or its breakdown products in your blood and urine and have

been used to test exposed workers. Detection of the breakdown products in your urine is a

clear indication that you have been exposed. The complex and expensive equipment needed

to perform these tests is generally available only at specialized laboratories. Another simpler,

but less specific, test of 2,4,6-trinitrotoluene exposure is a change in the color of your urine to

amber or deep red. This change results from the presence of breakdown products and may

indicate that you have been exposed to 2,4,6-trinitrotoluene. None of these tests can predict

whether a person exposed to 2,4,6-trinitrotoluene will experience any health effects related to

the exposure. For more information on tests for exposure, see Chapters 2 and 6.

1.7  WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO

        PROTECT HUMAN HEALTH?

The government has developed regulations and guidelines for 2,4,6-trinitrotoluene. These are

designed to protect the public and workers exposed to 2,4,6-trinitrotoluene from potential

harmful health effects of the chemical. Since 2,4,6-trinitrotoluene is explosive, flammable,

and toxic, EPA has designated it as a hazardous waste. The Department of Transportation

(DOT) regulates the transport of 2,4,6-trinitrotoluene because it is a hazardous material. DOT

specifies that when 2,4,6-trinitrotoluene is shipped, it must be wet with at least 10% water (by

weight) and it must be clearly labeled as a flammable solid (HSDB 1994).

The Occupational Safety and Health Administration (OSHA) regulates levels of hazardous

materials in the workplace. The maximum allowable amount of 2,4,6-trinitrotoluene in

workroom air during an 8-hour workday, 40-hour workweek, is 0.5 mg/m3. The National

Institute for Occupational Safety and Health (NIOSH) recommends that the concentration in
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workroom air be limited to 0.5 mg/m3 for up to a 10-hour workday during a 40-hour

workweek (NIOSH 1992). For more information on federal regulations about 2,4,6-

trinitrotoluene, see Chapter 7.

1.8 WHERE CAN I GET MORE INFORMATION?

If you have any more questions or concerns, please contact your community or state health or

environmental quality department or:

Agency for Toxic Substances and Disease Registry
Division of Toxicology
1600 Clifton Road NE, Mailstop E-29
Atlanta, Georgia 30333

This agency can also tell you where to find the nearest occupational and environmental health

clinic. These clinics specialize in the recognition, evaluation, and treatment of illnesses

resulting from exposure to hazardous substances.
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2.1 INTRODUCTION

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and

other interested individuals and groups with an overall perspective of the toxicology of

2,4,6-trinitrotoluene and a depiction of significant exposure levels associated with various adverse

health effects. It contains descriptions and evaluations of studies and presents levels of significant

exposure for 2,4,6-trinitrotoluene based on toxicological studies and epidemiological investigations.

2.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE

To help public health professionals and others address the needs of persons living or working near

hazardous waste sites, the information in this section is organized first by route of exposure --

inhalation, oral, and dermal; and then by health effect -- death, systemic, immunological, neurological,

reproductive, developmental, genotoxic, and carcinogenic effects. These data are discussed in terms of

three exposure periods -- acute (14 days or less), intermediate (15-364 days), and chronic (365 days

or more).

Levels of significant exposure for each route and duration are presented in tables and illustrated in

figures. The points in the figures showing no-observed-adverse-effect levels (NOAELs) or

lowestobserved-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the

studies. LOAELs have been classified into “less serious” or “serious” effects. “Serious” effects are

those that evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute

respiratory distress or death). “Less serious” effects are those that are not expected to cause significant

dysfunction or death, or those whose significance to the organism is not entirely clear. ATSDR

acknowledges that a considerable amount of judgment may be required in establishing whether an end

point should be classified as a NOAEL, “less serious” LOAEL, or “serious” LOAEL, and that in some

cases, there will be insufficient data to decide whether the effect is indicative of significant
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dysfunction. However, the Agency has established guidelines and policies that are used to classify

these end points. ATSDR believes that there is sufficient merit in this approach to warrant an attempt

at distinguishing between “less serious” and “serious” effects. The distinction between “less serious”

effects and “serious” effects is considered to be important because it helps the users of the profiles to

identify levels of exposure at which major health effects start to appear. LOAELs or NOAELs should

also help in determining whether or not the effects vary with dose and/or duration, and place into

perspective the possible significance of these effects to human health.

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and

figures may differ depending on the user’s perspective. Public health officials and others concerned

with appropriate actions to take at hazardous waste sites may want information on levels of exposure

associated with more subtle effects in humans or animals or exposure levels below which no adverse

effects have been observed. Estimates of levels posing minimal risk to humans (Minimal Risk Levels

or MRLs) may be of interest to health professionals and citizens alike.

Levels of exposure associated with carcinogenic effects (Cancer Effect Levels, CELs) of 2,4,6-

trinitrotoluene are indicated in Table 2- 1 and Figure 2- 1.

Estimates of exposure levels posing minimal risk to humans (Minimal Risk Levels or MRLs) have

been made for 2,4,6-trinitrotoluene. An MRL is defined as an estimate of daily human exposure to a

substance that is likely to be without an appreciable risk of adverse effects (noncarcinogenic) over a

specified duration of exposure. MRLs are derived when reliable and sufficient data exist to identify

the target organ(s) of effect or the most sensitive health effect(s) for a specific duration within a given

route of exposure. MRLs are based on noncancerous health effects only and do not consider

carcinogenic effects. MRLs can be derived for acute, intermediate, and chronic duration exposures for

inhalation and oral routes. Appropriate methodology does not exist to develop MRLs for dermal

exposure.
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Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA 1990),

uncertainties are associated with these techniques. Furthermore, ATSDR acknowledges additional

uncertainties inherent in the application of the procedures to derive less than lifetime MRLs. As an

example, acute inhalation MRLs may not be protective for health effects that are delayed in

development or are acquired following repeated acute insults, such as hypersensitivity reactions,

asthma, or chronic bronchitis. As these kinds of health effects data become available and methods to

assess levels of significant human exposure improve, these MRLs will be revised.

A User’s Guide has been provided at the end of this profile (see Appendix A). This guide should aid

in the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs.

2,4,6-Trinitrotoluene is the most widely used military high explosive. 2,4,6-Trinitrotoluene has been

used extensively in the manufacture of explosives since the beginning of this century. Its use greatly

increased during World War I when its toxicity was first observed (Hathaway 1985). Based on data

from a number of epidemiological studies of exposed workers, numerous adverse health effects such as

anemia (reduced number of red blood cells and reduced hemoglobin and hematocrit), Iiver function

abnormalities, respiratory complications, and possibly aplastic anemia have been observed at

2,4,6-trinitrotoluene exposure levels below the former standard of 1.5 mg/m3 (Hathaway 1977).

Because of the seriousness of effects caused by exposure to relatively low levels of

2,4,6-trinitrotoluene in the workplace, the threshold limit value (TLV) was lowered to 0.5 mg/m3

(ACGIH 1993).

As more information became available, and especially after World War II, the incidence of toxic

effects associated with handling of 2,4,6-trinitrotoluene decreased sharply. This decrease is primarily

the result of the introduction of protective measures for ammunition workers (e.g., protective clothing,

change of contaminated clothes, use of indicator soap, and mandatory bathing) and the improvement of

ammunition plant ventilation systems (Army 1978a; Goodwin 1972).



2,4,6-TRINITROTOLUENE 10

2. HEALTH EFFECTS

2.2.1 Inhalation Exposure

All the studies presented in the section on inhalation exposure are epidemiological reports or case

reports of occupational exposure. In some of the studies, inhalation exposure may have occurred

simultaneously with dermal exposure. Therefore, some of the effects described in this section may be

due in part to dermal exposure to 2,4,6-trinitrotoluene. Furthermore, in several studies the precise

levels of exposure are not known. Consequently, results from those studies are not presented in a

table or figure.

2.2.1.1  Death

Historically, the greatest number of deaths among munitions workers were caused by adverse effects

of 2,4,6-trinitrotoluene on the liver. Initial clinical symptoms included nausea, vomiting, pain in the

abdomen, fatigue, dizziness, petechiae, and jaundice. Exposure to 2,4,6-trinitrotoluene eventually led

to 475 deaths in the United States during World War I (McConnell and Flinn 1946). It is important to

note, however, that the route of exposure was probably not exclusively inhalation, but also dermal.

No studies were located regarding death in animals after inhalation exposure to 2,4,6-trinitrotoluene.

2.2.1.2 Systemic Effects

No studies were located regarding cardiovascular, gastrointestinal, musculoskeletal, or renal effects in

humans or animals after inhalation exposure to 2,4,6-trinitrotoluene.

Respiratory Effects.  Extremely limited information is available regarding respiratory effects in

humans after inhalation exposure to 2,4,6-trinitrotoluene. One study of occupational exposure (Morton

et al. 1976) reported several cases of respiratory difficulties in ammunition plant workers who were

exposed to 2,4,6-trinitrotoluene in the air at a level that was well above the current TLV of 0.5 mg/m3

(ACGIH 1993). However, there are several serious limitations to this study. The report does not state

the exact air concentration of 2,4,6-trinitrotoluene, the duration of exposure, or the number of exposed
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workers with respiratory difficulties. It also does not specify the nature of those difficulties. The air

concentration of 2,4,6-trinitrotoluene in the same plant was brought down to 0.3 mg/m3 within a

month, but there is no information on whether the respiratory difficulties disappeared or persisted in

the affected workers (Morton et al. 1976).

No studies were located regarding respiratory effects in animals after inhalation exposure to

2,4,6-trinitrotoluene.

Hematological Effects.  In England during World War I, there were numerous cases of anemia and

some reports of fatal aplastic anemia among workers using 2,4,6-trinitrotoluene in the production of

explosives (Hathaway 1985). Similar experiences were seen in other countries involved in the war.

However, with the improvement of protective measures used during the manufacturing process, the

number of cases of 2,4,6-trinitrotoluene toxicity has decreased dramatically. The results of 2,4,6-

trinitrotoluene exposure on hemoglobin, hematocrit, and reticulocyte numbers are well documented. A

dose-response relationship between 2,4,6-trinitrotoluene exposure and effects on the hematologic

system was found in 626 workers exposed to 2,4,6-trinitrotoluene when they were compared with

865 nonexposed controls. Tests were taken over a 6-week period. However, the actual duration of the

workers’ exposures was not specified (Army 1976). The 2,4,6-trinitrotoluene estimated mean exposure

levels ranged from <0.01 to 1.49 mg/m3; this range includes exposures higher than the present TLV of

0.5 mg/m3 (ACGIH 1993). Dose-related reductions in hemoglobin (9.9% lower than control) and

hematocrit (11.6% lower that controls) and 50% higher reticulocyte counts were noted in exposed

workers (Army 1976).

No abnormal values for hemoglobin were found in 43 workers employed in the manufacture of

2,4,6-trinitrotoluene who were monitored over a period of 5 months (Morton et al. 1976). During that

time the air levels of 2,4,6-trinitrotoluene rose from 0.3 to 0.8 mg/m3. This finding is indirectly

supported by another occupational exposure study. Activities of two mitochondrial enzymes,

δaminolevulinic acid synthase and heme synthase, were measured in reticulocytes in a chronic

occupational exposure study of workers who developed cataracts (Savolainen et al. 1985). Mean

2,4,6-trinitrotoluene concentrations were 0-35 mg/m3. Although the levels of the two enzymes were
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lower in the exposed workers, none of them had clinical anemia. This finding indicates that

2,4,6-trinitrotoluene may not affect hemoglobin synthesis in the bone marrow and that possible effects

on reticulocytes may occur in the circulation after the oxygenation of cells in the lungs has taken

place.

Hyperplasia of the bone marrow is the first reaction of the hematopoietic system to 2,4,6-trinitrotoluene

poisoning. The shaft of the femur and the ribs are usually filled with active red marrow. If

the exposure to 2,4,6-trinitrotoluene continues, the bone marrow becomes hypocellular (Army 1978a).

No studies were located regarding hematological effects in animals after inhalation exposure to

2,4,6-trinitrotoluene.

Hepatic Effects.  Toxic hepatitis has been the principal manifestation of 2,4,6-trinitrotoluene toxicity

in humans (Army 1978a). During World War I, 2,4,6-trinitrotoluene production increased and many

cases of toxic hepatitis were fatal (Army 1978a). Industrial hygiene techniques improved by World

War II; consequently, both the number of toxic hepatitis cases and the number of fatalities due to

2,4,6-trinitrotoluene exposure decreased dramatically (Army 1978a).

A statistically significant increase in hepatic enzymes (serum glutamic-oxaloacetic transaminase

[SGOT] and lactic dehydrogenase [LDH]) was noted in ammunition plant workers when the

2,4,6-trinitrotoluene level in the air increased from 0.3 to 0.8 mg/m3 (during a 4-month period) at the

same time that 2,4,6-trinitrotoluene production increased from 80% to 100% (Morton et al. 1976).

Both these 2,4,6-trinitrotoluene air levels were close to the TLV of 0.5 mg/m3 (ACGIH 1993). The

SGOT increase was 20% above the maximal normal value (Morton et al. 1976). In the same group of

workers, the LDH values increased from about 51 units to over 106, but since isoenzyme studies were

not performed, it is difficult to say if this increase was due to liver toxicity or to hemolysis

(hemoglobin levels decreased only slightly-see Hematological Effects above and Morten et al. 1976).
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No significant differences in liver function were noted in a cross-sectional epidemiology study of

626 munitions workers from four plants exposed to 2,4,6-ttinitrotoluene when compared to

865 nonexposed controls (Army 1976). The majority of the workers were exposed to 0.5 mg/m3 or

less of 2,4,6-trinitrotoluene, and a few were exposed to 1.5 mg/m3. No changes were noted in the

other liver parameters evaluated in the study: LDH, bilirubin (total and direct), alkaline phosphatase,

SGOT, and serum glutamic-pyruvic transaminase (SGPT) (Army 1976). One possible explanation for

these findings is that exposure to 2,4,6-trinitrotoluene causes more liver toxicity in potentially

susceptible workers, and that in some cases of long-term exposure, liver cells may adapt to moderate

exposure levels (Hathaway 1985). A case-control study of Chinese workers exposed to 2,4,6-

trinitrotoluene indicates that the likelihood of liver injury is increased among those workers who are

heavy drinkers as compared to workers who are not heavy drinkers (Li et al. 1991). However, the

parameters measured to arrive at the diagnosis of liver damage in these cases are not discussed.

No studies were located regarding hepatic effects in animals after inhalation exposure to 2,4,6-

trinitrotoluene.

Dermal Effects.  In an occupational exposure study, several of the workers handling 2,4,6-trinitrotoluene

in an ammunition plant complained of dermatitis (Morton et al. 1976). Inhalation seemed to

be the major route of exposure, although dermal exposure was possible. Therefore, the dermatitis

cannot be attributed to either a local or a systemic effect with certainty. In addition, the study did not

report the precise number of affected workers or the duration and level of exposure.

No studies were located regarding dermal effects in animals after inhalation exposure to 2,4,6-

trinitrotoluene.

Ocular Effects.  The appearance of cataracts is believed to be an effect of 2,4,6-trinitrotoluene

exposure (Hathaway 1985; Savolainen et al. 1985) and is often associated with chronic exposures.

Irreversible equatorial lens opacities/cataracts were reported in 6 out of 12 Finnish workers exposed to

2,4,6-trinitrotoluene for an average of 6.8 years (2.1-11.5 years of exposure) (Harkonen et al. 1983).

The principal routes of exposure were probably inhalation and dermal, although this is not clearly
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indicated in the report. Therefore, it is uncertain whether cataracts are a local or a systemic effect of

2,4,6-trinitrotoluene exposure. The opacities were detectable only on the periphery of the lens and

appeared either continuous or discontinuous. The opacities of the lens were bilateral and symmetrical

and did not affect visual fields or visual acuity. The workroom 2,4,6-trinitrotoluene air concentration

was about 0.3 mg/m3 with a range of 0.14-0.58 mg/m3 (Harkonen et al. 1983). The progression of the

cataract stops if the exposure to 2,4,6-trinitrotoluene stops. The mechanism of 2,4,6-trinitrotoluene

cataract formation is not understood, but the possibility was raised that free radicals may play a role

(Harkonen et al. 1983).

No studies were located regarding ocular effects in animals after inhalation exposure to 2,4,6-

trinitrotoluene.

2.2.1.3 Immunological and Lymphoreticular Effects

No studies were located regarding immunological or lymphoreticular effects in humans or animals

after inhalation exposure to 2,4,6-trinitrotoluene.

2.2.1.4 Neurological Effects

Very limited information is available regarding neurological effects in humans following inhalation

exposure to 2,4,6-trinitrotoluene. Several workers who handled 2,4,6-trinitrotoluene in an ammunition

plant reported altered taste, but no quantitative data are provided in the study (Morton et al. 1976).

The concentration of 2,4,6-trinitrotoluene in the air was 0.3 mg/m3, which was below the TLV of

0.5 mg/m3 (ACGIH 1993). However, no details were provided on the exposure time or symptoms, so

it is difficult to estimate the extent of the effect.

No studies were located regarding neurological effects in animals following inhalation exposure to

2,4,6-trinitrotoluene.
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2.2.1.5  Reproductive Effects

A case-control study in two 2,4,6-trinitrotoluene plants in China indicated that 50 of the 104 workers

that were examined for possible effects on semen had significantly lower semen volumes and a smaller

percentage of motile spermatozoa, as well as a significantly higher incidence of sperm malformation,

than the 33 controls (Li et al. 1993). Controls were clerks matched to the workers by income and by

the city where they lived. However, exposure to 2,4,6-trinitrotoluene was not estimated. The only

data available were annual measurements of air concentrations, so dose and effects cannot be

correlated. Furthermore, confounding variables (beyond smoking and drinking) were not discussed.

Possible important variables would include simultaneous exposures to other chemicals and heat in the

workplace.

No studies were located regarding reproductive effects in animals after inhalation exposure to

2,4,6-trinitrotoluene.

2.2.1.6  Developmental Effects

No studies were located regarding developmental effects in humans or animals after inhalation

exposure to 2,4,6-trinitrotoluene.

2.2.1.7  Genotoxic Effects

The presence of mutagenic compounds in the urine of workers exposed to 2,4,6-trinitrotoluene was

confirmed in two investigations (Ahlborg et al. 1985, 1988a). The initial study involved the screening

of urine samples from 97 workers in a chemical plant producing pharmaceuticals and explosives

(Ahlborg et al. 1985). Included in the study was a group of 14 individuals exposed to a maximum air

concentration of 0.29 mg/m3 2,4,6-trinitrotoluene. Urine samples were collected at the conclusion of a

work shift, concentrated on XAD-2 resin, and assessed for mutagenic activity using Salmonella

typhimurium TA98 and Escherichia coli WP2 uvrA in the presence or absence of exogenous metabolic

activation. Baseline data for each participant were established from samples collected following a
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4-week vacation. The excretion of genotoxic agents was indicated by a significant increase (p<0.01)

in mutant colonies of strain TA98 without metabolic activation in the urine of workers exposed to

2,4,6-trinitrotoluene; baseline samples for this group were uniformly negative. The exclusion of

smokers from the 2,4,6-trinitrotoluene exposure group did not alter these findings. Unmetabolized

2,4,6-trinitrotoluene was detected in the urine of workers with the highest level of mutagenic activity.

The findings of this study are consistent with the demonstrated mutagenic activity of

2,4,6-trinitrotoluene in S. typhimurium TA98 without S9 activation (see Section 2.4).

In the follow-up study, urine samples from 50 individuals exposed to varying concentrations of

2,4,6-trinitrotoluene in the workplace were evaluated (Ahlborg et al. 1988a). Subjects were divided

into three groups: no exposure (2,4,6-trinitrotoluene air concentrations were too low to be detected),

mid-range exposure (0.1-0.3 mg/m3), and high-range exposure (0.2-0.5 mg/m3). For each individual,

pre- and postexposure samples were collected, and health status data relative to smoking habits,

alcohol consumption, diet, and medication were obtained. Samples were concentrated and assessed for

mutagenic activity in S. typhimurium strain TA98 and a derivative of TA98 deficient in nitroreductase

activity (TA98NR); the assays were conducted without exogenous metabolic activation. The

concentrations of 2,4,6-trinitrotoluene and two major metabolites (4-aminodinitrotoluene [4-ADNT]

and 2-aminodinitrotoluene [2-ADNT]) were also determined. In agreement with the earlier findings,

evidence of mutagenic activity was present in the urine of groups exposed to 2,4,6-trinitrotoluene, but

significant genotoxicity was confined to urine from individuals in the high exposure group. Strain

TA98, rather than TA98NR, is the most sensitive indicator of induced gene mutations because of

endogenous nitroreductase activity. The finding suggests that bacterial nitroreductase activity is the

most probable primary cause of 2,4,6-trinitrotoluene-induced gene mutations. Although the relevancy

of this finding to humans is not known, comparable nitroreductase activity may be present via

intestinal microflora or mammalian cells. In contrast to the results of the earlier study (Ahlborg et al.

1985) in which detectable levels of 2,4,6-trinitrotoluene were found in the urine samples that exhibited

the highest level of mutagenicity, no correlation between 2,4,6-trinitrotoluene concentration and

mutagenesis was seen. However, a weak correlation was seen between the concentration of the major

metabolite (4-ADNT) and mutagenesis. The study authors concluded that the wide variation in

individual urine sample mutagenicity data in conjunction with toxicokinetics and individual rates of
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2,4,6-trinitrotoluene uptake probably accounts for the lack of a correlation. Similarly, calculation of

the uptake of 2,4,6-trinitrotoluene through inhalation based on air concentration provided much lower

estimates than expected from the urine concentration of the metabolites. This finding indicates that

dermal absorption may contribute significantly to total uptake.

No studies were located regarding genotoxic effects in animals after inhalation exposure to

2,4,6-trinitrotoluene.

Other genotoxicity studies are discussed in Section 2.4.

2.2.1.8  Cancer

In a case of chronic occupational exposure to 2,4,6-trinitrotoluene, a 61-year-old male died of

hepatocellular carcinoma (Garfinkel et al. 1988). Although he was exposed to 2,4,6-trinitrotoluene for

39 years as an ammunition plant worker, it is not known if 2,4,6-trinitrotoluene had a promoting role

or any role in the development of the primary liver carcinoma. No discussion of exposure routes was

included. In general, inhalation is assumed to be the primary pathway for worker exposure, but

dermal contact and incidental ingestion due to hand-mouth contact cannot be ruled out.

No studies were located regarding cancer in animals after inhalation exposure to 2,4,6-trinitrotoluene.

2.2.2  Oral Exposure

2.2.2.1  Death

No studies were located regarding death in humans after oral exposure to 2,4,6-trinitrotoluene.

However, during World Wars I and II, many fatal cases of toxic jaundice and aplastic anemia

occurred. The fatalities were attributed to 2,4,6-trinitrotoluene exposure during the manufacturing of

munitions (Army 1978a; McConnell and Flinn 1946).
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The concentrations at which 2,4,6-trinitrotoluene is acutely lethal in animals vary depending on the

species and sex. Reported oral LD50 values for 2,4,6-trinitrotoluene are 1,010 and 1,320 mg/kg/day for

male rats, and 795 and 820 mg/kg/day for female rats (Army 1978b; Dilley et al. 1982b). Acute oral

LD50 values in male and female mice are 1,012 and 660 mg/kg/day, respectively. Doses were

administered by gavage with oil as a vehicle (Army 1978b; Dilley et al. 1982b). The animals

developed tremors, followed by mild convulsions, l-2 hours after exposure. In some animals, death

occurred within 4 hours following the exposure. The animals that survived the convulsions were still

alive 14 days after exposure (Dilley et al. 1982b).

2,4,6-Trinitrotoluene was found to be lethal to beagle dogs receiving 32 mg/kg/day orally (by capsule)

for 26 weeks. One female dog died during week 16 after exhibiting considerable weight loss,

diarrhea, and ataxia. A second female dog was sacrificed in a moribund state during week 14 of the

study. The second female dog was observed to be dehydrated and emaciated, with low body

temperature and signs of an advanced icteric state. No deaths occurred in male dogs (Levine et al.

1990b).

No deaths were observed in Fisher-344 rats fed 125 mg/kg/day of 2,4,6-trinitrotoluene for 13 weeks

(Levine et al. 1990a). Similar observations were made in the chronic exposure studies. No changes in

survival rates were seen in the same breed of rats that were fed 50 mg/kg/day of 2,4,6-trinitrotoluene

for 24 months (Army 1984a).

The LD50 values and all reliable LOAEL values for death in each species and duration category are

recorded in Table 2- 1 and plotted in Figure 2-1.

2.2.2.2  Systemic Effects

No studies were located regarding respiratory, musculoskeletal, dermal, or ocular effects in humans or

animals after oral exposure to 2,4,6-trinitrotoluene.

The highest NOAEL values and all reliable LOAEL values for each study and for each end point are

recorded in Table 2-l and plotted in Figure 2-l.
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Cardiovascular Effects.  No studies were located regarding cardiovascular effects in humans after

oral exposure to 2,4,6-trinitrotoluene.

Very limi.ted information is available regarding cardiovascular effects in animals after oral exposure to

2,4,6-trinitrotoluene. Intermediate exposure of beagle dogs to a 2,4,6-trinitrotoluene dose as high as

32 mg/kg/day for 26 weeks did not cause any changes in electrocardiogram results or heart rates

(Levine et al. 1990b).

Gastrointestinal Effects.  No studies were located regarding gastrointestinal effects in, humans after

oral exposure to 2,4,6-trinitrotoluene.

Adverse gastrointestinal effects were reported in dogs after intermediate oral exposure to 2,4,6-

trinitrotoluene.  Dogs receiving 20 mg/kg/day of 2,4,6-trinitrotoluene for 13 weeks had mucoid stools and

diarrhea (Dilley et al. 1982b). In another longer intermediate exposure study, histopathology revealed

inflammation of a part of the small intestine in beagle dogs fed 0.5, 2, 8, or 32 mg/kg/day 2,4,6-

trinitrotoluene for 6 months. Although not dose related, the observed enteritis was more frequent in

dogs treated with the highest dose of 2,4,6-trinitrotoluene. None of the control animals had enteritis

(Levine et al. 1990b).

Hematological Effects.  No studies were located regarding hematological effects in humans after

oral exposure to 2,4,6-trinitrotoluene.

Anemia is one of the frequent signs of 2,4,6-trinitrotoluene toxicity. Adverse effects on standard

hematologic parameters were observed in rats (Dilley et al. 1982b; Jiang et al. 1991; Levine et al.

1984, 1990a), mice (Dilley et al. 1982b), and dogs (Dilley et al. 1982b; Levine et al. 1990b) after

intermediate oral exposures to 2,4,6-trinitrotoluene. Compensatory responses occurring as a result of

anemia (including reticulocytosis, macrocytosis, and increased levels of nucleated erythrocytes) were

observed in Fischer-344 rats fed 125 mg/kg/day of 2,4,6-trinitrotoluene for 13 weeks (Levine et al.

1990a). Dose-related anemia was also observed in Fischer-344 rats fed 10 or 50 mg/kg/day
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2,4,6-trinitrotoluene for 24 months (Army 1984a). In this chronic exposure study, both male and

female rats had reduced hematocrit, hemoglobin, and red blood cells. These hematological effects

were observed throughout the entire duration of the study in male rats, but only for the first year in

female rats. Methemoglobin was observed in male rats at doses of 10 and 50 mg/kg/day. Howell-

Jolley and Heinz Bodies occurred at 50 mg/kg/day in male rats. Therefore, male rats seemed

somewhat more sensitive than female rats. Reticulocytosis, but not macrocytosis, was present as a

compensatory response to the anemic state in all animals. Histopathology revealed splenic lesions

consisting of sinusoidal congestion, extramedullary hematopoiesis, and increased amounts of

hemosiderin-like pigment (Army 1984a). The findings are consistent with the hypothesis that

2,4,6-trinitrotoluene induces anemia by causing hemolysis through oxidative damage which is mediated

by 2,4,6-trinitrotoluene and/or its metabolites. This conclusion is further supported by the presence of

methemoglobinemia, produced by the oxidation of the heme iron, observed when 2,4,6-trinitrotoluene

was fed to rats at 300 mg/kg/day for 13 weeks (Levine et al. 1984), to rats at 10 or 50 mg/kg/day for

24 months (Army 1984a), and to dogs at 32 mg/kg/day for 6 months (Levine et al. 1990b). Mild

anemia was also noted in B6C3F1 mice fed 70 mg/kg/day 2,4,6-trinitrotoluene for 24 months (Army

1984b). Anemia, as indicated by dose-dependent decreases in hematocrit and hemoglobin levels and

decreased erythrocyte counts, was observed in dogs administered 2,4,6-trinitrotoluene (via capsules) for

6 months (Levine et al. 1990b). The anemia was compensated by reticulocytosis, macrocytosis, and an

increased number of nucleated erythrocytes. There was an elevated level of methemoglobin in all

dogs treated with 32 mg/kg/day of 2,4,6-trinitrotoluene. No effects on methemoglobin levels, or blood

cells and Heinz body counts were found in monkeys following gavage administration of

2,4,6-trinitrotoluene at dose levels as high as 1.0 mg/kg/day (Martin and Hart 1974).

Bone marrow fibrosis was present in a significant number of female rats fed 50 mg/kg/day of 2,4,6-

trinitrotoluene for 24 months (Army 1984a).

Dogs treated daily with 8 mg/kg/day of 2,4,6-trinitrotoluene for 6 months had approximately a 68%

and 22% increase in platelet levels over the control animals for males and females respectively (Levine

et al. 1990b). A similar increase was noted in Fischer-344 rats treated with 50 mg/kg/day of 2,4,6-

trinitrotoluene for 24 months (Army 1984a). This increase occurred during the 2nd year of treatment

and was not present at the end of the study period, week 104 (Army 1984a). Although the increase in
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the number of platelets appeared to be related to 2,4,6-trinitrotoluene treatment, its significance is not

clear.

Hepatic Effects.  No studies were located regarding hepatic effects in humans after oral exposure to

2,4,6-trinitrotoluene. However, toxic jaundice was often fatal in workers exposed to 2,4,6-trinitrotoluene

in ammunition plants during World War I (Army 1978a). Between 1916 and 1941, 475 cases

of toxic jaundice were recorded in a British ammunition plant; 125 of these were fatal (Army 1978a).

During World War II, only eight fatal cases of toxic hepatitis were recorded in the United States

because industrial hygiene techniques had improved since the first world war (Army 1978a).

Limited information is available for adverse hepatic effects in animals after acute oral exposure to

2,4,6-trinitrotoluene. The most common adaptive change observed in mice, rats, and dogs during

intermediate exposure was an increase in liver weight and/or size. A significant increase in liver

weight was noted in rats receiving 200 mg/kg/day of 2,4,6-trinitrotoluene for 6 weeks (Jiang et al.

1991) or 125 mg/kg/day for 13 weeks (Levine et al. 1984). A similar observation was made in male

mice treated with 193 mg/kg/day for 13 weeks (Dilley et al. 1982b). Dogs treated with 20 mg/kg/day

of 2,4,6-trinitrotoluene for 13 weeks also had increased liver weight (Dilley et al. 1982b). Another

adaptive response to 2,4,6-trinitrotoluene-induced hepatotoxicity was a reduction in serum

glutamicpyruvic transaminase (SGPT) in rats treated with 160 mg/kg/day and dogs treated with 20

mg/kg/day for 13 weeks (Dilley et al. 1982b). No change in serum glutamic-oxaloacetic transaminase

(SGOT) was noted in those same animals (Dilley et al. 1982b). Dose-related changes such as

hepatocytomegaly and cloudy swelling were present in dogs after exposure to doses of 0.5 mg/kg/day

or greater of 2,4,6-trinitrotoluene for 6 months (Levine et al. 1990b). In addition, a reduction in SGPT

activity was noted in dogs administered 8 or 32 mg/kg/day. Necrotic lesions in the liver were found

in mice treated with 193 mg/kg/day for 13 weeks (Dilley et al. 1982b), while hepatic cirrhosis was

seen in dogs treated with 8 mg/kg/day of 2,4,6-trinitrotoluene for 6 months (Levine et al. 1990b).

Monkeys administered 1 mg/kg/day 2,4,6-trinitrotoluene (by gavage) for 90 days displayed ironpositive

material in the liver (Martin and Hart 1974). However, results of the bromosulfophthalein

(BSP) dye test revealed no effects on liver function. This study was limited because only three

monkeys per sex per were used, precluding statistical analysis of the data. In addition, there was a
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high frequency of emesis in treated animals. These results indicate that there is a species difference

regarding 2,4,6-trinitrotoluene hepatotoxicity. Dogs seem to respond to lower concentrations of 2,4,6-

trinitrotoluene than do mice or rats.

The hepatotoxicity of 2,4,6-trinitrotoluene was reflected in elevated levels of cholesterol present in the

serum after intermediate and chronic exposures. Increased serum cholesterol levels were present in

rats treated with 25 (Levine et al, 1984), 125 (Levine et al. 1990a), and 160 mg/kg/day (Dilley et al.

1982b) of 2,4,6-trinitrotoluene for 13 weeks. A similar finding was seen in dogs fed 20 mg/kg/day of

2,4,6-trinitrotoluene for the same time period (Dilley et al. 1982b). Increased cholesterol levels were

also found in male and female rats treated with 50 mg/kg/day for 24 months (Army 1984a).

Evidence for adverse hepatic effects has also been revealed in studies of chronic exposure. Doserelated

hepatomegaly resulting from hepatocellular hyperplasia was observed in Fischer-344 rats given

10 or 50 mg/kg/day of 2,4,6-trinitrotoluene for 24 months (Army 1984a).

Serum lipids were affected by chronic administration of 2,4,6-trinitrotoluene to rats (Army 1984a).

The levels of serum triglycerides were affected differently in male and female rats exposed to 2, 10, or

50 mg/kg/day of 2,4,6-trinitrotoluene (Army 1984a). Treatment-related hypotriglyceridemia was

observed in females at 2 mg/kg/day; this change was statistically significant at 10 and 50 mg/kg/day

during week 104 of treatment. In male rats treated with 50 mg/kg/day, a significant reduction in

triglyceride levels was seen after 104 weeks of treatment (Army 1984a). The results indicate that

female rats were more susceptible to 2,4,6-trinitrotoluene-induced reduction in serum triglyceride levels

than male rats that showed reduced triglycerides only at the highest treatment doses. Hypoglyceridemia

was also observed in mice treated with 70 mg/kg/day 2,4,6-trinitrotoluene for 24 months

(Army 1984b), and a decrease in glucose levels was observed in dogs treated with 8 or 32 mg/kg/day

2,4,6-trinitrotoluene (Levine et al. 1990b).

Jaundice (icterus) was observed in beagle dogs treated with 32 mg/kg/day for 26 weeks (Levine et al.

1990b). The presence of jaundice was evidenced by elevated bilirubin levels in both serum and urine

and increased urobilinogen values (Levine et al. 1990b). Histopathological analysis of these animals
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revealed hemosiderosis in Kupffer’s cells in all dogs receiving 8 and 32 mg/kg/day and in one female

receiving 2 mg/kg/day for 26 weeks (Levine et al. 1990b).

One of the proposed mechanisms of 2,4,6-trinitrotoluene-induced toxicity is an increase in free radical

levels which occurs after exposure. Superoxide radicals and hydrogen peroxide were measured in

mitochondria and microsomes from livers of monkeys treated with 0, 60, or 120 mg/kg/day of 2,4,6-

trinitrotoluene for 12 weeks (Kong et al. 1989). The amount of superoxide radicals was indirectly

measured by the formation of adrenochrome from adrenalin, and hydrogen peroxide production was

evaluated by the conversion of methanol to formaldehyde. There was a dose-dependent increase in

superoxide radicals and hydrogen peroxide production in liver mitochondria and microsomes (Kong et

al. 1989). These findings were confirmed when mitochondria and microsomes obtained from various

organs were treated in vitro with 0, 0.04, 0.2, or 1 mmol of 2,4,6-trinitrotoluene and then tested for

adrenochrome and formaldehyde production. Different amounts of hydrogen peroxide were produced

in the mitochondria of the various organs. The highest amount of hydrogen peroxide was present in

the liver followed by brain, testicle, kidney cortex, and kidney medulla (Kong et al. 1989).

Renal Effects.  Discoloration of the urine is among the first indications of 2,4,6-trinitrotoluene

intoxication in humans. The color of urine ranges from abnormal amber to a deep red, and in most

cases the results are positive for Webster’s test (a qualitative urine test for 2,4,6-trinitrotoluene based

on the formulation of purple color in acidified urine samples following extraction with ether and

treatment with potassium hydroxide) (Army 1978a).

Accumulation of yellowish-brown pigment in the renal cortex of rats treated with 125 mg/kg/day of

2,4,6-trinitrotoluene for 13 weeks was seen during histopathological analysis. The authors suggest that

this pigment may have represented known photolytic decomposition products of 2,4,6-trinitrotoluene

(Levine et al. 1984, 1990b). The same observation was made in female rats treated with 10 or

50 mg/kg/day for 24 months (Army 1984a). A dose-related increase in granular pigment within the

cytoplasm of epithelial cells of proximal convoluted tubules was observed at the end of the treatment

period in male rats receiving either 10 or 50 mg/kg/day for 24 months (Army 1984a). Increased

filtration rate was also present in these chronically exposed animals (Army 1984a).
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2.2.2.3 Immunological and Lymphoreticular Effects

Limited information was located regarding immunological effects in humans after oral exposure to

2,4,6-trinitrotoluene. However, an early reaction to 2,4,6-trinitrotoluene intoxication was an increase

in the number of mononuclear leukocytes found in the blood counts of 105 exposed individuals (Army

1978a). This increase seems to precede any other symptom and remains positive for 2-3 months;

therefore, it would be helpful in the differential diagnosis of 2,4,6trinitrotoluene poisoning, especially

when Webster’s test is negative (Army 1978a). The route of exposure and precise dose were not

defined in this report.

An increase in lymphocyte numbers was also seen in nine fatal cases of 2,4,6-trinitrotoluene toxicity in

humans. The normal range for lymphocytes is 20-40% of the total white blood cell count. In the

affected patients, the average was 78% of the total white blood count (range, 61-92%) (Army 1978a).

Patients who recovered after 2,4,6-trinitrotoluene intoxication had lymphocyte counts which were

approximately 46% of the total white cell count (Army 1978a).

No adverse lymphoreticular effects as assessed by changes in lymphocyte levels and histological

changes in the spleen were seen in dogs treated with 2.0 mg/kg/day, rats treated with 34.7 mg/kg/day,

or mice treated with 35.7 mg/kg/day of 2,4,6-trinitrotoluene for 13 weeks (Dilley et al. 1982b).

Increased spleen weight was seen in mice, rats, and dogs after an exposure of 13 weeks to

2,4,6-trinitrotoluene. The splenomegaly is possibly related to an increased clearance of hemolysed

cells (Dilley et al. 1982b; Levine et al. 1984, 1990a). Male and female dogs exposed to

20 mg/kg/day, mice exposed to 193 mg/kg/day (Dilley et al. 1982b), and rats exposed to

125 mg/kg/day (Levine et al. 1984, 1990a) and 160 mg/kg/day (Dilley et al. 1982b) all had increased

spleen weights after 13 weeks of exposure. Spleen enlargement related to 2,4,6-trinitrotoluene

administration was also noted in dogs treated with 8 or 32 mg/kg/day for 26 weeks. The ratios of

myeloid to erythroid cells were also significantly lower in these dogs, and they had varying degrees of

splenic congestion (Levine et al. 1990b). Splenic hemosiderosis related to 2,4,6-trinitrotoluene

treatment was also present in rats receiving 160 or 300 mg/kg/day (Dilley et al. 1982b; Levine et al.

1984), mice receiving 193 mg/kg/day (Dilley et al. 1982b), and dogs receiving 20 mg/kg/day (Dilley
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et al. 1982b) of 2,4,6-trinitrotoluene for 13 weeks. Lymphopenia was present in mice treated with

193 mg/kg/day for 13 weeks (Dilley et al. 1982b). Increased globulin levels and leukocytosis were

noted in the dogs treated with 20 mg/kg/day after a 4 week recovery period. Leukocytosis was

observed in rats fed 160 mg/kg/day of 2,4,6-trinitrotoluene for 13 weeks (Dilley et al. 1982b).

Sinusoidal congestion, extramedullary hematopoiesis, and hemosiderin-like pigment in the spleen were

observed in male and female rats fed 10 or 50 mg/kg/day of 2,4,6-trinitrotoluene for 24 months (Army

1984a). Enlargement of the spleen and lymph nodes was noted in female mice treated with

70 mg/kg/day of 2,4,6-trinitrotoluene for 24 months (Army 1984b).

2.2.2.4  Neurological Effects

No studies were located regarding neurological effects in humans after oral exposure to 2,4,6-

trinitrotoluene.

In acute exposure studies, rats fed 182 mg/kg/day of 2,4,6-trinitrotoluene for 4 days showed no signs

of neurotoxicity as measured by changes in zoxazolamine paralysis time and hexobarbital sleeping

time (Short and Lee 1980). However, in a single-dose oral LD50 study in rodents, rats and mice

showed signs of inactivity, were tremulous, developed convulsions, and died (Dilley et al. 1982b).

Similar observations were made in intermediate-duration studies. No signs of neurotoxicity were seen

after 13 weeks of 2,4,6-trinitrotoluene treatment in dogs receiving 0.2 mg/kg/day (Dilley et al. 1982b),

monkeys receiving 1 mg/kg/day (Martin and Hart 1974), or rats receiving 1.42 mg/kg/day (Dilley et al.

1982b). Dogs treated with 32 mg/kg/day for 6 months were ataxic (Levine et al. 1990b), while

inactivity was observed in dogs after treatment with 20 mg/kg/day for 13 weeks (Dilley et al. 1982b).

Dose-related changes in behavior such as lethargy and/or ataxia were seen in rats treated with 34.7 or

125 mg/kg/day for 13 weeks (Dilley et al. 1982b; Levine et al. 1984). Brain lesions with focal

vacuolation were seen in rats receiving 300 mg/kg/day of 2,4,6-trinitrotoluene for 13 weeks (Levine et

al. 1984).

No significant signs of neurotoxicity were seen in Fischer-344 rats treated with up to 50 mg/kg/day of

2,4,6-trinitrotoluene for 24 months (Army 1984a). The combined results of acute and intermediate
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exposure studies indicate species differences in 2,4,6-trinitrotoluene-induced neurotoxicity, with dogs

being more sensitive than rats or mice.

2.2.2.5  Reproductive Effects

No studies were located regarding reproductive effects in humans after oral exposure to 2,4,6-

trinitrotoluene.

Significantly decreased testes weights and testes zinc and copper concentrations were observed in male

rats exposed to 200 mg/kg/day 2,4,6-trinitrotoluene for 6 weeks (Jiang et al. 1991). In addition, the

serum ceruloplasmin concentration was significantly lower in the male rats. Zinc metabolism seems to

be affected more than copper metabolism by 2,4,6-trinitrotoluene treatment. Although there was a

close correlation between testicular weight and testicular zinc concentration, the role of zinc in

decreasing testicular weight is not clear (Jiang et al. 1991). However, zinc is known to be essential for

maintenance of normal testicular function (Jiang et al. 1991). No adverse reproductive effects were

noted in rats exposed to 1.42 mg/kg/day of 2,4,6-trinitrotoluene for 13 weeks (Dilley et al. 1982b).

However, male rats treated with 125, 160, or 300 mg/kg/day for the same period of time had serious

reproductive effects such as degenerated germinal epithelium, testicular atrophy, and atrophic

seminiferous tubules (Dilley et al. 1982b; Levine et al. 1984, 1990a). Testicular atrophy was not

reversible in rats allowed 4 weeks of recovery (Dilley et al. 1982b).

2.2.2.6  Developmental Effects

No studies were located regarding developmental effects in humans or animals after oral exposure to

2,4,6-trinitrotoluene.

2.2.2.7  Genotoxic Effects

No studies were located regarding genotoxic effects in humans after oral exposure to 2,4,6-trinitrotoluene
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Results were negative from in viva studies employing the oral route of exposure to ascertain whether

2,4,6-trinitrotoluene has the potential to induce clastogenic effects in somatic cells or increase the

frequency of unscheduled deoxyribonucleic acid (DNA) synthesis (UDS) in liver cells. However, the

findings from somatic cell cytogenetic assays with rats were compromised and, therefore, do not fully

support a negative conclusion.

In the bone marrow test, groups of five male Sprague-Dawley rats were administered dietary

concentrations of 0.002% or 0.25% 2,4,6-trinitrotoluene for 28 days; two additional groups of five rats

each were similarly treated and allowed a 28-day recovery period (Army 1978c). At the conclusion of

the treatment or recovery period, animals were sacrificed; bone marrow cells were harvested and

examined for abnormal chromosome morphology. No animals died prior to the scheduled sacrifice.

The study authors attributed the reduced body weight observed in the high-dose group to the

palatability of the test material rather than to a toxic effect. The slight depression in the mitotic

indices for high-dose animals at the conclusion of treatment was not considered indicative of a

cytotoxic effect on the target organ (bone marrow cells). Although no chromosome aberrations were

scored in the exposure groups immediately after treatment or following the 28-day recovery period, the

failure to demonstrate overt toxicity in the test animals or cytotoxic effects on the target organ renders

the study insufficient to fully support the conclusion that 2,4,6-trinitrotoluene was negative in this in

vivo cytogenetics assay.

2,4,6-Trinitrotoluene was administered by oral gavage at doses of 100, 200, 500, or 1,000 mg/kg to

male Alderley Park rats and at doses of 200, 500, and 1,000 mg/kg to male Fischer-344 rats (up to

three rats/group/strain) to investigate UDS in liver cells (Ashby et al. 1985). There was no evidence

of a cytotoxic or genotoxic effect on the hepatocytes of either strain 12 hours after 2,4,6-trinitrotoluene

exposure.

Other genotoxicity studies are discussed in Section 2.4.
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2.2.2.8 Cancer

No studies were located regarding cancer in humans after oral exposure to 2,4,6-trinitrotoluene.

However, a preliminary study of a German population living near the sites of two World War II

munitions plants indicates an association between increased rates of some types of leukemia and living

in a town near 2,4,6-trinitrotoluene waste from these plants (Kolb et al. 1993). The study shows

increased relative risk of acute myelogenous leukemia (AML) for adult males and females living near

the former explosives plants when compared with adults in a neighboring county. The relative risk is

particularly high for individuals over 65 years of age. However, study case numbers are very small.

The relative risk for chronic myelogenous leukemia (CML) is also increased for males but there was

only one case among females so comparisons could not be made. The relative proximity of the cases

of leukemia to the sites of 2,4,6-trinitrotoluene manufacture or disposal is not known, nor are any

2,4,6-trinitrotoluene concentrations in the environment reported. No investigation of confounding

variables (i.e., benzene exposure or occupational exposure to carcinogens) has been done. The study

concludes that a causal relationship is suggested, but further investigation of the living and working

conditions of the populations is required (Kolb et al. 1993).

In a chronic study, groups of 150 (75 males and 75 female) Fischer-344 rats were exposed to 0, 0.4,

2.0, 10.0, and 50.0 mg/kg/day of 2,4,6-trinitrotoluene in their food for 24 months (Army 1984a). A

statistically significant number of female rats (12/55 or 21.8%) exposed to 50-mg/kg/day doses

developed urinary bladder carcinomas. Urinary bladder papillomas were present in 1/55 and 5/55

female rats fed 10 and 50 mg/kg/day, respectively. No metastases were observed in any of the

animals. Histopathologic lesions included increased incidence of hyperplastic, preneoplastic, and

neoplastic changes of the mucosal epithelium of the urinary bladder. The cancer incidence observed in

this chronic exposure study is further supported by renal and urinary bladder hyperplasia observed in

treated animals. None of the control animals developed lesions of the urinary bladder. In a similar

study conducted in groups of 150 B6C3F1 mice (75 males and 75 females), a statistically significant

incidence (p<0.01) of leukemia and/or malignant lymphoma of the spleen was present in female mice

receiving 70 mg/kg/day of 2,4,6-trinitrotoluene for 24 months (Army 1984b). Leukemia and/or

malignant lymphoma of the spleen was noted in 28% and 32% of the female mice administered 1.5

and 10 mg/kg/day, respectively. The increase in the cancer incidence in the female mice receiving 1.5
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or 10 mg/kg/day of 2,4,6-trinitrotoluene was not statistically significant. Histopathology revealed that

leukemia was of granulocytic or lymphocytic type, while lymphoma was histiocytic, lymphocytic, or

of a mixed type. All the lesions were treatment related and systemic in nature. The neoplasias

involved other organs and tissues such as adrenals, bone marrow, brain, gastrointestinal tract, eyes,

kidneys, liver, lungs, and lymph nodes. The occurrence of combined leukemia/malignant lymphoma

seemed to be dose related but was not statistically significant. Based on the information from these

two chronic animal studies, EPA has classified 2,4,6-trinitrotoluene as a possible human carcinogen

(Group C) (EPA 1989b).

2.2.3  Dermal Exposure

In many occupational studies, it is often difficult to make a definitive distinction between dermal and

inhalation exposures, as was indicated in the section on inhalation exposure. Therefore, some of the

findings described in the inhalation section will be repeated in this section.

2.2.3.1  Death

Adverse effects of 2,4,6-trinitrotoluene on the liver and hematopoietic system have caused the greatest

number of deaths among munitions workers. There were 475 deaths out of about 17,000 cases of

2,4,6-trinitrotoluene poisoning in the United States within 7.5 months during World War I (McConnell

and Flinn 1946). In the same report, 22 cases of death due to occupational exposure to 2,4,6-

trinitrotoluene during World War II were described (McConnell and Flinn 1946). In this series of fatal

cases, 8 died from toxic hepatitis, 13 died from aplastic anemia, and 1 died probably from the

combination  of both these conditions (McConnell and Flinn 1946). The authors indicated that exposure

occurred by dermal contact and inhalation.

No studies were located regarding death in animals after dermal exposure to 2,4,6-trinitrotoluene.
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2.2.3.2 Systemic Effects

No studies were located regarding respiratory, cardiovascular, gastrointestinal, or musculoskeletal

effects in humans or animals after dermal exposure to 2,4,6-trinitrotoluene.

Hematological Effects.   Acute hemolytic disease was described in three ammunition plant workers

who filled shells with 2,4,6-trinitrotoluene (Djerassi and Vitany 1975). All three were deficient in

glucose-6-phosphate dehydrogenase (G6PD), an enzyme that catalyzes the oxidation of glucose

6-phosphate to 6-phosphoglucono-lactone. All three cases developed acute severe hemolysis 2-3 days

after being exposed to 2,4,6-trinitrotoluene and had very similar symptoms: paleness, weakness, and

vertigo. They also had decreased hemoglobin levels, decreased hematocrit, and increased reticulocyte

numbers (Djerassi and Vitany 1975). All three recovered and had no further complications when

examined 5 and 10 years later. Limitations of this report are that the routes of exposure are not

specified, although it seems that there was dermal and inhalation exposure, and that the level of

exposure is not known. However, the authors note that the air levels of 2,4,6-trinitrotoluene were

higher than the allowed daily exposure limit, which was 1.5 mg/m3 at that time.

No studies were located regarding hematological effects in animals after dermal exposure to

2,4,6-trinitrotoluene.

Hepatic Effects.   A modified MacLagen test (thymol turbidity test) was used to give evidence of

cirrhosis or hepatitis resulting from 2,4,6-trinitrotoluene exposure in ammunition workers (Goodwin

1972). In a retrospective study spanning 20 years, the data showed that 40 out of 4,641 workers had

>5 MacLagen units (2.9 MacLagen units is considered to be normal); the length of exposure and dose

of 2,4,6-trinitrotoluene were not specified. However, the hepatotoxicity was reversible. All the

workers with a MacLagen test result of >5 units were transferred to other jobs, and their readings

returned to normal within 3 weeks (Goodwin 1972).

No studies were located regarding hepatic effects in animals after dermal exposure to 2,4,6-

trinitrotoluene.
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Renal Effects.  No adverse renal effects were reported in humans after acute exposure to

2,4,6-trinitrotoluene as measured by Webster’s reaction and the aminodinitrotoluene (ADNT) test

(Hassman and Hassmanova 1976). In this study, the exposure route was not clearly specified, but it

seems that dermal contact and inhalation were the major routes of exposure.

No studies were located regarding renal effects in animals after dermal exposure to 2,4,6-trinitrotoluene.

Dermal Effects.  Allergic contact dermatitis with erythema (Goh 1988) and erythematous papillar

rush with edema (Goh and Rajan 1983) were reported in two ammunition workers after intermediate

exposures to 2,4,6-trinitrotoluene. In both cases, patch tests were used to determine the allergen. The

results showed that 5% is the most suitable concentration for patch testing in order to avoid false

positive or negative results (Goh and Rajan 1983). In both affected workers, dermal reactions

developed on parts of the body that were exposed and in direct contact with 2,4,6-trinitrotoluene, such

as hands and forearms. These reactions subsided and disappeared when the workers were transferred

to different jobs and were no longer in contact with 2,4,6-trinitrotoluene.

No studies were located regarding dermal effects in animals after dermal exposure to 2,4,6-trinitrotoluene.

Ocular Effects.  The development of cataracts in humans is believed to be specific to 2,4,6-trinitrotoluene

exposure (Hathaway 1985) and is often associated with chronic exposures. Equatorial lens

opacities/cataracts were reported in 6 out of 12 Finnish workers (mean age, 39.5±8.9 years) exposed to

2,4,6-trinitrotoluene for an average of 6.8±4.7 years (Harkonen et al. 1983). The principal routes of

exposure were dermal and inhalation, although this fact is not clearly indicated in the report.

Therefore, it is not known whether cataracts were a systemic or a local effect. The opacities were

detectable only on the periphery of the lens and appeared continuous or discontinuous. The opacities

of the lens were bilateral and symmetrical and did not affect visual fields or visual acuity. The

workroom 2,4,6-trinitrotoluene air concentration was about 0.3 mg/m3 with a range of 0.14-0.58 mg/m3

(Harkonen et al. 1983). There was no control population in the study. The formation of cataracts did
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not progress further after exposure to 2,4,6-trinitrotoluene was terminated; however, the cataracts were

not reversible. The mechanism of 2,4,6-trinitrotoluene cataract formation is not understood, but the

authors raised the possibility that oxidative damage may play a role since cellular defense mechanisms

protective against oxidative damage (i.e., glucose-6-phosphate dehydrogenase and glutathione

concentration) may be deficient after exposure to 2,4,6-trinitrotoluene (Harkonen et al. 1983).

No studies were located regarding ocular effects in animals after dermal exposure to 2,4,6-trinitrotoluene.

2.2.3.3  Immunological and Lymphoreticular Effects

Two ammunition plant workers developed an allergic contact dermatitis with erythema (Goh 1988) and

erythematous papillar rush with edema (Goh and Rajan 1983) after intermediate exposures to

2,4,6-trinitrotoluene. Patch tests were used to identify the allergen using 5% as the most suitable

concentration (Goh and Rajan 1983). Dermal reactions were observed to occur on the exposed parts

of the body such as the hands and forearms. Once removed from environments containing

2,4,6-trinitrotoluene, the workers sensitivity subsided and the dermatitis disappeared.

No studies were located regarding immunological or lymphoreticular effects in animals after dermal

exposure to 2,4,6-trinitrotoluene.

2.2.3.4  Neurological Effects

No studies were located regarding neurological effects in humans or animals after dermal exposure to

2,4,6-trinitrotoluene.

2.2.3.5  Reproductive Effects

No studies were located regarding reproductive effects in humans or animals after dermal exposure to

2,4,6-trinitrotoluene.
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2.2.3.6  Developmental Effects

No studies were located regarding developmental effects in humans or animals after dermal exposure

to 2,4,6-trinitrotoluene.

2.2.3.7  Genotoxic Effects

Two studies involving genotoxic effects in individuals occupationally exposed to 2,4,6-trinitrotoluene

suggested that in addition to inhalation exposure, dermal exposure may have occurred (Ahlborg et al.

1985, 1988a). These studies are discussed in detail in Section 2.2.1.7. No other studies were located

regarding genotoxic effects in humans or animals after dermal exposure to 2,4,6-trinitrotoluene.

Other genotoxicity studies are discussed in Section 2.4.

2.2.3.8  Cancer

In a case of chronic occupational exposure to 2,4,6-trinitrotoluene, a 61-year-old male died of

hepatocellular carcinoma (Garfinkel et al. 1988). The routes of exposure were not specified in the

study, and it is possible that the worker was exposed via the inhalation and/or dermal route.

No studies were located regarding cancer in animals after dermal exposure to 2,4,6-trinitrotoluene.

2.3  TOXICOKINETICS

Occupational studies indicate humans readily absorb 2,4,6-trinitrotoluene dusts via inhalation or dermal

contact, but quantitative studies have not been done. Toxicokinetic data from animal studies are

limited in that the fate of the radiolabelled dose of 2,4,6-trinitrotoluene was followed, and it is not

possible to differentiate between parent compound and metabolites. However, studies in dogs, rabbits,

mice, and rats indicate that more than 60% of the administered dose of 2,4,6-trinitrotoluene is

absorbed when ingested; dermal exposure these animals results in significantly lower (16-68%)

absorbance than oral exposure.
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No studies of the distribution of 2,4,6-trinitrotoluene in humans were located. However, in animal

studies the highest concentrations of 2,4,6-trinitrotoluene are found in the liver, skeletal muscle, blood,

and fat.

Studies indicate 2,4,6-trinitrotoluene is metabolized to several identifiable intermediates in the urine of

exposed workers, including the major reduction product aminodinitrotoluene (ADNT). In several

studies of oral exposure of rats and other laboratory animals, 2,4,6-trinitrotoluene was rapidly

metabolized to molecules too low in concentration to be identified by chromatographic analysis of

urine. Trace amounts of 2,4,6-trinitrotoluene could be detected in the urine of exposed animals in

isolated cases. After a single dermal exposure of 2,4,6-trinitrotoluene administered to dogs, rabbits,

mice, and rats, more unchanged 2,4,6-trinitrotoluene was found in the urine than was found after oral

exposure. This result indicates the route of exposure may influence the rate and extent of 2,4,6-

trinitrotoluene metabolism.

No studies of the excretion of 2,4,6-trinitrotoluene in humans were located. However, studies indicate

that 2,4,6-trinitrotoluene and its metabolites are primarily eliminated in the urine in laboratory animals.

In most studies excretion is rapid.

The mechanisms by which 2,4,6-trinitrotoluene and its derivatives exert their toxic effects are largely

unknown. A theory of the mechanism of toxicity by 2,4,6-trinitrotoluene is that the chemical and

some of the metabolic intermediates of 2,4,6-trinitrotoluene generate reactive oxygen species that cause

lipid peroxidation in the liver and injury of the lens resulting in cataracts.

2.3.1  Absorption

2.3.1.1  Inhalation Exposure

Studies that directly measure the absorption of 2,4,6-trinitrotoluene in humans following inhalation

exposure of known amounts of this chemical were not located. The amount of 2,4,6-trinitrotoluene in

the urine as measured by Webster’s reaction and the amount of 2-ADNT in the urine were compared

in 88 factory workers working with 2,4,6-trinitrotoluene (Hassman and Hassmanova 1976). The
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concentration of 2,4,6-trinitrotoluene in the air varied from 0.045 to 0.93 mg/m3 in different parts of

the plant. The results showed that there was a good correlation between the amounts of 2,4,6-

trinitrotoluene and its main metabolite ADNT in the urine of exposed workers. The levels of ADNT

increased rapidly during the workday and then declined within 24 hours to close to the levels at the

beginning of the workday. These results suggest that 2,4,6-trinitrotoluene is rapidly absorbed and

eliminated in the course of an acute inhalation exposure. The study is limited in that there was no

information on the route of exposure, the length of exposure in the course of a working day, or the

exposure dose.

In an attempt to simulate inhalation exposure, 50 mg/kg of radiolabelled 2,4,6-trinitrotoluene

suspended in methyl cellulose was instilled into the trachea of anesthetized, tracheotomized Sprague-

Dawley rats (Army 1981d). At the same time, another group of rats was treated orally with the same

dose of radiolabelled 2,4,6-trinitrotoluene. Both groups were sacrificed 4 hours later, and tissue and

urine samples were collected for radioactivity analysis. The rate of absorption was faster after

intratracheal instillation than after oral administration of 2,4,6-trinitrotoluene. Urinary excretion

averaged 19.3% of the dose after intratracheal administration and 14.6% of the dose after oral

administration. These results indicate that there are differences in the absorption rate of 2,4,6-

trinitrotoluene depending on the administration route.

2.3.1.2  Oral Exposure

Discoloration of the urine is among the first indications that metabolism has occurred after

2,4,6-trinitrotoluene absorption in humans. The color of urine ranges from abnormal amber to deep

red (Army 1978a).

Similar observations were made in rats and mice. Sixty minutes after a single exposure to 10,000

mg/kg/day of 2,4,6-trinitrotoluene, the urine of mice and rats becomes red in color (Dilley et al.

1982b). This is an indirect indication of 2,4,6-trinitrotoluene absorption. A more direct estimate of

absorption of 2,4,6-trinitrotoluene was done in rats, mice, rabbits, and dogs after a single oral dose of

50 mg/kg of radiolabelled 2,4,6-trinitrotoluene (Army 1981d). Twenty-four hours later, the recovery

of radiolabel was measured in rats, mice, dogs, and rabbits. The largest percentage of radioactivity
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was recovered from urine: 59.5%, 59%, and 61% for rats, mice, and dogs, respectively. Rabbits had

a slightly higher recovery (74.3%) of radiolabelled 2,4,6-trinitrotoluene in their urine, with a

proportional decrease in the radioactivity recovered from the gastrointestinal tract and feces (Army

1981d). Total recovery of the radioactivity (including feces, gastrointestinal tract, and urine) was

92.2%, 94.4%, 94.2%, and 103.6% in rats, mice, dogs, and rabbits, respectively. The red pigment in

the urine was not detected in rabbits or dogs. The results of this study indicate that 2,4,6-trinitrotoluene

is relatively quickly absorbed after oral administration and that a majority of the ingested

compound is excreted within 24 hours.

Findings in rats, mice, and dogs support the observations made in humans. Discoloration of urine was

noted in both rats and mice exposed to 34.7 and 35.7 mg/kg/day, respectively, for 13 weeks (Dilley et

al. 1982b). Dogs treated with 20 mg/kg/day for 13 weeks had urine that was orange in color (Dilley

et al. 1982b), while dogs receiving 8 or 32 mg/kg/day for 26 weeks had light to dark brown urine

throughout the treatment period (Levine et al. 1990b). No adverse hepatic effects and no change in

urine color were observed in monkeys treated with 1 mg/kg/day for 90 days (Martin and Hart 1974).

The Martin and Hart (1974) study was limited in that only three monkeys per sex per group were

utilized, thereby precluding statistical analyses of the data. Also, a high frequency of emesis was

observed in the treated monkeys. It is believed that the species differences in urine color are due to

the presence of unidentified metabolites of 2,4,6-trinitrotoluene. Species differences in 2,4,6-

trinitrotoluene toxicity may be attributed to the different metabolic pathways of 2,4,6-trinitrotoluene and

its metabolites. Once identified, these urine metabolites may be used as markers of 2,4,6-trinitrotoluene

exposure.

2.3.1.3  Dermal Exposure

Although data are limited regarding absorption of 2,4,6-trinitrotoluene following dermal exposure in

humans, it appears that it occurs rapidly (Woollen et al. 1986). 2,4,6-Trinitrotoluene absorption was

assessed by measuring the urinary concentration of one of its metabolites, ADNT, in 25 exposed

workers. There were wide variations between individual workers in the rate of clearance of ADNT

from the body. Furthermore, when urine samples were collected from a subgroup of workers from the

original group of 25, eight out of nine subjects had detectable ADNT levels in their urine even though
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these workers had been away from the workplace for 17 days. This is an indication that a portion of

absorbed 2,4,6-trinitrotoluene or its metabolites is slowly excreted (Woollen et al. 1986). Additionally,

when five workers from the total group of 25 exposed workers were monitored more closely during

two workshifts, it was shown that 2,4,6-trinitrotoluene was absorbed rapidly during the exposure

period. The limitations of this study are that the dermal exposure dose was not measured and workers’

were also exposed to 2,4,6-trinitrotoluene via the inhalation route.

The differences in absorption and excretion of radiolabelled 2,4,6-trinitrotoluene after dermal and oral

exposures were investigated in mice, rabbits, rats, and beagle dogs (Army 1981d). Rats and mice were

exposed dermally and orally (by gavage) to 50 mg/kg, and dogs and rabbits to 5 or 50 mg/kg.

Twenty-four hours after exposure, animals were sacrificed and urine, gastrointestinal tract, feces, and

various tissues were analyzed for radioactivity. Total recovered radioactivity was significantly lower

in all species after dermal exposure as compared to after oral exposure (Army 1981d). The highest

degree of dermal absorption was observed in rabbits and mice, in which 68.3% and 41.7% of the

administered radiolabel was recovered, respectively. The total recovery of radiolabel in dogs and rats

was much lower, 17% and 24%, respectively. These results suggest that absorption of radiolabelled

2,4,6-trinitrotoluene is species-dependent and is significantly lower after dermal rather than oral

exposure.

2.3.2  Distribution

2.3.2.1  Inhalation Exposure

No studies were located regarding distribution following inhalation exposure to 2,4,6-trinitrotoluene in

humans.

In rats that received 50 mg/kg of radiolabelled 2,4,6-trinitrotoluene by intratracheal administration, the

highest tissue concentrations of radiolabel after 4 hours were found in both male and female animals in

the fat (82 and 155 µg eq/g, respectively) and gastrointestinal tract (82 and 40 µg eq/g, respectively)

(Army 1981d). Since the gastrointestinal tract contained considerable amounts of radioactivity, some

of the rats in this experiment were bile-duct cannulated in order to collect bile and estimate the amount
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of radiolabel. The results were given as a percent of the administered dose. The radioactivities

recovered in bile-duct cannulated male and female rats were 20% and 15%, respectively, from the bile,

and 18% and 13%, respectively, from the urine (Army 1981d). When these results were compared to

excretion results following oral administration, the percent of radioactivity recovered in the urine and

bile was significantly higher after intratracheal exposure in both male and female rats. The opposite

was true for the amount of radioactivity recovered in the gastrointestinal tract; it was significantly

higher in the orally treated rats regardless of cannulation (Army 1981d). These results indicate that

the route of administration contributes to the differences in 2,4,6-trinitrotoluene distribution.

2.3.2.2  Oral Exposure

No studies were located regarding distribution following oral exposure to 2,4,6-trinitrotoluene in

humans.

Twenty-four hours after administration of a single oral dose of radiolabelled 2,4,6-trinitrotoluene to

rats and mice (100 mg/kg), and rabbits and dogs (5 mg/kg), the blood and different tissues were

analyzed for radioactivity. The blood and liver, kidney, spleen, lungs, brain, and skeletal muscle of

dogs contained a higher percentage of radioactivity than the blood and tissues of rats, mice, and rabbits

(Army 1981d). Recovery of radioactivity was greatest in the liver, skeletal muscle, and blood in all

four species. However, the amount of radioactivity recovered from tissues was small, ranging from

<0.1% to 5.4% of the dose, because the majority of the label is excreted in urine (an average of 60%

of the dose) and feces (an average of 11% of the dose) (Army 1981d). This indicates both rapid

absorption and rapid distribution in different species after oral exposure to 2,4,6-trinitrotoluene. The

limitations of this study are that a small number of animals was analyzed for distribution of radiolabel

and that the amount of unchanged 2,4,6-trinitrotoluene was not discussed.

2.3.2.3 Dermal Exposure

No studies were located regarding distribution following dermal exposure to 2,4,6-trinitrotoluene in

humans or animals. However, the recovery of radiolabel after a single dermal application of 50 mg/kg

of 2,4,6-trinitrotoluene was significantly lower in rats, mice, dogs, and rabbits than in those exposed
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orally (Army 1981d). Skin and fat around the site of dermal application were not included in the final

radiolabel recovery estimates. This may account for the lower radiolabel recovery obtained after the

dermal exposure (Army 1981d). The recovery of radiolabel from urine, feces, gastrointestinal tract,

blood, and tissue differed among the four species examined: rabbits (56.9%) > mice (41.7%) > rats

(22.8) > dogs (15.9%).

2.3.3  Metabolism

2.3.3.1   Inhalation Exposure

No studies were located regarding metabolism following inhalation exposure to 2,4,6-trinitrotoluene in

humans or animals. However, in a retrospective study (covering a 5-year period) of 2,4,6-trinitrotoluene

workers, no correlation was found between the presence in urine of one of the main

2,4,6-trinitrotoluene metabolites, ADNT, and the results of Webster’s reaction, which measures urine

2,4,6-trinitrotoluene levels (Hassman and Hassmanova 1976). This result provides indirect evidence

that 2,4,6-trinitrotoluene is metabolized completely and that no detectable amounts of unchanged

compound are present in the urine. This study is limited in that it does not clearly define the route of

exposure and does not specify the dose or the length of exposure.

2.3.3.2  Oral Exposure

No studies were located specifically addressing metabolism following oral exposure to 2,4,6-

trinitrotoluene in humans.

The 2,4,6-trinitrotoluene molecule may undergo various metabolic transformations, such as oxidation

of the methyl group, oxidation of the benzene ring, reduction of the three nitro groups, and

conjugation (EPA 1989b). A metabolic pathway illustrating some possible transformation products of

2,4,6Mnitrotoluene is shown in Figure 2-2 (Army 1981d). The failure to detect unmetabolized

2,4,6-trinitrotoluene in the urine of humans (Hassman and Hassmanova 1976) provides indirect

evidence that 2,4,6-trinitrotoluene is extensively metabolized. Trace amounts of unmetabolized

2,4,6-trinitrotoluene were found in the urine of rats, mice, rabbits, and dogs (Army 1981d). Several
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metabolites have been identified in human urine: 4-ADNT, 2-ADNT, 2,4-diatnino-6-nitrotoluene,

4-hydroxylamino-2,6-dinitrotoluene, and amino-nitrocresol (Army 1986c; Channon et al. 1944;

Lemberg and Callaghan 1945).

2,4,6-Trinitrotoluene was extensively metabolized in rats, mice, dogs, and rabbits after a single oral

dose of 50 mg/kg of radiolabelled 2,4,6-trinitrotoluene (Army 1981d). Only minute amounts of the

unmetabolized 2,4,6-trinitrotoluene were found in urine. The majority of urinary metabolic products

have high polarity and very low extractability in organic solvents. It was therefore difficult to identify

them. The metabolic profiles of urine from the four species differed only quantitatively (Army

1981d). 4,6-Diamine, 2,6-diamine, and monoamines of 2,4,6-trinitrotoluene were the predominant

metabolites detected in the urine of rats. Smaller quantities of 2- and 4-hydroxylamines and

azoxytoluene were present. In contrast to rat urine, greater amounts of the monoamines and

hydroxylamines and smaller quantities of polar metabolites and diamines were found in the urine of

mice. The urine of dogs contained appreciable amounts of diamines and monoarnines and small

amounts of the 4-hydroxylamine and 2-hydroxylamine. Substantial amounts of monoarnines,

hydroxylamines, and diamines were noted in rabbit urine (Army 1981d). Treatment of urine of all

species with β-glucuronidase increased the amount of extractable radioactivity, indicating that

conjugation of 2,4,6-trinitrotoluene metabolites with UDP-glucuronic acid is an important route of

metabolism. Urine from treated mice contained the least amount of glucuronide conjugates (Army

1981d).

2.3.3.3  Dermal Exposure

No studies were located regarding metabolism following dermal exposure to 2,4,6-trinitrotoluene in

humans.

The differences in metabolic profiles from the urine of mice, rats, dogs, and rabbits after a single

dermal dose of 50 mg/kg of radiolabelled 2,4,6-trinitrotoluene were only quantitative (Army 1981d).

There was an increased amount of unchanged 2,4,6-trinitrotoluene in urine after a single dermal

exposure which was not found after a single oral exposure (Army 1981d). This suggests that the

exposure route plays a role in the extent of 2,4,6-trinitrotoluene biotransformation.
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2.3.4  Excretion

2.3.4.1  Inhalation Exposure

4-ADNT, which is considered to be a major metabolite of 2,4,6-trinitrotoluene, was shown to be

present in the urine of munitions workers exposed to 0.045-0.93 mg/m3 of 2,4,6-trinitrotoluene by

both the Webster reaction and by a polarographic technique (Hassman and Hassmanova 1976).

Similar findings were made using a sensitive gas chromatographic method (Almog et al. 1983). No

unchanged 2,4,6trinitrotoluene was detected in this study. However, no detail was provided regarding

the exposure dose or route.

Recovery of radiolabel from urine of Sprague-Dawley rats 4 hours after intratracheal instillation of

50 mg/kg of radiolabelled 2,4,6-trinitrotoluene was similar to the recovery after oral exposure. The

amount of radiolabel in the urine, expressed as a percentage of the dose, was 19% and 13% in male

and female animals, respectively (Army 1981d).

2.3.4.2 Oral Exposure

No studies were located regarding excretion following oral exposure to 2,4,6-trinitrotoluene in humans.

The results from animal studies indicate that urine is the major excretion route after a single oral dose

of radioactive 2,4,6-trinitrotoluene. The excretion of radioactive label was studied in Sprague-Dawley

rats after a single oral dose of 100 mg/kg (Army 1981d). In the course of 24 hours after exposure,

53-65% of the radioactivity was recovered from the urine; 2-8% from the feces; and 30-34% from

the gastrointestinal tract and its contents. Similar results on the recovery of radiolabel in urine were

obtained after oral exposure of albino CD1 mice (100 mg/kg), rabbits (5 mg/kg), and dogs (50 mg/kg)

to radioactive 2,4,6-trinitrotoluene (Army 1981d). These results were confirmed when a 24-hour

recovery of radiolabelled 2,4,6-trinitrotoluene was evaluated in rats, mice, dogs, and rabbits after a

single oral exposure of 50 mg/kg (Army 1981d). The percentages of radiolabel in urine were 59.5%,

59%, and 61% for rats, mice, and dogs, respectively. The highest amount of radiolabel was recovered

from the urine of rabbits, 74.3%. The amounts of label from feces were 11%, 24%, 5%, and 22% for
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rats, mice, rabbits, and dogs, respectively. Although the number of animals in these studies was

relatively small, the results indicate that there are species differences regarding excretion after acute

oral exposure to 2,4,6-trinitrotoluene. The urine of rats and mice in these studies was bright red in

color, indicating formation of some species-specific, unknown metabolite(s); no such color was

observed in dogs and rabbits (Army 1981d).

2.3.4.3  Dermal Exposure

No studies were located regarding excretion following dermal exposure to 2,4,6-trinitrotoluene in

humans.

Total recovery of radioactive label (from blood, liver, kidneys, lungs, spleen, brain, muscle,

gastrointestinal tract, feces, and urine) after a single dermal exposure of 50 mg/kg of radiolabel

2,4,6-trinitrotoluene was evaluated in rats, mice, dogs, and rabbits and compared to total recovery after

oral exposure (Army 198 Id). In all species, the total recovery of the radiolabel was significantly

lower after dermal exposure as compared to oral exposure. Total radioactivity recovered after dermal

exposure was 16%, 23%, 42%, and 57% in dogs, rats, mice, and rabbits, respectively. For

comparison, the recovery after oral exposure was 92%, 94%, 94%, and 104% in rats, dogs, mice, and

rabbits (Army 1981d). These results indicate that the total recovery of the label after a single dermal

exposure to 2,4,6-trinitrotoluene varies depending on the species. Recovery is also affected by the

exposure route; recovery after oral exposure is significantly higher than after dermal exposure (Army

1981d).

2.3.5  Mechanisms of Action

Although the mechanisms by which 2,4,6-trinitrotoluene and its derivatives exert their toxic effects on

organ systems (including the blood, liver, and eye lens) are largely unknown, a general theory has

been developed to explain the toxicity of 2,4,6-trinitrotoluene.

As discussed in Section 2.3.1, in limited studies of humans and animals it appears 2,4,6-trinitrotoluene

is readily absorbed by inhalation, ingestion, or dermal routes of exposure. Also, it has been
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demonstrated that 2,4,6-trinitrotoluene is lipid soluble; tracer studies have shown accumulation in

subcutaneous fat, and it would be expected to be present in lipids in the liver and marrow. A theory

of the mechanism of toxicity by 2,4,6-trinitrotoluene is that the parent compound and some metabolic

intermediates are active oxygen generators (Kong et a1.1989) and are involved in lipid peroxidation in

the liver and in oxygenation of the lens to form cataracts (Liu et al. 1992; Savolainen et al. 1985). In

addition, it is postulated that in the rat 2,4,6-trinitrotoluene undergoes rapid reduction to

hydroxylamine and that this intermediate can be bioactivated to bind sulfhydryl proteins (Liu et al.

1992). This bioactivation is postulated to occur in the liver or in the blood via different pathways. In

the liver, bioactivation of hydroxylamine is postulated to involve oxidation by NADPH-dependent

hepatic microsomal enzymes. In the blood, bioactivation of hydroxylamine is postulated to involve a

reaction with oxyhemoglobin (Liu et al. 1992).

2.4  RELEVANCE TO PUBLIC HEALTH

The general public is not likely to be exposed to 2,4,6-trinitrotoluene. However, there is a possibility

that populations will be exposed in the vicinity of munitions fabrication plants, demilitarization

facilities, and particularly at incinerator facilities and former and current open-bum and opendetonation

facilities. Occupational or accidental exposure to 2,4,6-trinitrotoluene may occur by the

oral, inhalation, or dermal routes.

Oral exposure to 2,4,6-trinitrotoluene in aquatic environments in the vicinity of ammunition plants is

not likely because 2,4,6-trinitrotoluene stays unchanged for only a short period because of photolysis

(half-life of less than 24 hours) and biological degradation (half-life of less than 65 days). However, if

there is 2,4,6-trinitrotoluene-contaminated soil in the vicinity of a munitions plant, oral exposure

through terrestrial food products (especially homegrown produce or locally grazed animals) cannot be

completely ignored as a possible exposure pathway. Dermal exposure through contaminated soil is

more likely since the degradation of 2,4,6-trinitrotoluene in soil is less effective than in water (Army

1986c). Volatilization of 2,4,6-trinitrotoluene from surface water is negligible, making inhalation

exposure unlikely.
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Information on the effects that occur in humans after exposure to 2,4,6-trinitrotoluene comes from case

reports of accidental intoxication and from studies of occupationally exposed workers in the

manufacture of high explosives. Because of improvements in the work environment, numerous

adverse health effects caused by exposure to 2,4,6-trinitrotoluene, such as anemia, liver function

abnormalities, respiratory complications, and possibly aplastic anemia, have been greatly reduced.

Historically, adverse effects on the liver have caused the greatest number of deaths among munitions

workers; 475 deaths were reported in the United States during World War I (McConnell and Flinn

1946). Cases of aplastic anemia, which is usually fatal, were also reported during that time. As stated

in the previous paragraph, these adverse effects have been almost eliminated with the introduction of

more effective protection measures for workers handling 2,4,6-trinitrotoluene.

The major effects observed in animals after intermediate or chronic exposures to 2,4,6-trinitrotoluene

are reduced number of red blood cells, reduced hemoglobin and hematocrit, anemia, testicular damage,

hepatomegaly, and splenomegaly.

Inhalation

No MRLs were derived for acute, intermediate, or chronic exposure by the inhalation route.

Oral

An MRL of 0.0005 mg/kg/day has been derived for intermediate oral exposure to 2,4,6-

trinitrotoluene. This MRL is based on the occurrence of dose-related liver effects (cloudy

swelling and hepatocytomegaly) noted in dogs administered 0.5 mg/kg/day by capsule for 6

months (Levine et al. 1990b). More severe liver injury (hemosiderosis in Kupffer’s cells and

hepatic cirrhosis) was observed at high doses, supporting the sensitivity of the selected end

point. In addition, liver toxicity (jaundice, elevated serum and urine bilirubin levels,

hepatocellular hyperplasia, cloudy swelling, focal necrosis, changes in the levels of serum

triglycerides, and increased serum cholesterol levels) have been reported in animals orally



2,4,&TRINITROTOLUENE 55

2. HEALTH EFFECTS

exposed to 2,4,6-trinitrotoluene for intermediate or chronic durations (Army 1984a; Dilley et

al. 1982b; Levine et al. 1984).

Insufficient information was available to calculate an acute-duration oral MRL for neurological effects.

Additional studies in acute oral exposures to 2,4,6-trinitrotoluene are needed to determine the threshold

level for neurological effects. Chronic-duration exposure to the intermediate-duration oral MRL of

0.0005 mg/kg/day, which is the same value as the EPA’s chronic oral Reference Dose (RfD), would

not be anticipated to cause adverse health effects.

Death.  In the United States, 475 deaths were reported among munitions workers during World War I

(McConnell and Flinn 1946). One death from hepatocellular carcinoma was reported in a case of

chronic occupational exposure to 2,4,6-trinitrotoluene (Garfmkel et al. 1988). It is not clear, however,

if 2,4,6-trinitrotoluene played a role in the carcinogenic process. Death has been observed in rats,

mice, and dogs (Dilley et al. 1982b; Levine et al. 1990b) after oral exposure to sufficient amounts of

2,4,6-trinitrotoluene. Reported oral LD50 values are 1,010 and 1,320 mg/kg/day for male rats, and 820

and 795 mg/kg/day for female rats (Army 1978b; Dilley et al. 1982b). Acute oral LD50 values in male

and female mice are 1,012 and 660 mgkglday, respectively (Army 1978b; Dilley et al. 1982b).

2,4,6-Trinitrotoluene was lethal in beagle dogs receiving 32 mg/kg/day orally for 26 weeks (Levine et

al. 1990b).

It is extremely unlikely that sufficient levels of 2,4,6-trinitrotoluene could be ingested acutely by

persons living in the vicinity of an ammunition plant to cause death. Furthermore, the low levels of

2,4,6-trinitrotoluene that are likely to be present in the soil near the plants are substantially below the

levels that are necessary to cause death.

Systemic Effects

Respiratory Effects.  Extremely limited information was located regarding respiratory effects in

humans after exposure to 2,4,6-trinitrotoluene. One study of occupational exposure (Morton et al.

1976) reported several cases of respiratory difficulties in workers exposed to 2,4,6-trinitrotoluene levels
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in the air that were above the TLV of 0.5 mg/m3 (ACGIH 1993). However, there are several

limitations to this study. The report does not state the exact air concentration of 2,4,6-trinitrotoluene,

the exposure duration, or the number of exposed workers reporting difficulties. No details are given

about the nature of the reported difficulties. No studies in animals were located that described

potential respiratory effects of 2,4,6-trinitrotoluene. Therefore, insufficient evidence exists to assess

the relevance of these findings to public health.

Cardiovasclilar Effects.  No studies were located regarding cardiovascular effects in humans.

Intermediate oral exposure to doses as high as 32 mg/kg/day of 2,4,6-trinitrotoluene for 26 weeks did

not cause any changes in electrocardiogram or heart rates in beagle dogs (Levine et al. 1990b). The

available information is not sufficient to evaluate the effects of 2,4,6-trinitrotoluene on populations

living close to ammunition plants.

Gastrointestinal Effects.   There are no studies on gastrointestinal effects in humans after exposure to

2,4,6-trinitrotoluene. However, two studies in dogs reported adverse gastrointestinal effects following

intermediate oral exposure to 2,4,6-trinitrotoluene. Dogs receiving 20 mg/kg/day for 13 weeks had

mucoid stools and diarrhea (Dilley et al. 1982b), while inflammation of a part of the small intestine

was observed in beagle dogs fed 0.5, 2, 8, and 32 mg/kg/day of 2,4,6-trinitrotoluene for 25 weeks

(Levine et al. 1990b). The inflammation was dose-dependent and was more pronounced in dogs

receiving the highest dose. Based on the available information, it is possible, although unlikely, that

oral exposure to 2,4,6-trinitrotofuene may cause some adverse gastrointestinal effects, but it is not

known if such effects would occur after dermal exposure in the vicinity of an ammunition plant or a

demilitarization facility. Although dermal exposure has been indicated as the most likely route of

exposure in occupational situations, limited exposure to 2,4,6-trinitrotoluene may result from ingestion

of produce contaminated by deposition from fugitive particles or resuspension of contaminated soil, or

from ingestion of animal products from animals that graze in the vicinity of an ammunition or

demilitarization facility (Army 1986d).

Hematological Effects.  Fatal cases of aplastic anemia among workers engaged in the production of

explosives have not been reported in the recent literature, although they occurred in England
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(Hathaway 1985) and other countries involved in World War I. The incidence of adverse health

effects of 2,4,6-trinitrotoluene including aplastic anemia have decreased dramatically because of

improvements in protective measures in munitions factories.

Dose-related reductions in hemoglobin and hematocrit and a 50% increase in reticulocyte counts were

noted in 626 workers exposed to 2,4,6-trinitrotoluene air levels ranging from <0.1 to 1.49 mg/m3

(Army 1976). The duration of exposure was not specified. In another study, no abnormal values for

hemoglobin were found in 43 workers employed in the manufacture of 2,4,6-trinitrotoluene who were

monitored for 5 months (Morton et al. 1976).

Acute hemolytic disease was described in three ammunition plant workers (Djerassi and Vitany 1975)

who were also glucose-6-phosphate dehydrogenase (GGPD) deficient. This study is limited in that the

exposure route is not specified, so it is not clear how relevant the finding is for general public health.

Anemia (consisting of reduced number of red blood cells and reduced hemoglobin and hematocrit) is

one of the major signs of 2,4,6-trinitrotoluene toxicity. These adverse effects were observed in rats

(Dilley et al. 1982b; Jiang et al. 1991; Levine et al. 1984, 1990a), mice (Dilley et al. 1982b), and dogs

(Dilley et al. 1982b; Levine et al. 1990b) after intermediate oral exposure to 2,4,6-trinitrotoluene.

Similar observations were made in Fischer-344 rats fed 10 or 50 mg/kg/day for 24 months (Army

1984a). In this chronic exposure study, male rats were somewhat more sensitive than female rats to

the toxic effects of 2,4,6-trinitrotoluene. Reticulocytosis was present as a compensatory response to

the anemic state in all animals. Methemoglobinemia was noted in rats fed 300 mg/kg/day for

13 weeks (Levine et al. 1984), in rats fed 10 or 50 mg/kg/day for 24 months (Army 1984a), and in

dogs fed 32 mg/kg/day for 6 months (Levine et al. 1990b).

Bone marrow fibrosis and leukocytosis were present in rats orally exposed to 2,4,6-trinitrotoluene for

24 months or 13 weeks; these animals were also anemic (Army 1984a; Dilley et al. 1982b).

Dogs and rats had increased platelet levels after exposure for 6 and 24 months, respectively (Army

1984a; Levine 1990b). The significance of this finding was not discussed.
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Based on this information, it seems unlikely that sufficient amounts of 2,4,6-trinitrotoluene would be

present near ammunition plants to cause adverse hematological effects in the population living in the

vicinity. Individuals who are G6PD deficient may need to be evaluated as a potentially susceptible

population.

Hepatic Effects.  Toxic hepatitis has been the principal manifestation of 2,4,6-trinitrotoluene toxicity

in humans, and many cases recorded during World War I were fatal (Army 1987a).

Reports on adverse hepatic effects of 2,4,6-trinitrotoluene in humans have been located. Increases in

hepatic enzymes (SGOT and LDH) were noted in ammunition plant workers exposed when air levels

of 2,4,6-trinitrotoluene rose from 0.3 to 0.8 mg/m3 (Morton et al. 1976). The duration of the study

was 5 months. In another study, no significant differences in liver function (LDH, bilirubin, alkaline

phosphatase, SGOT and SGPT) were noted in a cross-sectional study on 626 munitions workers

exposed to 0.5 mg/m3 of 2,4,6-trinitrotoluene (Army 1976).

In a retrospective study spanning 20 years, liver cell irritation (measured with the MacLagen thymol

turbidity test) was present in 40 munitions workers (Goodwin 1972). The report did not specify the

exposure dose or route. Exposure of animals to moderate-to-high levels (0.5-200 mg/kg/day) of

2,4,6-trinitrotoluene over intermediate-to-chronic periods has been reported to cause adverse effects

such as jaundice, elevated serum and urine bilirubin levels, hyperplasia, cloudy swelling, focal necrosis

and cirrhosis of the liver, changes in the levels of serum triglycerides, and increased serum cholesterol

levels (Army 1984a; Dilley et al. 1982b; Levine et al. 1984, 1990b). It is not known if chronic

exposure to the levels of 2,4,6-trinitrotoluene described above would cause similar adverse hepatic

effects in exposed humans.

These degenerative effects are distinct from the adaptive changes observed in livers of a number of

nonhuman species in response to exposure to 2,4,6-trinitrotoluene. The most common adaptive

change observed in several animal species during intermediate exposure to 2,4,6-trinitrotoluene was an

increase in liver weight and/or size (Dilley et al. 1982b; Jiang et al. 1991; Levine et al. 1984). It is

not known if these effects would occur in humans.
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Renal Effects. No studies were located regarding renal effects in humans after exposure to

2,4,6-trinitrotoluene. However, studies have shown that discoloration of the urine is among the first

indications of 2,4,6-trinitrotoluene exposure in humans and is due to the presence of 2,4,6-

trinitrotoluene metabolites. The color of urine ranges from abnormal amber to deep red (Army

1978a).

Discoloration of the urine from the presence of 2,4,6-trinitrotoluene metabolites also occurs in rats,

mice, and dogs. Sixty minutes after acute exposure to 10,000 mg/kg/day of 2,4,6-trinitrotoluene, the

urine in mice and rats became red in color because of the presence of 2,4,6-trinitrotoluene metabolites

(Dilley et al. 1982b). The same effect was observed in rats and dogs treated with higher doses and for

a longer period (Dilley et al. 1982b). Increased filtration rate was present in rats chronically exposed

to 10 and 50 mg/kg/day of 2,4,6-trinitrotoluene (Army 1984a).

In rats treated with higher doses of 2,4,6-trinitrotoluene for 13 weeks (Levine et al. 1984; 1990b) or

24 months (Army 1984a), histopathological analysis revealed the accumulation of yellowish-brown

pigment in the renal cortex and in the epithelial cells of proximal convoluted tubules. It is therefore

possible that persons exposed to extremely high levels of 2,4,6-trinitrotoluene may be at increased risk

of renal toxicity.

Dermal Effects.  Exposure to 2,4,6-trinitrotoluene can cause dermatitis in workers handling the

compound (Morton et al. 1976). Two incidences of allergic contact dermatitis were reported in two

ammunition plant workers after intermediate-duration exposure to 2,4,6-trinitrotoluene (Goh 1988; Goh

and Rajan 1983). These findings indicate that prolonged exposure to relatively low levels of

2,4,6-trinitrotoluene may cause an allergic reaction manifested by dermatitis appearing in the areas of

contact with the chemical.

Ocular Effects.  The appearance of irreversible cataracts is believed to be specific to 2,4,6-trinitrotoluene

exposure. It is often associated with chronic exposures to relatively low levels of 2,4,6-trinitrotoluene

(Hathaway 1985). Equatorial lens opacities/cataracts were reported in 6 out of 12 workers

exposed to 2,4,6-trinitrotoluene for an average of 6.8 years (Harkonen et al. 1983). The average
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concentration of 2,4,6-trinitrotoluene in the air was 0.3 mg/m3, which is well below the threshold limit

of 0.5 mg/m3 (ACGIH 1993). It is therefore possible that chronic exposure to low levels of

2,4,6-trinitrotoluene in the vicinity of ammunition plants may have adverse ocular effects.

Immunological and Lymphoreticular Effects.   An increase in the number of mononuclear

leukocytes was found in reviewing blood cell counts of 105 individuals exposed to 2,4,6-trinitrotoluene

(Army 1978a). This increase precedes any other symptom, remains positive for 2-3 months, and

could be helpful in differential diagnosis. Also increased were lymphocyte numbers in nine cases of

fatal 2,4,6-trinitrotoluene poisoning (Army 1974). Since the doses necessary to produce these effects

were not established, the possibility that susceptible persons living in the vicinity of ammunition plants

may be exposed to sufficient amounts of 2,4,6-trinitrotoluene to trigger such immunological effects

cannot be excluded.

Exposure to 2,4,6-trinitrotoluene can cause dermatitis in workers handling the compound (Morton et al.

1976). Two incidences of allergic contact dermatitis were reported in two ammunition plant workers

after intermediate exposure to 2,4,6-trinitrotoluene (Goh 1988; Goh and Rajan 1983). These findings

indicate that prolonged exposure to relatively low levels of 2,4,6-trinitrotoluene may cause an allergic

reaction manifested by dermatitis appearing in the areas of contact with the chemical.

Increased spleen weight was the most common effect seen in several nonhuman species after

intermediate exposure to medium-to-high doses of 2,4,6-trinitrotoluene (Dilley et al. 1982b; Levine et

al. 1984, 1990a). Other changes, such as splenic congestion and hemosiderosis, reduced lymphocyte

counts, increased lymphocyte counts, and increased globulin levels, were also noted. Thus, persons

exposed to sufficiently high levels of 2,4,6-trinitrotoluene near ammunition plants may be at risk of

developing immune system or lymphoreticular effects including splenomegaly with splenic congestion

and hemosiderosis, lymphocytosis due to reduced lymphocyte counts, and higher globulin levels.
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Neurological Effects.  Only minor neurological effects, such as altered taste, were noted in humans

after an inhalation exposure of 0.3 mg/m3 of 2,4,6-trinitrotoluene (Morton et al. 1976). On the basis of

this limited information, it is difficult to speculate on possible adverse neurological effects that may

occur in 2,4,6-trinitrotoluene-exposed people living in the vicinity of ammunition plants.

Rats showed no signs of neurotoxicity after acute exposure to 182 mgtkglday (Short and Lee 1980).

However, when fed an extremely high dose of 10,000 mg/kg/day, both rats and mice showed signs of

inactivity; some developed convulsions and died (Dilley et al. 1982b). Similar observations were

made in the intermediate-duration studies in dogs, rats, and monkeys fed low doses of 2,4,6-

trinitrotoluene (Dilley et al. 1982b; Martin and Hart 1974). When higher doses were used (32 mg/kg/day

for 26 weeks), dogs became ataxic (Levine et al. 1990b). In rats exposed to 300 mg/kg/day of

2,4,6-trinitrotoluene for 13 weeks, brain lesions (consisting of focal vacuolation and malacia of the

white tracts of the cerebellar folia) were seen in histopathological analysis (Levine et al. 1984). In

contrast, no significant signs of neurotoxicity were seen in rats treated with up to 50 mg/kg/day for

24 months (Army 1984a). Since these results indicate species differences after acute, intermediate, and

chronic exposures, it is difficult to estimate potential neurotoxic effects for humans living close to

ammunition plants.

Reproductive Effects.   A preliminary case control study of workers in two 2,4,6-trinitrotoluene

plants in China indicates exposure to 2,4,6-trinitrotoluene may have adverse effects on several

indicators of male reproductive status (Li et al. 1993). Workers exposed to 2,4,6-trinitrotoluene had

significantly lower semen volumes and a smaller percentage of motile spermatozoa as well as a

significantly higher incidence of sperm malformation than the control group. However, exposure

concentrations and route of exposure are not known. Possible important variables which are not

discussed include exposure to other chemicals and heat in the workplace.

Serious reproductive effects, such as testicular atrophy and atrophic seminiferous tubules, were

observed in rats treated with high doses of 2,4,6-trinitrotoluene for 13 weeks (Dilley et al. 1982b;

Levine et al. 1984, 1990a). These changes were not reversible after a 4-week recovery period. Based
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on this limited information, adverse reproductive effects after exposure of males to sufficiently high

concentrations of 2,4,6-trinitrotoluene cannot be excluded.

Developmental Effects.   No studies were located regarding developmental effects in humans or

animals following exposure to 2,4,6-trinitrotoluene by any exposure route. It is therefore not possible

to predict the potential developmental toxicity of 2,4,6-trinitrotoluene at hazardous waste sites or near

ammunition plants.

Genotoxic Effects.   No studies were found that directly assess the potential of 2,4,6-trinitrotoluene

to induce genotoxic effects in humans. However, there is convincing evidence that the urine of

individuals occupationally exposed to 2,4,6-trinitrotoluene contains mutagenic components (Ahlborg et

al. 1985, 1988a). The primary metabolite of 2,4,6-trinitrotoluene appears to be 4-aminodinitrotoluene

(6ADNT); major intermediate forms, including 4-ADNT, are weakly mutagenic in bacteria (Spanggord

et a1.1982b). By contrast, 2,4,6-trinitrotoluene is a confirmed mutagen in bacterial and

mammalian cells in vitro and;2,4,6-trinitrotoluene-induced mutagenesis is either markedly diminished

or abolished by the inclusion of exogenous metabolic activation into these test systems (see discussion

of in vitro results below).

The detection of unmetabolized 2,4,6-trinitrotoluene in the urine of exposed workers exhibiting a high

level of mutagenic activity (Ahlborg et al. 1985) tends to support the assumption that the parent

compound rather than its derivatives was responsible for the observed response. However, a more

detailed follow-up study found no correlation between mutagenicity and 2,4,6-trinitrotoluene

concentration in urine (Ahlborg et al. 1988a). It is nevertheless possible that these conflicting results

could be resolved if more appropriate concentration procedures improved the detection of

2,4,6-trinitrotoluene. This would elucidate the possible connection between mutagenesis and the

concentrations of 2,4,6-trinitrotoluene and/or its metabolites in the urine of exposed workers.

Only one in vitro study employing a human cell line (WI-38 human fibroblasts) was found in the

existing literature (Army 1978~). In this study, target cells were exposed to 2,4,6-trinitrotoluene doses

ranging from 2 to 2,000 µg/mL without S9 activation and from 6 to 6,000 µg/mL in the presence of an
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uninduced mouse liver homogenate. Precipitation of the test material occurred at ≥200 µg/mL

(without S9) and at 375 µg/mL (in the presence of S9). At nonactivated levels of 500 and

1,000 µg/mL, a significant (p<0.05) increase in UDS was obscured by discoloration of the samples;

however, significant (p<0.05) effects were also obtained at 250 µg/mL. No discoloration of the test

samples occurred in the S9-activated phase of testing, and no evidence of a genotoxic response was

uncovered. Although a definitive conclusion could not be reached because of compound interference

with the nonactivated assay results, the data do not suggest that 2,4,6-trinitrotoluene was genotoxic in

this human cell line. Similarly, the lack of an effect in the presence of auxiliary metabolic activation

is consistent with other in vitro assay results.

The single in vivo animal study assessing potential adverse effect on the chromosome structure of

somatic cells following oral administration of 2,4,6-trinitrotoluene was negative but compromised

because neither a toxic effect in the rats nor a cytotoxic effect on the target organ (i.e., bone marrow

cells) was demonstrated (Army 1978c). However, the results of a well-conducted mouse micronucleus

assay, which evaluated 2,4,6-trinitrotoluene at a level (80 mg/kg) that approximated 80% of the

maximum tolerated dose, provided no indication of a clastogenesis (Ashby et al. 1985). For this

study, groups of five male CBA x Balb C mice received single intraperitoneal injections of 40 or

80 mg/kg 2,4,6-trinitrotoluene; animals were sacrificed 24, 48, and 72 hours post-treatment, and bone

marrow cells were examined for the presence of micronucleated polychromatic erythrocytes (MPEs).

Results indicated that there were no significant increases in the frequency of MPEs in bone marrow

cells sampled over the entire hematopoietic cycle. Similarly, the in vivo / in vitro rat liver UDS assay

performed by the same investigators was negative.

As the above discussion indicates, deleterious genetic events resulting from exposure to

2,4,6-trinitrotoluene have not been extensively investigated in either humans or animals. Since the

only available studies in humans were from occupational settings, inhalation must be considered an

important pathway of 2,4,6-trinitrotoluene exposure. However, quantifiable dermal absorption

indicates that 2,4,6-trinitrotoluene is absorbed through the skin. It also suggests that dermal absorption

plays an important role in 2,4,6-trinitrotoluene uptake, which may be more important than uptake

through inhalation (Ahlborg et al. 1988a). The identification of the agent(s) responsible for the
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mutagenic activity observed in the urine of workers exposed to 2,4,6-trinitrotoluene is of considerable

importance, because human metabolism of 2,4,6-trinitrotoluene has not been fully characterized. It is

possible that the parent compound, a known mutagen, and its metabolites, which are also mutagens in

S. typhimurium TA98, are contributors to 2,4,6-trinitrotoluene-induced mutagenesis (Spanggord et al.

1982b).

Although only three in vivo studies were found, the overall results provided no evidence that

2,4,6-trinitrotoluene is genotoxic in whole animals. This assumption is supported by the results of the

in vitro UDS assay with human cells indicating that 2,4,6-trinitrotoluene-induced UDS was abolished

by the inclusion of exogenous metabolic activation (Army 1978c). Similar results, as discussed below,

were obtained in other test systems using both cultured bacterial and mammalian cells.

The implications of both the whole animal and in vitro human cell assay findings are highly relevant

to human health. If 2,4,6-trinitrotoluene can be reduced to nonmutagenic metabolic products, the

potential health hazard to humans would be greatly reduced. Refer to Tables 2-2 and 2-3 for a further

summary of these studies.

In contrast to the absence of genotoxicity in animal studies, numerous investigators (Ahlborg et al.

1985, 1988a; Army 1978a, 1978c, 1979b, 1980d; Kaplan and Kaplan 1982c; Pearson et al. 1979;

Spanggord et al. 1982b; Whong and Edwards 1984; Won et al. 1976) have demonstrated that

2,4,6-trinitrotoluene is a microbial mutagen. There is good agreement that 2,4,6-trinitrotoluene

primarily causes frameshift mutations in S. typhimurium TA1537, TA1538, and TA98 and that the

mutagenic response is not dependent on auxiliary metabolic activation nor substantially influenced by

microbial nitroreductase activity. Data also exist showing that 2,4,6-trinitrotoluene is mutagenic in

S. typhimurium strains TA1535 and TA100, which detect agents that cause base-pair substitution

mutations (Army 1978c, 1979b, 1980d; Whong and Edwards 1984). The weight of evidence,

however, is consistent with a frameshift mutagen; appreciably higher levels of 2,4,6-trinitrotoluene

(≥30 µg/plate) were required to achieve positive responses in TA1535 and TA100 as compared to the

reactivity (≥2 µg/plate) of 2,4,6-trinitrotoluene with strains TA1538 and/or TA98. Metabolites of

2,4,6-trinitrotoluene have not been shown as consistently to be mutagens in S. typhimurium. While the
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parent compound induced a dose-related increase in mutant colonies of S. typhimurium TA98 over a

concentration range of 2-10 µg/plate, the seven investigated metabolites were negative (Won et al.

1976). In a study using the same assay system, one of the tested metabolites (2-amino-4,6-

dinitrotoluene) was positive, while the second one (4-amino-2,6-dinitrotoluene) was only slightly

positive; both needed nitroreductase to induce mutagenicity (Spanggord et al. 1982b). Similarly, in a

third study the four possible mono- and diamino metabolites of 2,4,6-trinitrotoluene were all less

mutagenic than the parent compound in TA98 or TA100 (Tan et al. 1992). Mutagenicity in

Salmonella tester strains seems dependent on endogenous nitroreductase activity. Strains deficient in

nitroreductase show decreased sensitivity to 2,4,6-trinitrotoluene while strains constructed with

increased nitroreductase activity show increased sensitivity (Einisto et al. 1991).

2,4,6-Trinitrotoluene is also capable of causing gene mutations in mammalian cells (Styles and Cross

1983). In a well-conducted study, 2,4,6-trinitrotoluene (8-l,000 µg/mL) caused dose-dependent

cytotoxicity and significant increases in mutation at the TK+/- locus in mouse lymphoma cells. In

agreement with other in vitro assay findings, S9 activation was not required to demonstrate the

response. 2,4,6-Trinitrotoluene was negative under conditions of exogenous metabolic activation. No

studies investigating potential clastogenic effects in vitro were found.

Although the database for in vitro genetic toxicology testing with 2,4,6-trinitrotoluene is limited, a

high degree of concordance exists among different assay systems. Based on the existing information,

there is sufficient valid in vitro data to conclude that 2,4,6-trinitrotoluene is a direct-acting mutagen in

bacterial and mammalian cells. There is also suggestive evidence that 2,4,6-trinitrotoluene is a

directacting genotoxic agent in cultured human cells. Refer to Table 2-2 for a further summary of these

results.

Cancer.  One preliminary epidemiological study of German populations living in the proximity of

former munitions plants suggests 2,4,6-trinitrotoluene may increase leukemia rates in exposed adult

human populations (Kolb et al. 1993). However, the case numbers in this study are very small. Also

the proximity of the cases of leukemia to sites where 2,4,6-trinitrotoluene was manufactured during

World War II or to disposal sites is not reported nor are any environmental 2,4,6-trinitrotoluene
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concentrations. Therefore, there is only slight circumstantial evidence linking the observed leukemia

cases to possible 2,4,6-trinitrotoluene exposure. Furthermore, no investigation of confounding

variables (e.g., benzene exposure or occupational exposure to carcinogens) has been done.

Several female Fisher-344 rats developed urinary bladder carcinoma after exposure to 10 or

50 mg/kg/day of 2,4,6-trinitrotoluene for 24 months (Army 1984a). A similar study conducted in

B6C3F1 mice showed that a statistically significant (p<0.01) incidence of leukemia and/or malignant

lymphoma of the spleen was present in female mice receiving 70 mg/kg/day for 24 months (Army

1984b). On the basis of this result, EPA has classified 2,4,6-trinitrotoluene as a possible human

carcinogen (Group C) (EPA 1989b).

2.5  BIOMARKERS OF EXPOSURE AND EFFECT

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They

have been classified as markers of exposure, markers of effect, and markers of susceptibility

(NAS/NRC 1989).

A biomarker of exposure is a xenobiotic substance or its metabolite(s) or the product of an interaction

between a xenobiotic agent and some target molecule(s) or cell(s) that is measured within a

compartment of an organism (NAS/NRC 1989). The preferred biomarkers of exposure are generally

the substance itself or substance-specific metabolites in readily obtainable body fluid(s) or excreta.

However, several factors can confound the use and interpretation of biomarkers of exposure. The

body burden of a substance may be the result of exposures from more than one source. The substance

being measured may be a metabolite of another xenobiotic substance (e.g., high urinary levels of

phenol can result from exposure to several different aromatic compounds). Depending on the

properties of the substance (e.g., biologic half-life) and environmental conditions (e.g., duration and

route of exposure), the substance and all of its metabolites may have left the body by the time biologic

samples can be taken. It may be difficult to identify individuals exposed to hazardous substances that

are commonly found in body tissues and fluids (e.g., essential mineral nutrients such as copper, zinc,

and selenium). Biomarkers of exposure to 2,4,6-trinitrotoluene are discussed in Section 2.5.1.
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Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within

an organism that, depending on magnitude, can be recognized as an established or potential health

impairment or disease (NAS/NRC 1989). This definition encompasses biochemical or cellular signals

of tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital

epithelial cells), as well as physiologic signs of dysfunction such as increased blood pressure or

decreased lung capacity. Note that these markers are often not substance specific. They also may not

be directly adverse, but can indicate potential health impairment (e.g., DNA adducts). Biomarkers of

effects caused by 2,4,6-trinitrotoluene are discussed in Section 2.5.2.

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism’s

ability to respond to the challenge of exposure to a specific xenobiotic substance. It can be an

intrinsic genetic or other characteristic or a preexisting disease that results in an increase in absorbed

dose, biologically effective dose, or target tissue response. If biomarkers of susceptibility exist, they

are discussed in Section 2.7, “Populations That Are Unusually Susceptible.”

2.5.1  Biomarkers Used to Identify or Quantify Exposure to 2,4,6-Trinitrotoluene

The availability of biomarkers is useful in estimating the degree of exposure in cases where the

exposure is suspected or known. Identification of 2,4,6-trinitrotoluene in blood and urine is the most

direct confirmation that exposure to 2,4,6-trinitrotoluene has occurred. Sensitive methods have been

developed for determination of 2,4,6-trinitrotoluene and its metabolites in human blood and urine (for

more information see Chapter 6).

Detection of 2,4,6-trinitrotoluene in the blood or urine is an indication of a recent dermal, oral, or

inhalation exposure. However, since 2,4,6-trinitrotoluene is rapidly metabolized, it may be difficult to

determine trace amounts of the unchanged compound in blood or urine. In such cases, identification

of major 2,4,6-trinitrotoluene metabolites such as 4-ADNT and 2-ADNT in the urine can be used as an

indication of exposure. In one case of acute, primarily dermal exposure to 2,4,6-trinitrotoluene, these

two metabolites were present in the urine of exposed workers 17 days after exposure (Woolen et al.

1986). This finding indicates that they can be used as indicators of not only recent, but also past,

acute exposures to 2,4,6-trinitrotoluene. Another early sign of 2,4,6-trinitrotoluene exposure is the
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change of urine color that can range in humans from abnormal amber to deep red (Army 1978a). The

identification of the metabolite responsible for this color change would represent a good biomarker for

early detection of 2,4,6-trinitrotoluene exposure.

In the study on distribution of 2,4,6-trinitrotoluene after oral, inhalation and dermal exposure of rats,

mice, rabbits and dogs it was found that 2,4,6-trinitrotoluene distributes to fat (Army 1981d).

Therefore the lipid concentration of 2,4,6-trinitrotoluene could be used as a potential biomarker of

exposure, provided adequate methodology is available.

No information was found on tissue levels of 2,4,6-trinitrotoluene after relatively long-term exposure

to constant levels of 2,4,6-trinitrotoluene. However, since absorption, biodegradation, and excretion

occur rapidly, it can be assumed that the presence of 2,4,6-trinitrotoluene metabolites may be used to

identify exposure. Because of rapid conversion of 2,4,6-trinitrotoluene into its metabolites, it is also

reasonable to assume that long-term exposure will not lead to a steady state of 2,4,6-trinitrotoluene

levels.

2.5.2 Biomarkers Used to Characterize Effects Caused by 2,4,6-Trinitrotoluene

Prior to the use of blood and urine levels to monitor exposure to 2,4,6-trinitrotoluene (during the two

World Wars, and especially during World War I), jaundice was one of the main indicators of

2,4,6-trinitrotoluene intoxication. However, jaundice is a sign of serious hepatic toxicity, that develops

over a period of time, and it is not useful as an early indicator compared to other signs such as urine

discoloration. Since jaundice is a latent phenomenon, many cases had fatal outcomes before the

jaundice was observed. In addition, jaundice is not specific for 2,4,6-trinitrotoluene exposure and may

be caused by other factors.

Decreased hemoglobin and hematocrit levels and increased reticulocyte numbers are among the first

changes to occur after exposure to sufficiently high levels of 2,4,6-trinitrotoluene (Army 1976). The

levels of these three blood parameters reflected in a complete blood count can be used as nonspecific

biomarkers; their determination is rapid, relatively inexpensive, and useful for monitoring cohorts of

persons possibly exposed to 2,4,6-trinitrotoluene.
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An early reaction to 2,4,6-trinitrotoluene intoxication is an increase in mononuclear leukocytes, which

seems to precede any other symptom and remains positive for 2-3 months (Army 1978a). Also found

in nine fatal cases of 2,4,6-trinitrotoluene poisoning was a significant increase in lymphocyte counts

(Army 1974a). The extent and significance of these findings need further elucidation since both are

commonly present in a number of other pathological states.

Changes in the hepatic enzymes SGOT and LDH were noted after the levels of 2,4,6-trinitrotoluene

increased from 0.3 to 0.8 mg/m3 (Morton et al. 1976). In another study, however, no changes in liver

function were seen in 626 munitions workers exposed to an average of 0.5 mg/m3 (Army 1976). An

explanation for these different findings may be that new or increased exposure to 2,4,6-trinitrotoluene

causes more liver toxicity in potentially susceptible workers, while in cases of longer exposure liver

cells may adapt to moderate exposure levels (Hathaway 1985). Although many other substances and

diseases can cause changes in the levels of hepatic enzymes, a record of pre-exposure levels could

resolve these problems and allow for the use of hepatic enzymes as effective exposure markers. It is

possible that in the future a battery of tests to indicate liver disease could be used to identify the

causal agent. For example, cholylglycine is a bile acid that accumulates in serum in cases of hepatic

dysfunction, and interleukin-1 is indicative of inflammation. Both of these markers were found

elevated in all patients with viral hepatitis, but only 37.5% or 25% were positive, respectively, in

2,4,6-trinitrotoluene-induced liver damage (Li et al. 1992).

Another potential adverse effect of 2,4,6-trinitrotoluene exposure is the formation of cataracts. It is

believed to be specific to 2,4,6-trinitrotoluene and is often associated with chronic, low-level exposure

(Hathaway 1985). Bilateral, symmetrical equatorial lens opacities were reported in workers exposed to

2,4,6-trinitrotoluene for an average of 6.8 years (Harkonen et al. 1983).

Two cases of contact dermatitis were reported in workers after an intermediate exposure to

2,4,6-trinitrotoluene (Goh 1988; Goh and Rajan 1983). On the basis of this information, skin patch

testing could be done to detect individuals potentially hypersensitive to 2,4,6-trinitrotoluene.
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2.6 INTERACTIONS WITH OTHER CHEMICALS

Limited information was located regarding the influence of other chemicals on the toxicity of

2,4,6trinitrotoluene. However, one extensive animal study evaluated the acute and intermediate

effects of a mixture of 2,4,6-trinitrotoluene and 1,3,5-trinitrohexahydro-1,3,5-triazine (RDX) on rats,

mice, dogs, and rabbits (Army 1978c). The mixture of the two compounds is designated as LAP

(load, assemble, and pack) mixture. The ratio of 2,4,6-trinitrotoluene and RDX in the LAP mixture in

this study was 1.6:1. Acute oral toxicity of the LAP mixture was investigated in rats, mice, and

rabbits. The results indicate that there was a distinct species difference regarding acute oral toxicity

after exposure to the LAP mixture. The acute oral LD50 values indicate that rats were more susceptible

to toxic effects of the LAP mixture than to 2,4,6-trinitrotoluene alone. The opposite was true for mice

which were more resistant to the LAP mixture than to 2,4,6-trinitrotoluene (Army 1978c). LAP

applied to the eyes of rabbits produced conjunctivitis, iritis, and/or cornea1 opacity. Intermediate oral

toxicity was determined in a 90-day exposure study in rats, mice, and dogs. The results indicate that

the main target organs for LAP toxicity are the same as those for 2,4,6-trinitrotoluene, namely blood

and liver. Mild-to-moderate hemolytic anemia, enlarged spleens and livers, hemosiderosis of the

spleen, and colored urine were common effects of intermediate exposure to LAP seen in all three

species. LAP-induced testicular atrophy (dogs and rats), uterine hypoplasia (rats), and numerous

neurological signs (dogs) were also observed. These observations indicate that 2,4,6-trinitrotoluene

was the principal, but not the only factor, contributing to the intermediate oral toxicity of LAP; some

of the observed toxicity is due to RDX (Army 1978c).

Because 2,4,6-trinitrotoluene is rapidly degraded in the environment, it is possible that it would

interact with its degradation products to amplify adverse health effects. However, it is not known how

the interaction of 2,4,6-trinitrotoluene with these co-contaminants affects or alters predicted health

effects.

2.7 POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE

A susceptible population will exhibit a different or enhanced response to 2,4,6-trinitrotoluene than will

most persons exposed to the same level of 2,4,6-trinitrotoluene in the environment. Reasons include
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genetic make-up, developmental stage, health and nutritional status, and chemical exposure history.

These parameters result in decreased function of the detoxification and excretory processes (mainly

hepatic and renal) or the pre-existing compromised function of target organs. For these reasons we

expect that the elderly with declining organ function and the youngest of the population with immature

and developing organs will generally be more vulnerable to toxic substances than healthy adults.

Populations who are at greater risk due to their unusually high exposure are discussed in Section 5.6,

“Populations With Potentially High Exposure.”

No information was located on populations that are known to be unusually susceptible to toxic effects

of 2,4,6-trinitrotoluene. However, in the review of the literature one report described the occurrence of

acute hemolytic disease (Djerassi and Vitany 1975) in three individuals deficient in GGPD enzyme.

All three developed hemolytic crisis with similar symptoms 2-4 days after being exposed to

2,4,6-trinitrotoluene. All three also recovered and were complication free at 5- and 10-year followup.

Populations that may show increased sensitivity to 2,4,6-trinitrotoluene would include very young

children, who have immature hepatic detoxification systems; individuals with impaired liver function,

including alcoholics (Li et al. 1991), or impaired kidney function; and those who are prone to anemia

or who are anemic. Also at increased risk may be individuals with such genetic traits as G6PD

deficiency, sickle cell trait, genetically induced unstable hemoglobin forms, or congenital

hypercholesterolemia. Another subpopulation that may be at increased risk is comprised of individuals

with a potential immune reaction to 2,4,6-trinitrotoluene.

2.8  METHODS FOR REDUCING TOXIC EFFECTS

This section will describe the clinical practice and research concerning methods for reducing toxic

effects of exposure to 2,4,6-trinitrotoluene. However, because some of the treatments discussed may

be experimental and unproven, this section should not be used as a guide for treatment of exposures to

2,4,6-trinitrotoluene. When specific exposures have occurred, poison control centers and medical

toxicologists should be consulted for medical advice.



2,4,6-TRINITROTOLUENE 74

2. HEALTH EFFECTS

2.8.1 Reducing Peak Absorption Following Exposure

No chemical-specific recommendations have been reported for reducing absorption following 2,4,6-

trinitrotoluene exposure via any route (Haddad and Winchester 1990; HSDB 1994). General methods

for reducing exposure can be found for explosives (Bronstein and Currance 1988). Other sources

recommend the same treatment for overexposure to 2,4,6-trinitrotoluene as for aniline (Gosselin et al.

1984) or aromatic nitro compounds (Stutz and Ulin 1992). General procedures suggested for reducing

absorption following accidental industrial exposure include moving the exposed person into fresh air,

removing contaminated clothing and shoes, and flushing exposed skin or eyes with running water

(HSDB 1994).

In recent years, there have been very few reported cases of overexposure via inhalation or dermal

contact because simple industrial hygiene methods are used to effectively prevent contact with high

concentrations of 2,4,6-trinitrotoluene in the workplace. However, during both World Wars some

cases of industrial exposure have resulted in fatalities (Haddad and Winchester 1990).

Oral exposure to toxic quantities of 2,4,6-trinitrotoluene have not been reported for humans, although

it is possible that some of the cases of overexposure of workers were caused in part by inadvertent

ingestion via hand-to-mouth contact as well as by inhalation and dermal contact with 2,4,6-

trinitrotoluene. In general, only supportive treatment has been recommended (HSDB 1994). In some

cases, gastric lavage, activated charcoal, and emetics have been suggested as useful in reducing

absorption of the general class of nitro compounds to which 2,4,6-trinitrotoluene belongs (Gosselin et

al. 1984; Stutz and Ulin 1992). Other sources state emesis should not be used for explosives

(Bronstein and Currance 1988).

2.8.2 Reducing Body Burden

No quantitative studies of human retention or elimination of 2,4,6-trinitrotoluene were located. Acute

laboratory studies of animals show rapid elimination in the urine of 2,4,6-trinitrotoluene and its

metabolites when it is administered orally or dermally. Historically, only a small proportion of the

munitions workers during World War I and II who were exposed to high concentrations of
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2,4,6-trinitrotoluene experienced hepatic disease. The only treatment was to remove the affected

workers from areas where they could be exposed to 2,4,6-trinitrotoluene. Because the onset of

symptoms was frequently delayed for 1 to 4 months following exposure, in some cases no symptoms

appeared until days or weeks after exposure to 2,4,6-trinitrotoluene had ended (Haddad and Winchester

1990).

A more recent study of workers exposed to 2,4,6-trinitrotoluene found that a subgroup of workers

showed signs of liver cell irritation. These workers were removed from areas with 2,4,6-trinitrotoluene

exposure and fed diets high in protein and calories. After 3 weeks, signs of liver cell irritation

disappeared, and they were returned to work requiring contact with 2,4,6-trinitrotoluene (Goodwin

1972).

In some cases of exposure to 2,4,6-trinitrotoluene, methemoglobinemia has been reported. This effect

is independent of hepatic damage. Some sources suggest treatment of methemoglobinemia with

methylene blue (Ellenhorn and Barceloux 1988; Gosselin et al. 1984; Stutz and Ulin 1992).

However, it has been noted that methylene blue should be used with caution (Stutz and Ulin 1992)

especially if there is a possibility of glucose-6-phosphate dehydrogenase (G6PD) deficiency (Ellenhorn

and Barceloux 1988).

2.8.3  Interfering with the Mechanism of Action for Toxic Effects

The mechanism of toxic action by 2,4,6-trinitrotoluene and the compounds formed by the metabolism

of 2,4,6-trinitrotoluene are not known. A theory is that, at a biochemical level, 2,4,6-trinitrotoluene or

its metabolites generate active oxygen species (Kong et al. 1989; Liu et al. 1992; Savolainen et al.

1985). No information was located on established therapies designed to interfere with this possible

mechanism of action of 2,4,6-trinitrotoluene. Because 2,4,6-trinitrotoluene is known to cause liver

damage and may decrease glutathione concentrations (Liu et al. 1992), it is possible an intervention

that acts by increasing the cellular concentrations of antioxidants (especially glutathione, glutathione

peroxidase, and those that are lipid soluble such as vitamin E) could reduce liver damage caused by

2,4,6-trinitrotoluene.
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The impetus to search for an agent that reduces the toxicity of 2,4,6-trinitrotoluene or its metabolites is

generally lacking since the use of good hygiene in the workplace has eliminated the health effects

formerly detected in the United States and Western Europe. It should be noted that with industrial or

military accidents involving large quantities of 2,4,6-trinitrotoluene, the most immediate critical hazard

is one of explosion or fire (HSDB 1994; Stutz and Ulin 1992).

2.9  ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with

the Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of 2,4,6-trinitrotoluene is available. Where adequate

information is not available, ATSDR, in conjunction with the National Toxicology Program (NTP), is

required to assure the initiation of a program of research designed to determine the health effects (and

techniques for developing methods to determine such health effects) of 2,4,6-trinitrotoluene.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that, if met,

would reduce or eliminate the uncertainties of human health assessment. This definition should not be

interpreted to mean that all data needs discussed in this section must be filled. In the future, the

identified data needs will be evaluated and prioritized, and a substance-specific research agenda may

be proposed.

2.9.1 Existing Information on Health Effects of 2,4,6-Trinitrotoluene

The existing data on health effects of inhalation, oral, and dermal exposure of humans to 2,4,6-

trinitrotoluene are summarized in Figure 2-3. The purpose of this figure is to illustrate the existing

information concerning the health effects of 2,4,6-trinitrotoluene. Each dot in the figure indicates that

one or more studies provide information associated with that particular effect. The dot does not imply

anything about the quality of the study or studies. Missing information in this figure should not be

interpreted as “data needs” information (i.e., data gaps that must necessarily be filled).
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Recent literature pertaining to the health effects of 2,4,6-trinitrotoluene in humans described case

reports and retrospective, intermediate- and chronic-duration studies of workers employed in the

manufacture of ammunition. No acute human exposure data were located. For those employed in the

manufacturing process using 2,4,6-trinitrotoluene, the major routes of exposure are dermal and

inhalation. Thus, information on intermediate- and chronic-duration exposures comes exclusively from

derrnal and inhalation exposure data. Information from occupational and retrospective studies is

frequently limited by a lack of data regarding quantification of doses and precise duration of exposure.

No information was located regarding developmental, reproductive, genotoxic, or cancer effects in

humans by any route. Information on any effects in humans after oral exposure to 2,4,6-trinitrotoluene

was also not found.

Virtually all of the data on animals regarding health effects from 2,4,6-trinitrotoluene exposure were

obtained from studies in which 2,4,6-trinitrotoluene was administered orally. Over the past 25 years,

the majority of the extensive studies done in several mammalian species (i.e., rat, mouse, and dog)

were performed for the Army. One of those studies addresses the effects of 2,4,6-trinitrotoluene after

derrnal exposure and intratracheal (performed under anesthesia) instillation.

Releases from hazardous waste sites or from military installations involved in the manufacture of

2,4,6-trinitrotoluene and the processing of munitions that contain the compound are the main sources

of potential exposure of the general population to 2,4,6-trinitrotoluene. Because persons living in the

vicinity of these two types of sites may be exposed by oral, dermal, or inhalation routes, additional

information on the effects via these routes would be valuable.

2.9.2 Identification of Data Needs

Acute-Duration Exposure.   Available data are not sufficient to derive acute oral or inhalation

MRLs. There are no data regarding acute-duration exposure of humans to 2,4,6-trinitrotoluene by

inhalation or oral routes. Additional studies in acute oral exposures to 2,4,6-trinitrotoluene are needed

to determine the threshold level for neurological effects because the only available data demonstrate

serious neurological effects in a single oral LD50 study in rodents (Dilley et al. 1982b). Populations



2,4,6-TRINITROTOLUENE 79

2. HEALTH EFFECTS

living in the vicinity of ammunition plants or hazardous waste disposal sites may be exposed to

2,4,6-trinitrotoluene. Exposure would most probably occur via the dermal route, but there is a

possibility that inhalation and oral exposures may occur. A dermal patch test for 2,4,6-trinitrotoluene

was positive in one case of contact dermatitis in a worker previously exposed to 2,4,6-trinitrotoluene

(Goh 1988). In a week-long study of workers handling 2,4,6-trinitrotoluene, two metabolites

(aminodinitrotoluenes) were present in the urine: 4-ADNT and 2-ADNT. No other effects of

exposure were reported (Woolen et al. 1986). Renal effects were observed in mice and rats

(discoloration of the urine) after oral exposure to a relatively high dose of 2,4,6-trinitrotoluene (Dilley

et al. 1982b). Other signs of exposure were inactivity, tremors, and death in both species. Since

populations living in the vicinity of ammunition plants may be exposed to 2,4,6-trinitrotoluene by all

three routes, animal studies of exposure via all three routes would be useful in elucidating possible

effects in humans after acute exposure.

Intermediate-Duration Exposure.  One occupational intermediate-duration study of inhalation

exposure to low levels of 2,4,6-trinitrotoluene in workers found a significant increase in the hepatic

enzymes SGOT and LDH when the air concentration was increased from 0.3 to 0.8 mg/m3 (Morton et

al. 1976). Unspecified respiratory difficulties were reported in some workers. Hemoglobin levels

remained within a normal range. Because of the very low exposure level, it is difficult to determine

the major target organ since adaptation can mask changes in circulating hemoglobin levels. Another

occupational report identified the immunological system as the target organ in a case of contact

dermatitis (Goh and Rajan 1983). However, studies in laboratory animals following intermediateduration

oral exposure did confirm the blood as a major target organ (Dilley et al. 1982b; Jiang et al.

1991; Levine et al. 1984, 1990a, 1990b). Other target organs identified in intermediate-duration oral

studies include liver, kidney, gastrointestinal tract, spleen, central nervous system, and reproductive

system (Dilley et al. 1982b; Levine et al. 1984, 1990a, 1990b). An intermediate-duration oral MRL

for 2,4,6-trinitrotoluene has been calculated based on a study that noted dose-related liver effects in

dogs receiving 0.5 mg/kg/day for 6 months (Levine et al. 1990b).
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Chronic-Duration Exposure and Cancer.  Few studies have been conducted on workers that have

been chronically exposed to 2,4,6-trinitrotoluene. Increased levels of zinc and copper were found in

hair samples of workers exposed for 3-7 years, mainly by the inhalation route (Jiang et al. 1991).

Three other studies, two of inhalation (Harkonen et al. 1983; Savolainen et al. 1985) and one of

dermal exposure (Harkonen et al. 1983), showed the occurrence of varying degrees of cataracts in

exposed workers. Another effect after chronic inhalation exposure was the decreased activity of two

mitochondrial enzymes necessary for heme synthesis: heme synthase and S-aminolevulinic acid

synthase (Savolainen et al. 1985). More studies are needed to elucidate the meaning of that finding

and its role in the possible development of anemia. One case of cirrhosis was reported after chronic

occupational exposure (35 years) to 2,4,6-trinitrotoluene (Garfinkel et al. 1988). 2,4,6-Trinitrotoluene

is known to cause hepatic damage, but it is not known whether it caused the cirrhosis,

The major adverse effects observed in Fisher rats fed 50 mg/kg/day for 24 months were anemia,

hepatotoxicity and splenic lesions (Army 1984a). On the basis of this study’s finding, chronicduration

exposure to the intermediate-duration oral MRL of 0.0005 mg/kg/day (same value as the RfD)

would not be anticipated to cause adverse health effects.

One case of hepatocellular carcinoma was reported after chronic occupational exposure (35 years) to

2,4,6-trinitrotoluene (Garfinkel et al. 1988). Carcinoma of the urinary bladder was observed in Fisher

rats (in females only) fed 50 mg/kg/day for 24 months (Army 1984a). On the basis of these findings

of bladder carcinoma, 2,4,6-trinitrotoluene was classified by EPA as a possible human carcinogen--

Group C (EPA 1989b). Additional animal studies on chronic dermal and inhalation exposures would

clarify if bladder carcinoma occurs after exposure by those routes, and if it is sex related.

Genotoxicity.  Evidence that mutagenic substances are present in human urine comes from studies of

occupationally exposed individuals (Ahlborg et al. 1985, 1988a). These exposures occurred via both

inhalation and dermal routes, although the latter one appears to be more important in

2,4,6-trinitrotoluene uptake. The lack of a correlation between mutagenesis and 2,4,6-trinitrotoluene

concentration in the urine of exposed workers is of considerable relevance and should be thoroughly

investigated. The major metabolites of 2,4,6-trinitrotoluene are known to exert a mutagenic effect in
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bacteria. It therefore appears likely that biotransformation products are responsible for the genotoxic

activity in the urine of exposed workers since 2,4,6-trinitrotoluene concentrations are low. Similarly,

the dose-response relationship between 2,4,6-trinitrotoluene exposure and the mutagenicity of exposed

worker urine should be fully characterized in order to establish the urine assay as a reliable biomarker

for exposure screens.

The limited whole animal studies provide assurance that 2,4,6-trinitrotoluene is not genotoxic in

somatic cells. However, no information related to potential adverse effects on germinal cells was

found; therefore, studies (e.g., dominant lethal mutation assay) should be considered to ensure that all

relevant genetic end points have been investigated. There is reliable evidence that 2,4,6-trinitrotoluene

induces mutations in bacterial (Army 1978a,c, 1979b, 1980c; Spanggord et al. 1982b) and mammalian

cells (Styles and Cross 1983) and inconclusive evidence that 2,4,6-trinitrotoluene causes UDS in

cultured human fibroblasts (Army 1978c). The relevance of these in vitro findings to human health

should not be underestimated. The weight of evidence clearly suggests that the genotoxic activity of

2,4,6-trinitrotoluen(b is markedly inhibited or abolished in the presence of exogenous metabolic

activation systems. Thus, the potential hazard to human genetic material resulting from exposure to

2,4,6-trinitrotoluene is very limited. It is, therefore, doubtful whether the performance of additional in

vitro assays would substantially alter the established genetic toxicology profile of 2,4,6-trinitrotoluene.

Confirmation of the mammalian cell assay findings is, nevertheless, desirable to establish full

confidence in the validity of the existing data.

Reproductive Toxicity.  Significantly lower semen volumes, a smaller percentage of motile

spermatozoa, and a higher incidence of sperm malformation were reported in a case-control study in

two 2,4,6-trinitrotoluene plants in China (Li et al. 1993). However, exposure to 2,4,6-trinitrotoluene

was not estimated. No studies were found describing reproductive effects of 2,4,6-trinitrotoluene in

human females. Studies in laboratory animals show dose-dependent reproductive toxicity after

intermediate oral exposure to 2,4,6-trinitrotoluene. Testicular atrophy, degenerated germinal

epithelium, and atrophic seminiferous tubules were effects observed in male rats after exposure to high

doses of 2,4,6-trinitrotoluene (Levine et al. 1984). Additional studies of these effects after dermal and

inhalation exposure would be helpful in determining if the effects are specific for the oral exposure
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route. The results from one rat study indicate that there is a close correlation between reduction of

testes weight and decreased zinc concentration (Jiang et al. 1991). The role of zinc and its possible

effect on the male sex function needs further investigation. No studies were located that examined

reproductive toxicity in females.

Developmental Toxicity.  No human or animal studies were located on developmental effects for

any exposure route. Studies in animals assessing postnatal survival after maternal exposure by all

three routes would be useful.

Immunotoxicity.  Very little information was located on immunological effects in humans after

dermal and inhalation exposure to 2,4,6-trinitrotoluene. An increase in mononuclear leukocytes and

lymphocytes was noted in a retrospective study of blood counts of exposed munitions workers (Army

1978a). The significance of this finding needs further investigation since no such data were presented

in animal studies. Two isolated cases of allergic contact dermatitis were described in workers handling

2,4,6-trinitrotoluene (Goh 1988; Goh and Rajan 1983). The importance of 2,4,6-trinitrotoluene as an

allergen needs to be examined further in order to understand the mechanisms involved in the possible

development of hypersensitivity to 2,4,6-trinitrotoluene.

Dose-dependent immunological reactions were seen in mice, rats, and dogs after intermediate oral

exposure to 2,4,6-trinitrotoluene. Spleen enlargement and/or increased weight was the most often

observed effect (Dilley et al. 1982b; Levine et al. 1984, 1990a). Histopathology revealed

hemosiderosis and varying degrees of splenic congestion. Further studies of immunological effects in

animals after chronic exposure would be important for estimating human susceptibility for populations

potentially exposed in the vicinity of ammunition plants.

Neurotoxicity.  Limited information regarding neurological effects in humans indicates only minor

effects such as altered taste (Morton et al. 1976). Dose-related changes in behavior were observed in

several animal species after acute and intermediate oral exposure to 2,4,6-trinitrotoluene. Most

common were depression (Dilley et al. 1982b), lethargy, and ataxia (Levine et al. 1990b). Brain

lesions were present in rats receiving the highest dose of 2,4,6-trinitrotoluene (Dilley et al. 1982b;
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Levine et al. 1984). The results also show species differences in 2,4,6-trinitrotoluene-induced

neurotoxicity, with dogs being more sensitive than rats or mice. Dose-response studies in animals and

studies focusing on the mechanism of 2,4,6-trinitrotoluene-induced neurotoxicity would be useful in

better understanding the possible neurotoxicity of 2,4,6-trinitrotoluene in humans.

Epidemiological and Human Dosimetry Studies.  Human studies on 2,4,6-trinitrotoluene consist

of either retrospective studies of occupational exposure or case reports of workers employed in the

manufacture of munitions. Exposures in both cases are primarily dermal and by inhalation. Locating

populations for future epidemiological studies will be possible as long as 2,4,6-triaitrotoluene is

produced and used in the manufacture of munitions. The two subgroups with the greatest possible

exposure to 2,4,6-trinitrotoluene are those employed in the manufacturing process and those living in

the vicinity of military installations/ammunition plants. If such groups are located, information

regarding the immunologic, reproductive, developmental, genotoxic, and cancer effects and correlation

of these effects with blood or urine levels of 2,4,6-trinitrotoluene that are associated with exposure

would be extremely useful.

Biomarkers of Exposure and Effect.  Exposure to 2,4,6-trinitrotoluene is currently measured by

determining the level of 2,4,6-trinitrotoluene in the blood or urine. However, since 2,4,6-trinitrotoluene

is rapidly metabolized it may be difficult to determine trace amounts of unchanged compound

in either blood or urine. In such cases, the presence of major 2,4,6-trinitrotoluene metabolites such as

4-ADNT and 2-ADNT metabolites, which are present in the urine for over 2 weeks after acute

exposure, can be used to indicate recent and past exposures (Woolen et al. 1986). Although the

sensitivity of these biomarkers seems to be sufficient at the present time, it would be useful to

determine the metabolite responsible for urine color change that occurs after exposure to 2,4,6-

trinitrotoluene.  Identification of this metabolite in urine would provide an early biomarker of 2,4,6-

trinitrotoluene exposure. Since 2,4,6-trinitrotoluene has been found to bind to blood and liver proteins, the

identity of these adducts and their tissue lifetimes would greatly enhance the use of these biomarkers

as a measure of exposure.
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Decreases in hemoglobin and hematocrit levels and increases in reticulocyte numbers can be monitored

and accurately determined after exposure to 2,4,6-trinitrotoluene. In some cases of prolonged

exposure, these changes lead to the development of an anemic state. However, the changes in these

blood parameters are not specific for exposure to 2,4,6-trinitrotoluene. What would be useful is a

better understanding of the fundamental mechanism by which 2,4,6-trinitrotoluene causes changes in

hemoglobin and hematocrit levels. Such an understanding might ultimately lead to the development of

antidotes to decrease or completely alleviate some of the toxic effects caused by 2,4,6-trinitrotoluene.

There are no tests that are specific for 2,4,6-trinitrotoluene-induced hepatic toxicity, but standard liver

function tests should be able to identify hepatic toxicity caused by 2,4,6-trinitrotoluene. Although not

specific for 2,4,6-trinitrotoluene exposure, more information is needed on changes in indicators of

2,4,6-trinitrotoluene-induced hepatotoxicity, for example, SGOT and LDH levels.

Jaundice may develop as a result of 2,4,6-trinitrotoluene exposure. Since jaundice is a late

phenomenon, it is important to be sure that it is due to serious hepatic injury and not merely to the

yellowing of the body’s surface exposed to the compound.

Cataract formation is believed to be a specific 2,4,6-trinitrotoluene effect, developing primarily after

chronic exposures (Harkonen et al. 1983; Savolainen et al. 1985). Since initial changes are small and

often difficult to detect, development of more sensitive detection techniques would allow for earlier

detection and prevention of potential adverse ocular effects due to 2,4,6-trinitrotoluene exposure. This

is important because in the course of chronic occupational exposure, cataract formation may be the

only sign of 2,4,6-trinitrotoluene toxicity. Additional studies are also needed to establish if cataract

formation is a dose-response phenomenon.

Absorption, Distribution, Metabolism, and Excretion.  The majority of information regarding

the rapid absorption of 2,4,6-trinitrotoluene in humans and animals comes indirectly from detectable

levels of 2,4,6-trinitrotoluene metabolites in the urine after inhalation, oral, or dermal exposures.

Occupational studies indicate that humans readily absorb 2,4,6-trinitrotoluene dusts via inhalation or

dermal contact, but quantitative data are lacking. Animal studies indicate that 2,4,6-trinitrotoluene is
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absorbed relatively quickly and that the absorbed amount is dose related for the oral route (Army

1981d). Information concerning absorption rates for all three routes is needed. Because there are few

absorption studies for all three routes, additional quantitative data in animals would be useful as a

basis for estimates of absorption in humans.

No studies were located regarding distribution following inhalation, oral, or dermal exposure to

2,4,6-trinitrotoluene in humans; limited information is available regarding distribution in animals after

acute exposure to radiolabelled 2,4,6-trinitrotoluene via all three routes. These studies in animals

indicate that 2,4,6-trinitrotoluene is rapidly distributed to blood, liver, fat, and skeletal muscle, but in

very small amounts because the majority of the label was recovered from the gastrointestinal tract and

urine (Army 1981d). Additional animal distribution studies on dermal exposure would be valuable to

establish the biological half-lives in relevant tissues and because there is a potential for human

exposure to occur via this route.

No studies were located regarding the metabolism of 2,4,6-trinitrotoluene in humans after oral

exposure. Data for the oral route are important because there is a potential for human exposure to

occur via this route near waste sites containing 2,4,6-trinitrotoluene. Limited information comes from

the analysis of urine of munitions workers after dermal (Woolen et al. 1986) or inhalation exposures

(Hassman and Hassmanova 1976). The results from human and animal studies indicate that

2,4,6-trinitrotoluene is readily metabolized and that very small amounts of unchanged compound are

present in the urine. More studies are needed to define sex-related and species-related metabolic

differences. Since differences in metabolism may occur with differences in the route of exposure,

additional information is needed from inhalation and dermal metabolic studies in order to fully

characterize the metabolic pathway of 2,4,6-trinitrotoluene.

No studies were located regarding excretion after oral or dermal exposure to 2,4,6-trinitrotoluene in

humans. The results from animal studies indicate that urine is the major site of radiolabel recovery

after a single oral dose of 2,4,6-trinitrotoluene and that differences in excretion rate are exposure

routedependent (Army 1981d). The recovery of radiolabel indicates that excretion was most efficient after

inhalation exposure, followed by oral, and was least efficient after dermal exposure. Additional, more
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detailed studies on excretion after dermal exposure would be useful since that is an expected major

exposure route for humans in the vicinity of waste sites and workers handling 2,4,6-trinitrotoluene.

Comparative Toxicokinetics.  Studies using different animal species (rats, mice, dogs, rabbits)

indicate the kinetics of 2,4,6-trinitrotoluene differ across species. The observed differences are

primarily quantitative (Army 1981b). On the basis of kinetic data alone, it is not possible to identify

target organs common to humans and animals, but distribution data together with toxicity data after

oral exposure suggest similar target organs: blood, liver, spleen, the kidneys and gastrointestinal tract.

Interspecies differences, especially in metabolism and excretion have been noted in rats, mice, dogs,

and rabbits (Army 1981b). Further animals studies covering all three exposure routes would be

helpful in determining similarities and differences in absorption, metabolism and excretion between

humans and animals.

Methods for Reducing Toxic Effects.  Animal studies addressing the possibility of diminishing or

alleviating toxic effects of 2,4,6-trinitrotoluene are needed since no information was located on

possible 2,4,6-trinitrotoluene antidotes.

2.9.3 On-going Studies

On-going studies regarding the health effects of 2,4,6-trinitrotoluene were reported in the Federal

Research in Progress File (FEDRIP 1991) database. One study addressing health effects of

2,4,6-trinitrotoluene in humans, “Deposition of volatile aerosols in the respiratory tract,” is being

investigated at the University of Rochester, Rochester, New York, by Sidney Soderholm, principal

investigator. The sponsoring organization is the National Institute of Environmental Health Sciences,

No additional studies have been reported in the FEDRIP 1994, but it is likely that research in China

on industrial exposure will continue (Li et al. 1991, 1992, 1993). The studies in Germany of

populations surrounding former munitions manufacturing and disposal areas are being refined (Kolb et

al. 1993).
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3.1 CHEMICAL IDENTITY

Information regarding the chemical identity of 2,4,6-trinitrotoluene is located in Table 3- 1.

3.2 PHYSICAL AND CHEMICAL PROPERTIES

Information regarding the physical and chemical properties of 2,4,6-trinitrotoluene is located in

Table 3-2.
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4.1 PRODUCTION

2,4,6-Trinitrotoluene is prepared by the nitration of toluene with a mixture of nitric acid and sulfuric

acid (Fisher and Taylor 1983; Sax and Lewis 1987). Toluene is nitrated in a three-step operation by

using increasing temperatures and mixed-acid concentrations to successively introduce nitro groups to

form mononitrotoluene (MNT), dinitrotoluene (DNT), and trinitrotoluene (Mark et al. 1980). The

nitration can be accomplished in three separate steps or by continuous flow (Budavari et al. 1989).

Numerous other compounds are also formed during the nitration of toluene including unsymmetrical

isomers of 2,4,6-trinitrotoluene, and oxidation products such as tetranitromethane, nitrobenzoic acid,

nitrocresol, and partially nitrated toluenes (Hamilton and Hardy 1974; Mark et al. 1980). The

unsymmetrical 2,4,6-trinitrotoluene isomers are removed by washing with aqueous sodium sulfite

solution (Fisher and Taylor 1983; Mark et al. 1980; Sax and Lewis 1987).

2,4,6-Trinitrotoluene is not produced commercially in the United States; production is limited to

military arsenals (HSDB 1994). Data on production volumes for 2,4,6-trinitrotoluene are not available.

2,4,6-Trinitrotoluene is purchased from the U.S. Army Armament Material Command (Gibbs and

Popolato 1980). Army ammunition plants that have been involved in the production and storage of

2,4,6-trinitrotoluene include Shreveport (Louisiana), Anniston (Alabama), Crane (Indiana), Fort

Wingate (New Mexico), Hawthorne (Nevada), Letterkenny (Pennsylvania), Lexington (Kentucky),

McAlester (Oklahoma), Navajo (Arizona), Pine Bluff (Arkansas), Pueblo (Colorado), Red River and

Lone Star (Texas), Savanna and Joliet (Illinois), Seneca (New York), Sierra (California), Tooele

(Utah), and Umatilla (Oregon) Weldon Spring (Missouri), West Virginia Ordnance Works (West

Virginia), Radford (Virginia), and Volunteer (Tennessee) (Army 1986a, 1986d; Haroun et al. 1990;

Kraus et al. 1985; Phung and Bulff 1981).

Since 2,4,6-trinitrotoluene releases are not required to be reported under SARA Section 313, there are

no data on 2,4,6-trinitrotoluene in the 1988 Toxics Release Inventory (TRI88 1990).
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4.2 IMPORT/EXPORT

In 1985, an estimated 9.2 million pounds of 2,4,6-trinitrotoluene were imported into the United States

(USDOC 1986). However, current import and export data for 2,4,6-trinitrotoluene are not available.

4.3 USE

2,4,6-Trinitrotoluene has been classified as a high explosive (Eveleth and Kollonitsch 1990). The

compound is used as a military explosive in bombs and grenades (HSDB 1994; OHM/TADS 1985). It

has been widely used for filling shells and airborne demolition bombs since it is sufficiently

insensitive to the shock of ejection from a gun barrel but can be exploded on impact by a detonator

mechanism (Eveleth and Kollonitsch 1990). 2,4,6-Trinitrotoluene has been used either as the pure

explosive or in binary mixtures (Gibbs and Popolato 1980). The most common binary mixtures of

2,4,6-trinitrotoluene are cyclotols (mixtures with RDX), octols (mixtures with HMX), amatols

(mixtures with ammonium nitrate), and tritonals (mixtures with aluminum) (Eveleth and Kollonitsch

1990; Gibbs and Popolato 1980). In addition to military use, small amounts of 2,4,6-trinitrotoluene

may be used for industrial explosive applications, such as deep well and underwater blasting (HSDB

1994).

Other industrial uses of 2,4,6-trinitrotoluene include use as a chemical intermediate in the manufacture

of dyestuffs and photographic chemicals (Sax and Lewis 1987).

4.4 DISPOSAL

Wastes generated in the manufacture of 2,4,6-trinitrotoluene are characterized as hazardous wastes by

EPA, and EPA regulations for disposal must be followed (EPA 1990). For more information on the

regulations that apply to 2,4,6-trinitrotoluene, see Chapter 7.

Disposal of 2,4,6-trinitrotoluene has been accomplished effectively by burning in an incinerator

equipped with an afterburner and a scrubber (OHM/TADS 1985). 2,4,6-Trinitrotoluene has been

pretreated before incineration by pouring or sifting onto sodium bicarbonate or a sand-soda ash
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mixture. The resulting combination is mixed and packaged in heavy paper cartons with plenty of

paper packaging to serve as fuel (OHM/TADS 1985). 2,4,6-Trinitrotoluene has also been prepared for

incineration by mixing with a flammable solvent, such as alcohol or benzene, and spraying the

resulting mixture into the fire chamber of an incinerator (OHM/TADS 1985).

Demilitarization is the use of various technologies to process munitions so they are no longer suitable

for military applications. Demilitarization of munitions involves a number of techniques. Both

destructive and nondestructive methods are used. Destructive methods include incineration, open

detonation, and open burning. Nondestructive methods are aimed at recovering various components

for reuse or sale. Destructive methods are the most predominant type used at the various depots and

ammunition plants across the country (Army 1986). Munitions are demilitarized because of

obsolescence of weapons, deterioration of chemical components, and poor serviceability.

2,4,6-Trinitrotoluene is the primary explosive filler in the demilitarization inventory.

Bench-scale cornposting of up to 10% 2,4,6-trinitrotoluene showed that almost complete removal of

2,4,6-trinitrotoluene occurred in 55 days, and many of the toxic transformation products formed in

activated sludge and soil were not found in the composted 2,4,6-trinitrotoluene (Fisher and Taylor

1983). Field studies have demonstrated composting is effective in removing 2,4,6-trinitrotoluene from

contaminated lagoon sediments under both thermophilic and mesophilic conditions (Williams et al.

1992). The mutagenicity of the metabolites of 2,4,6-trinitrotoluene formed by cornposting was found

to be less than the parent compound (Tan et al. 1992). Waste water contaminated with

2,4,6-trinitrotoluene and various concentrations of nitrobodies, such as RDX, was successfully oxidized

electrochemically from a range of 60-105 ppm 2,4,6-trinitrotoluene to below acceptable disposal

concentrations (0.5 ppm); the oxidation process did not produce any toxic by-products (HSDB 1994).

Other methods of treating waste waters contaminated with 2,4,6-trinitrotoluene and related products

that have been investigated include ultrafiltration, activated carbon, and resin adsorption (EPA 1982).
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5.1 OVERVIEW

2,4,6-Trinitrotoluene is released to the environment from manufacturing and munitions processing

facilities. Upon release to surface waters, 2,4,6-trinitrotoluene undergoes rapid photolysis to a number

of products. Biodegradation by microorganisms including bacteria and fungi also occurs in surface

waters but at rates much slower than photolysis. 2,4,6-Trinitrotoluene is expected to be transported

mainly in the aqueous phase; the compound is not expected to volatilize from surface water to the

atmosphere or significantly partition to soils or sediments. Bioconcentration of 2,4,6-trinitrotoluene by

plants and aquatic organisms is limited, and biomagnification of the compound in terrestrial and

aquatic food chains is not expected. Little information is available on the concentrations of

2,4,6-trinitrotoluene or its degradation products in ambient media. The most important routes of

human exposure to the compound, that the general public may be exposed to, appear to be ingestion of

contaminated drinking water and dermal contact with contaminated surface water. However, members

of the general public may also be exposed to 2,4,6-trinitrotoluene released to the atmosphere as a

result of ordnance demilitarization and disposal through incineration and detonation, as well as by

ingestion of foods contaminated through uptake of the compound from contaminated soils or

deposition of 2,4,6-trinitrotoluene particulates from the atmosphere. Workers may be exposed via

inhalation and dermal contact. Workers involved in the manufacture of 2,4,6-trinitrotoluene or the

processing of munitions containing the compound may be exposed to high concentrations of

2,4,6-trinitrotoluene through inhalation and dermal contact.

2,4,6-Trinitrotoluene has been identified in at least 20 of the 1,397 hazardous waste sites on the EPA

National Priorities List (NPL) (HAZDAT 1994). However, the number of sites evaluated for

2,4,6-trinitrotoluene is not known. The frequency of these sites within the United States can be seen

in Figure 5-l.
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5.2   RELEASES TO THE ENVIRONMENT

5.2.1 Air

2,4,6-Trinitrotoluene is released to the ambient atmosphere as a result of open detonation and open

burning techniques used in the demilitarization of munitions (Army 1986e) (also see Section 4.4).

Gases and particulates are released to the atmosphere as a result of these activities and from the

disposal of munitions containing 2,4,6-trinitrotoluene in rotary kiln incinerators. 2,4,6-Trinitrotoluene

dusts and vapor are released into indoor air atmospheres in military production and processing

facilities during manufacturing of 2,4,6-trinitrotoluene and munitions (Hathaway 1985). Fugitive dusts

containing the compound are probably generated at sites with contaminated surface soils (e.g., military

installation burning grounds) (Kraus et al. 1985).

5.2.2 Water

2,4,6-Trinitrotoluene has historically been discharged in large quantities in the aqueous effluents of

explosives production/manufacturing facilities and ammunition load, assemble, and pack (LAP) plants,

from decommissioning activities, and through field use/disposal. Estimates of the loadings of

2,4,6-trinitrotoluene in these effluents vary. Some investigators have reported concentrations of about

120 mg/L in manufacturing facility waste waters and 25 mg/L in loading plant facility effluents

(Freeman and Colitti 1982). Others report concentrations of 40-120 mg/L in manufacturing plant

effluents, with generally higher concentrations in LAP plant waste waters (Andren et al. 1977b).

Concentrations of 0.1-3.4 mg/L have been detected in about 20% of the samples of sellite

manufacturing process condensate wastewater collected from a 2,4,6-trinitrotoluene manufacturing

facility (Army 1980b; Spanggord et al. 1982a).

Estimates of historical 2,4,6-trinitrotoluene releases to surface waters from Army ammunition plants

have been developed on the basis of surveys of munitions facilities. Sources include production plants

(emissions range from 61 to 210 pounds/day) and LAP plants (l-150 pounds/day). Estimates of

average downstream concentrations of 2,4,6-trinitrotoluene in the surface waters receiving these
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effluents are 0.006-0.025 mg/L for production plants and <0.001-0.038 mg/L for LAP plants

(Rosenblatt et al. 1973; Small and Rosenblatt 1974). 2,4,6-Trinitrotoluene has been detected in the

effluent of the Radford, Virginia, production plant at 101-143 ppm (Nay 1972a).

5.2.3 Soil

2,4,6-Trinitrotoluene is released to soils from spills, disposal of solid waste, open incineration and

detonation of ordnances, leaching from inadequately sealed impoundments (e.g., pits, ponds, and

lagoons), and demilitarization of munitions (EPA 1989c; Kraus et al. 1985; Army 1986e).

Demilitarization of munitions can result in contamination of surface soils by activities such as open

burning and open detonation or landfilling of solid wastes generated during rotary kiln incineration and

nondestructive reprocessing of munitions containing 2,4,6-trinitrotoluene (Army 1986e).

5.3  ENVIRONMENTAL FATE

5.3.1 Transport and Partitioning

On the basis of the relatively low vapor pressure (1.99x10-4 mmHg at 20°C) and relatively high water

solubility (130 mg/L at 20°C) (see Table 3-2) of 2,4,6-trinitrotoluene, the compound is not expected to

partition from surface waters to the atmosphere. Limited volatilization from aqueous solutions was

found in air stripping tests on raw and neutralized waste water samples, where only 8-10% of the

2,4,6-trinitrotoluene concentration was lost during an 18-day test period (Nay 1972a). Volatilization

half-lives of 10,000 days have been estimated for ponds, streams, and lakes (Spanggord et al. 1985).

A volatilization half-life of 119 days has been estimated from a model river at 20°C 1 meter deep

flowing at the rate of 1 meter/second, with a wind speed of 3 meters/second (HSDB 1994).

On the basis of the measured and estimated values for the soil organic carbon adsorption coefficient

(Koc) of 300-1,100, 2,4,6-trinitrotoluene is not expected to significantly partition from surface waters

to sediment or strongly sorb to soil particulates (Spanggord et al. 1985). This expected behavior has

been confirmed in short-term laboratory adsorption/desorption tests and long-term lysimeter studies.

Short-term (24-hour) laboratory batch adsorption/desorption tests were conducted using
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uncontaminated surface soils collected from 13 Army ammunition plants. Limited 2,4,6-trinitrotoluene

adsorption was found in these tests. The average adsorption coefficient (Kd) for all soils tested was 4,

which indicates limited sorption potential. Adsorption was found to be consistently lower under

oxidized conditions than under reduced conditions. Almost all of the 2,4,6-trinitrotoluene adsorbed

was desorbed upon multiple extraction of the test soils. The pH of the soils exerted no effect on

2,4,6-trinitrotoluene adsorption/desorption or transformation. Transformation products (4-ADNT and

2-ADNT) were detected under both oxidized and reduced conditions (Pennington and Patrick 1990).

In long-term lysimeter studies, ring-labeled 14C-2,4,6-trinitrotoluene was added to the top 3 inches of

soils in eolmnns (2 feet long and 2 inches in diameter). Four soil types were used, ranging in texture

from fine to coarse. The lysimeters were regularly irrigated during the 6-month test period, and

column leachate samples were taken every 2 weeks. At the end of the test period, the soil columns

were sectioned for analysis. 2,4,6-Trinitrotoluene and its transformation products were retained in the

test soil columns. Neither 2,4,6-trinitrotoluene nor its typical biodegradation products were detected in

the leachate samples. Analysis of the leachate samples with high 14C activity indicated the presence of

only highly polar, nonvolatile products. These products could not be separated or identified.

However, two transformation products were identified in the soil columns: 2-ADNT and 4-ADNT.

The concentration of these products in the soil columns ranged from 0.01% to 6% of the radiolabelled

2,4,6-trinitrotoluene added to the columns (Kayser and Burlinson 1988).

In other mobility tests with sediments, ring-labeled 14C-2,4,6-trinitrotoluene was added to unsterilized

sediments collected from two farm ponds in Syracuse, New York and from the Holston River in

Kingsport Tennessee, upstream from an Army Ammunition Plant site. 2,4,6-Trinitrotoluene was not

extensively sorbed in short-term (24 hour) tests, partition coefficients varied with pH and temperature.

Desorption of 2,4,6-trinitrotoluene or its breakdown products proceeded slowly; steady state conditions

were reached after 92 hours in only 1 sediment (Army 1980b).

The log octanol/water partition coefficient (Kow) values of 2.2-2.7 (see Table 3-2) suggest that the

compound will not bioconcentrate to high levels (i.e., concentrations ≥ 1,000 times media

concentrations) in the tissues of exposed plants and animals or biomagnify in terrestrial or aquatic food

chains (Spanggord et al. 1985). Limited bioconcentration was demonstrated in aquatic bioassays with
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water fleas (Daphnia magna), worms (Lumbriculus variegatus), algae (Selenastrum capricornutum),

and bluegill sunfish (Lepomis macrochirus). Bioconcentration factors (BCFs) in 96-hour static tests

were found to be 209 for the water flea, 202 for the worms, 453 for algae, 9.5 for fish muscle, and

338 for fish viscera (Liu et al. 1983b).

Bioconcentration of 2,4,6-trinitrotoluene by yellow nutsedge was studied in hydroponic cultures

containing 5, 10, and 20 mg/L 2,4,6-trinitrotoluene. After a 42-day exposure period, the rhizomes,

roots, tubers, and leaves of the plants were analyzed for 2,4,6-trinitrotoluene and metabolites.

2,4,6-Trinitrotoluene and its metabolites, 4-ADNT and 2-ADNT, were taken up and translocated

throughout the plants, although the highest concentrations were found in the roots. Concentrations of

2,4,6-trinitrotoluene and metabolites in plant tissues generally increased with increasing

2,4,6-trinitrotoluene concentrations in the growth medium. At the 20-mg/L treatment level, the

concentrations in plant roots were 714 mg/kg, 614 mg/kg, and 2,180 mg/kg for 2,4,6-trinitrotoluene,

2-ADNT, and 4-ADNT, respectively (Palazzo and Leggett 1986).

5.3.2 Transformation and Degradation

5.3.2.1   Air

No information was found on the transformation of 2,4,6-trinitrotoluene in the atmosphere. However,

2,4,6-trinitrotoluene released to the atmosphere should undergo direct photolysis, as it does in surface

water. Estimates of the photolytic half-life of the compound in air range from 3.7 to 11.3 hours; these

estimates are based on the rate of photolysis of the compound in distilled water. Estimates of the

photooxidation half-life of the compound in the atmosphere range from 18.4 to 184 days. These

estimates are based on the estimated rate constant for reaction with hydroxyl radicals in the

atmosphere (Howard et al. 1991).
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5.3.2.2 Water

2,4,6-Trinitrotoluene does not undergo hydrolysis, as demonstrated by the stability of the compound in

sea water after 108 days at room temperature (Hoffsommer and Rosen 1973).

Photolysis of 2,4,6-trinitrotoluene in aqueous solutions is a well-known phenomenon, which is

responsible for the development of “pink water,” and is probably the most important fate process for

2,4,6-trinitrotoluene in aqueous systems. For example, the estimated half-life of 2,4,6-trinitrotoluene in

surface waters is 0.16-1.28 hours, based on the rate of photolysis and photooxidation in sunlit natural

waters (Howard et al. 1991). The rate of photolysis of 2,4,6-trinitrotoluene in natural surface waters

has been found to be much greater than that of the compound in pure water. Phototransformation of

2,4,6-trinitrotoluene in surface waters occurs via direct and indirect photolysis. Direct photolysis of

the compound is rapid; the estimated half-life varies from 14 to 84 hours, depending on season and

latitude. These rates are increased in natural waters through the influence of humic acids on indirect

photolysis. In sunlit natural waters, 2,4,6-trinitrotoluene photolysis proceeds at rates 10-100 times

more rapid than those found in distilled water, with half-lives in some natural waters of less than

0.5 hour. Phototransformation in natural surface waters may be accelerated because of the

complexation of 2,4,6-trinitrotoluene and natural organics, or by an indirect mechanism by which light

absorbed by natural organic constituents is transferred to 2,4,6-trinitrotoluene, or by the chemical

trapping by humic acids of the reactive intermediate phototransformation products (Mabey et al. 1983;

Spanggord et al. 1985; Zepp et al. 1984). In laboratory studies using distilled water, the rate of

transformation increases over time, since photolysis is also promoted by the presence of

photodecomposition products in the medium. The pH of the surface water has been found to exhibit a

small influence on the rate of transformation only in surface waters that contain few natural organic

constituents. 2,4,6-Trinitrotoluene may be more persistent in deep quiescent water bodies or other

water systems where sunlight is attenuated. A number of 2,4,6-trinitrotoluene photodecomposition

products have been identified, including dinitroanthrils, trinitrobenzaldehyde, trinitrobenzyl alcohol,

trinitrobenzene, nitroanilines, condensed azo and azoxy derivatives, and 1,3,5-trinitrobenzene

(Burlinson 1980; Mabey et al. 1983). Recently a deep red-brown 2,4,6-trinitrotoluene degradation

product of Mycobacterium grown in aerobic conditions has been identified (Vorbeck et al. 1994). This
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type of compound (a hydride-Meisenheimer complex) may be the type of chemical causing “pink

water.”

2,4,6-Trinitrotoluene is also transformed in surface waters by microbial metabolism, although this

process occurs more slowly than photolysis. For example, the estimated biodegradation half-life of

2,4,6-trinitrotoluene in surface water, under both aerobic and anaerobic conditions, is l-6 months.

This estimate is based on aerobic river die-away test data with unacclimated microorganisms (Howard

et al. 1991). The relative slowness of microbial degradation may be due in part to the enhanced

toxicity of 2,4,6-trinitrotoluene to aquatic organisms in the presence of the near-ultraviolet component

of sunlight (Johnson et al. 1994a). Examples of biotransformation of the compound in aqueous

systems include the white rot fungus Phanerochaete chrysosporium, which was found to degrade

ringlabeled 14C-2,4,6-trinitrotoluene. Within 12 days, 35% of the labeled 2,4,6-trinitrotoluene added to the

solution was recovered as 14CO2 (Fernando et al. 1990).

Pseudomonad bacteria (Pseudomonas sp.) have been found to reduce 2,4,6-trinitrotoluene under

aerobic conditions in laboratory studies to monoaminodinitrotoluenes and a diaminomononitrotoluene

(Schackmann and Muller 1991). Pseudomonads isolated from mud and water samples collected at the

U.S. Naval Ammunition Depot at McAlester, Oklahoma, have also been found to be capable of

biotransforming 2,4,6-trinitrotoluene in laboratory studies. 2,4,6-Trinitrotoluene degraded most rapidly

in cultures supplemented with yeast extract. In the most active isolate, complete dissimilation was

found within 24 hours. Degradation products identified include 2,2′6,6′-tetranitro-4,4′-azoxytoluene;

9,4′,6,6′-tetranitro-2,2′-azoxytoluene; 2-amino-4,6-dinitrotoluene; 4-hydroxylamino-2,6-dinitrotoluene;

and nitrodiaminotoluene (Won et al. 1974). Pseudomonads isolated from Narragansett Bay, sediments,

raw sewage, and boiler plant effluents were able to utilize ring labeled 14C-2,4,6-trinitrotoluene as a

sole carbon source in laboratory degradation studies. The amount of 2,4,6-trinitrotoluene

transformation varied with the concentration of the test compound in the medium. 2,2′6,6′-Tetranitro-

4,4′-azoxytoluene was the only transformation product identified. Nitrite was found in the test

medium, which suggests that the transformation proceeded via removal of the nitro groups from the

aromatic ring. The recovery of 0.8-1.2% of the label in the form of 14CO2 suggests a mechanism that

includes cleavage of the aromatic ring (Traxler et al. 1974).
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Microbial inocula isolated from sewage treatment plant effluents, waste water from a

2,4,6-trinitrotoluene ordnance loading facility, soil suspension, pond water, and aquarium water were

found to be capable of degrading 2,4,6-trinitrotoluene in the presence of yeast extract in shake flask

cultures at 38°C over 6 days. 2,4,6-Trinitrotoluene concentrations were reduced from the initial

loading of 100 mg/L to 0-6 mg/L over the 6-day incubation period. Transformation did not occur in

cultures containing only 2,4,6-trinitrotoluene and mineral salts. Microbial inocula isolated from raw

sewage were not effective in transforming 2,4,6-trinitrotoluene; however, inocula isolated from sewage

sludge digester liquor (supematant) reduced 2,4,6-trinitrotoluene concentrations by 64% over the test

period. 2,4,6-Trinitrotoluene was also degraded in tests with a pure culture of Pseudomonas

aeruginosa when glucose and supplemental nitrogen in the form of mineral salts were added to the

culture medium (Osmon and Klausmeier 1973).

Sediments from Army ammunition plants containing mixtures of explosives, including

2,4,6-trinitrotoluene, have been composted in field trials to reduce their explosives content. For

example, sediment from a Louisiana Army Ammunition Plant containing mixed explosives, including

56,800 mg/kg 2,4,6-trinitrotoluene, was added to a compost mix containing straw/horse manure,

alfalfa, and horse feed. The temperature inside the pile reached 55°C. After 22 weeks, the total

explosives content of the compost was reduced by 99% (Williams et al. 1989).

2,4,6-Trinitrotoluene has been reported to persist in groundwater for long periods of time by

Rosenblatt (1980). However, other estimates of the half-life of the compound in groundwater range

from 1 to 12 months, based on estimated unacclimated aqueous anaerobic and aerobic biodegradation

(Howard et al. 1991).

5.3.2.3   Soil

Solid chunks of 2,4,6-trinitrotoluene buried in soil or exposed on the soil surface can persist for many

years (Rosenblatt 1980). In smaller amounts, 2,4,6-trinitrotoluene may undergo photolysis in surface

soils to trinitrobenzene and trinitrobenzaldehyde (Ryon et al. 1984).
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The transformation of 2,4,6-trinitrotoluene in soils has been found to be influenced by a number of

environmental factors. In a study using ring-labeled 14C-2,4,6-trinitrotoluene, the effects of soil

organic matter content, 2,4,6-trinitrotoluene concentration, oxygen concentration, moisture content,

temperature, incubation period, and microbial activity on 2,4,6-trinitrotoluene transformation in soil

were examined. The soil pH was maintained at 6.5 throughout the test. In samples collected for

analysis after 6 months and 11 months incubation, biological transformation was highest in soils

containing the lowest concentration of 2,4,6-trinitrotoluene (0.1%) and lowest in soils containing the

highest starting concentration of 2,4,6-trinitrotoluene (10%). The highest concentrations of degradation

products were recovered from the soils receiving the lowest 2,4,6-trinitrotoluene loadings. Degradation

products identified included 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, and diamines. As

biotransformation increased, the amount of unextractable radioactive residue increased, suggesting that

the metabolites of 2,4,6-trinitrotoluene exhibited stronger sorption to soils than the parent compound.

Degradation decreased in sterilized soils. Of the environmental parameters evaluated in this study, the

initial 2,4,6-trinitrotoluene concentration and the soil moisture level had the most influence on the rate

of 2,4,6-trinitrotoluene transformation. The presence or absence of microbial activity and incubation

temperature had less effect, and the remaining variables had no effect on 2,4,6trinitrotoluene

transformation (Army 1985a).

The white rot fungus Phanerochaete chrysosporium was found to degrade ring labeled 14C-2,4,6-

trinitrotoluene sorbed to soils. After 30 days incubation, 6.3% of the sorbed 2,4,6-trinitrotoluene was

recovered as 14CO2. An additional 63.6% of the radioactivity was recovered in acetonitrile extracts,

and 25.2% was unextractable. In the acetonitrile extract, only 2.2% of the radiolabel was in the form

of undegraded 2,4,6-trinitrotoluene (Fernando et al. 1990).

In the same study, soil cultures containing 10,000-mg/kg loadings of ring-labeled 14C-2,4,6-

trinitrotoluene were extracted after 30-, 60-, and 90-day incubation periods and mass balances were

calculated. The 90-day mass balance indicated that 18.4% of the radioactivity was recovered as 14CO2,

62.6% in the form of metabolites present in the acetonitrile extract fraction, and 11.5% was bound to

the soil/fungal matrix. The concentration of residual undegraded 2,4,6-trinitrotoluene in the 90-day

acetonitrile extract was 14.9%, versus the >99% activity in the control samples (Fernando et al. 1990).
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In screening studies of 190 species of fungi from 98 genera, 183 species were found to be able to

transform 2,4,6trinitrotoluene in 5-day shake culture tests. Transformation products included 4-amino-

2,6-dinitrotoluene, 4-hydroxylamino-2,6-dinitrotoluene, and 4,4′-azoxy-2,2′,6,6′-tetranitrotoluene. None

of the test organisms exhibited an ability to cleave the aromatic ring of 2,4,6-trinitrotoluene (Parrish

1977). A sulfate-reducing bacterium, Desulfovibrio, has been isolated that degrades 2,4,6-

trinitrotoluene. However, this isolate also does not degrade 2,4,6-trinitrotoluene all the way to carbon

dioxide (Boopathy and Kulpa 1992).

Composting of 2,4,6-trinitrotoluene in soils has been examined in laboratory scale and large-scale tests.

In laboratory tests with ring labeled 14C-2,4,6-trinitrotoluene, rapid biotransformation was found, with

initial average activity levels of 93.5% reduced to 46.6% and 16.6% after 3 weeks and 6 weeks,

respectively. No degradation products were detected in samples collected after 3 weeks. Minor

amounts (i.e., less than 2%) were detected in samples collected at 6 weeks. The degradation products

included 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, 2,6-diamino-4-nitrotoluene, and

2,2′6,6′-tetranitro-4,4′-azoxytoluene. The decrease in 14C-2,4,6-trinitrotoluene concentration was found

to be correlated with a reduction in the solvent extractable activity and a significant increase in the

compost-bound radioactivity. This finding suggests that 2,4,6-trinitrotoluene was transformed into

more polar metabolites. Similar results were found in the large scale greenhouse trials, where

2,4,6-trinitrotoluene concentrations decreased from 19,041 µg/g to less than 17 µg/g after 3 weeks.

2,4,6-Trinitrotoluene was not detected in leachate samples from fresh compost piles. After 3 weeks,

the leachate was found to contain 6% of the radiolabel. The mechanism for the rapid transformation

of 2,4,6-trinitrotoluene in these systems is unclear; however, there is no evidence to suggest that

transformation proceeds via cleavage of the benzene ring (Isbister et al. 1984). In field studies of

aerated static piles, the effects of temperature on cornposting were examined. Under thermophilic

conditions, extractable 2,4,6-trinitrotoluene was reduced from 11,840 µg/g to 3 µg/g, while under

mesophilic conditions, 2,4,6-trinitrotoluene was reduced from 11,190 µg/g to 50 µg/g (Williams et al.

1992).

Mixed microbial cultures isolated from two soils, one from a wooded area near a 2,4,6-trinitrotoluene

loading facility and one from a greenhouse located 30 miles away, were tested for their ability to
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degrade 2,4,6-trinitrotoluene. Both soils contained microbes capable of transforming

2,4,6-trinitrotoluene, added at a concentration of 100 mg/L, in the presence of yeast extract and

glucose. Over the test period, 2,4,6-trinitrotoluene degradation was greater in the inoculum isolated

from the soil near the 2,4,6-trinitrotoluene loading facility (36%) than for the remote soil (14%). Most

of the microorganisms exhibiting 2,4,6-trinitrotoluene activity appeared to be pseudomonads (Osmon

and Klausmeier 1973).

The estimated half-life of 2,4,6-trinitrotoluene in soils ranges from 1 to 6 months. This estimate was

made on the basis of the estimated unacclimated aqueous aerobic biodegradation half-life (Howard et

al. 1991). In laboratory tests with sandy loam and sandy silt loam soils, the aerobic degradation halflife

of the compound was determined to be 5.7-7.7 days (EPA 1989c).

5.4  LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT

5.4.1   Air

Nitroaromatics associated with the manufacture and processing of military munitions have generally

not been detected in atmospheric monitoring studies (EPA 1976a).

5.4.2 Water

2,4,6-Trinitrotoluene has been detected in surface water and groundwater samples collected only in the

vicinity of munitions facilities. For example, the compound has been found in pink water effluents at

concentrations of 774-998 ppb in lagoon water (Triegel et al. 1983) and 1-178 mg/L from LAP plants

(Patterson et al. 1977).

2,4,6-Trinitrotoluene has been detected in groundwater samples collected in several monitoring studies

conducted in the vicinity of munitions facilities. For example, using on-site high-performance liquid

chromatography analysis, 2,4,6-trinitrotoluene was detected at concentrations of 320 µg/L at 200 feet

downgradient and at 1 µg/L at 1,070 feet downgradient in groundwater samples collected at a

demilitarization facility near Hawthorne, Nevada (Goerlitz and Franks 1989). As a result of leachates
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from disposal of solid wastes in cesspools, burning areas, and on-site leaching pits,

2,4,6-trinitrotoluene was detected in groundwater samples collected at the Cornhusker Army

Ammunition Plant near Grand Island, Nebraska (Spalding and Fulton 1988).

5.4.3 Soil

2,4,6-Trinitrotoluene has been detected in surface soil samples at an average concentration of 13,000

mg/kg at the U.S. Department of Energy’s Weldon Spring site in St. Charles County, Missouri. The

chemical plant at the site was used by the U.S. Army to produce 2,4,6-trinitrotoluene explosives in the

1940s (Haroun et al. 1990). At the West Virginia Ordnance Works located in Mason County, West

Virginia, 2,4,6-trinitrotoluene and other nitroaromatics have been detected in surface soils at burning

sites in concentrations of up to 4% (40,000 mg/kg). Nitroaromatics, principally 2,4,6-trinitrotoluene,

were detected at up to 20,000 mg/kg within 5-10 meters of the foundations of processing and refining

facilities (Kraus et al. 1985).

At the Lone Star Army Ammunition Plant located in Texarkana, Texas, 2,4,6-trinitrotoluene has been

detected at a concentration of about 15% in samples of sludge taken from ponds used as solids settling

areas for pink water effluent. 2,4,6-Trinitrotoluene concentrations were highest in surface soil samples

(e.g., 18.8 mg/kg at 0.2-0.6 meter depth), with decreasing concentration with increased depth (e.g.,

<3 mg/kg below 4.5 meters) (Phung and Bulot 1981). Triegel et al. (1983) found 2,4,6-trinitrotoluene

at concentrations of 200-56,700 ppm in sludge samples from pink water lagoons, and at 18.9-158 ppm

in surface soil samples collected from directly beneath the lagoon.

5.4.4 Other Environmental Media

No information was found on the concentrations of 2,4,6-trinitrotoluene in other media.

5.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE

According to the National Occupational Exposure Survey, a total of 31 workers were estimated to

have been exposed to 2,4,6-trinitrotoluene in domestic workplaces in 1980 (NIOSH 1990).
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Workers involved in the production of munitions can be exposed to 2,4,6-trinitrotoluene during the

manufacture of the compound and during its use to fill artillery shells, mines, and other explosive

armaments. Historically, more workers have been involved in shell loading than in the manufacture of

2,4,6-trinitrotoluene. Workers are potentially exposed via inhalation of dust and vapors, and through

dermal absorption of dust. Exposure to 2,4,6-trinitrotoluene vapors is possible when the compound is

melted and poured into shells. Dust exposure is possible in tilling operations using

2,4,6-trinitrotoluene powder, loading of melt kettles, drilling for fuse placement, removal of excess

solidified 2,4,6-trinitrotoluene from shells, and recycling excess 2,4,6-trinitrotoluene. Protection only

against inhalation of dust or vapors may still result in potentially significant systemic exposure to

2,4,6-trinitrotoluene if skin exposure occurs, since dermal absorption is rapid and accounts for a

significant portion of total exposure (Hathaway 1985).

A study by the U.S. Army Environmental Hygiene Agency examined 533 workers exposed to

2,4,6-trinitrotoluene in manufacturing and munitions processing operations. The 8-hour time-

weightedaverage concentration of 2,4,6-trinitrotoluene ranged from less than 0.01 mg/m3 to 1.84 mg/m3;

concentrations of greater than 0.5 mg/m3 were experienced by only 12.2% of the workers (Buck and

Wilson 1975).

Diazo-positive metabolites and mutagenic activity of metabolites in the urine of workers have been

used as indicators of exposure to nitro-aromatic and nitro-amino aromatic compounds, including

2,4,6-trinitrotoluene. In two studies conducted at a 2,4,6-trinitrotoluene manufacturing plant, urine

samples were collected from groups of 32 and 50 individuals with variable exposure to

2,4,6-trinitrotoluene. Samples were collected at the end of a workshift and after a holiday or weekend.

The workers were divided into three exposure categories: (1) no or low 2,4,6-trinitrotoluene exposure

(e.g., laboratories, controlling departments, individuals with no 2,4,6-trinitrotoluene contact during the

work shift preceding sampling); (2) medium 2,4,6-trinitrotoluene exposure (e.g., assembling grenades,

octal-hexotol foundry, test foundry); and (3) high 2,4,6-trinitrotoluene exposure (e.g., trotyl foundry,

sieve house). 2,4,6-Trinitrotoluene concentrations (vapor and dust) in breathing zone samples collected

at workstations for each category were: (1) no detectable concentrations; (2) less than 0.3 mg/m3; and

(3) 0.3-0.5 or 0.6 mg/m3. The concentration of diazo-positive metabolites and mutagenic metabolites

in the urine samples was significantly higher in samples collected at the end of the work shift than in
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samples collected after a holiday or a weekend for all three exposure categories, with the largest mean

differences found in the highest exposure groups (Ahlborg et al. 1988a, 1988b).

Given the restricted production and use of 2,4,6-trinitrotoluene, exposure of members of the general

population to the compound would probably be limited to populations living in the vicinity of

hazardous waste sites or military munitions facilities. These individuals may be exposed to

2,4,6-trinitrotoluene through contact with contaminated environmental media, particularly groundwater.

For example, using the multimedia screening model GEOTOX coupled with an exposure pathway

model, McKone and Layton (1986b) identified consumption of contaminated water and ingestion of

contaminated fruits and vegetables as the potentially most important exposure pathways for

populations living near sites where 2,4,6-trinitrotoluene was released to surface soils. The

investigation examined the relative importance of the following seven routes of exposure:

(1) inhalation; (2) water consumption; (3) fruit and vegetable ingestion; (4) meat and dairy ingestion;

(5) fish ingestion; (6) soil ingestion; and (7) dermal absorption. The least important of these

pathways, according to the modeling exercise, were inhalation, soil ingestion, and dermal absorption.

As part of the baseline risk evaluation prepared for the remedial investigation of the U.S. Department

of Energy’s Weldon Spring Site located in Charles County, Missouri, dermal contact with and

ingestion of contaminated surface soils, and inhalation of fugitive dust particulates were identified as

the most important potential routes of exposure to 2,4,6-trinitrotoluene for workers involved in

remedial actions at the site and for the general public. 2,4,6-Trinitrotoluene was detected in surface

soils at the site in concentrations of up to 13,000 mg/kg. Modeling estimates of 2,4,6-trinitrotoluene

concentrations in ambient air, resulting from the generation of fugitive dust, were 5x10-4 mg/m3 and

1x10-4 mg/m3 for total particulates and respirable particulates, respectively (Haroun et al. 1990).

Water quality criteria for the protection of human health from exposure to 2,4,6-trinitrotoluene of

44.25 µg/L (Dacre 1980) and 134.96 µg/L (Army 1987d) have been recommended; the latter value is

based on a calculated acceptable daily intake of 0.28 mg/day.
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5.6    POPULATIONS WITH POTENTIALLY HIGH EXPOSURES

Workers involved in the manufacture of 2,4,6-trinitrotoluene and the processing of munitions

containing the compound may be exposed to high concentrations of 2,4,6-trinitrotoluene in the

workplace. Populations living near military munitions facilities or hazardous waste sites may also be

exposed to high concentrations of 2,4,6-trinitrotoluene through contact with contaminated media.

5.7   ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with

the Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of 2,4,6-trinitrotoluene is available. Where adequate

information is not available, ATSDR, in conjunction with NTP, is required to assure the initiation of a

program of research designed to determine the health effects (and techniques for developing methods

to determine such health effects) of 2,4,6-trinitrotoluene.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that, if met,

would reduce or eliminate the uncertainties of human health assessment. This definition should not be

interpreted to mean that all data needs discussed in this section must be filled. In the future, the

identified data needs will be evaluated and prioritized, and a substance-specific research agenda may

be proposed.

5.7.1   Identification of Data Needs

Physical and Chemical Properties.   The physical and chemical properties of 2,4,6-trinitrotoluene

are sufficiently well defined to permit an assessment of the environmental fate of the compound to be

made.
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Production, Import/Export, Use, and Release and Disposal.   On the basis of the limited

production and specialized use of 2,4,6-trinitrotoluene, the compound is expected to have a fairly low

human exposure potential. 2,4,6-Trinitrotoluene is not produced commercially in the United States;

production of the compound is limited to military arsenals (HSDB 1990). Data on production volumes

are not available because production is limited to military arsenals. In addition, import/export data are

not available. The compound is a high explosive used by the military in the production of bombs and

grenades. 2,4,6-Trinitrotoluene is released to the environment in liquid and solid wastes generated in

the manufacture of the compound and the processing of munitions containing the compound. Media

most likely to be contaminated include soils, surface water, and groundwater (Army 1986e). Wastes

generated in the manufacture of 2,4,6-trinitrotoluene are characterized as hazardous wastes by EPA.

Therefore, EPA regulations for their disposal must be followed. Additional studies of composting

techniques in the treatment of 2,4,6-trinitrotoluene wastes would provide useful information in

determining the effectiveness of these techniques in waste disposal.

According to the Emergency Planning and Community Right-to-Know Act of 1986, 42 U.S.C. Section

11023, industries are required to submit chemical release and off-site transfer information to the EPA.

The Toxics Release Inventory (TRI), which contains this information for 1988, became available in

May of 1990. This database will be updated yearly and should provide a list of industrial production

facilities and emissions.

2,4,6-Trinitrotoluene is not subject to TRI reporting requirements. Therefore, release data for the

compound are not available in TRI.

Environmental Fate.   Upon release to the environment, 2,4,6-trinitrotoluene partitions to and is

transported in surface water or groundwater. The compound is not expected to partition significantly

to the atmosphere or to soils or sediment (HSDB 1990; Spanggord et al. 1985). 2,4,6-Trinitrotoluene

undergoes rapid photolytic breakdown in surface waters to a number of degradation products. The

compound also undergoes biotransformation in soils and surface water (Army 1985a; Fernando et al.

1990). Additional information on the persistence of 2,4,6-trinitrotoluene in surface water and

groundwater, on the kinetics and characterization of the biodegradation products in soils and surface
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waters, and on the identification of 2,4,6-trinitrotoluene complexes with humic materials would aid in

determining the importance of these media with respect to potential human exposure. Since

2,4,6-trinitrotoluene has been found to persist in the soil following disposal, effort should be made to

develop remediation technologies to minimize human exposure.

Bioavailability from Environmental Media.  Available data from tests with laboratory animals

and humans indicates that 2,4,6-trinitrotoluene is absorbed following dermal contact, ingestion, and

inhalation (Army 1978a, 1981d; Hassman and Hassmanova 1976; Woollen et al. 1986). Although

occupational exposure data indicate that the compound is absorbed via inhalation and dermal contact,

little information is available regarding the absorption of 2,4,6-trinitrotoluene from contaminated

environmental media. Additional information about uptake of the compound from contaminated

environmental media, particularly following dermal contact with and ingestion of soils, would be

helpful in identifying the most important routes of human exposure to 2,4,6-trinitrotoluene.

Food Chain Bioaccumulation.  2,4,6-Trinitrotoluene undergoes limited bioconcentration by plants

and aquatic organisms (Liu et al. 1983b; Palazzo and Leggett 1986). As a result of its limited

persistence in surface soils and surface waters and metabolism by terrestrial and aquatic organisms, the

compound is not expected to biomagnify in terrestrial or aquatic food chains. Additional information

on food chain bioaccumulation to confirm this predicted biomagnification behavior, particularly with

respect to identification of 2,4,6-trinitrotoluene complexes with plant tissues, would be helpful in

determining the relative importance of this route of exposure to humans.

Exposure Levels in Environmental Media.  2,4,6-Trinitrotoluene has been detected in soil,

surface water, and groundwater samples taken at Army ammunition plants and at other military

installations where the compound or munitions have been used or processed (Haroun et al. 1990;

Kraus et al. 1985; Patterson et al. 1977; Spalding and Fulton 1988; Triegel et al. 1983).

2,4,6-Trinitrotoluene has not been detected in ambient air samples, in foods, or in ambient surface

water or groundwater samples taken outside of military arsenals. The acceptable daily intake of the

compound in drinking water has been estimated by the Army to be 0.28 mg/day. Additional

information on the concentrations of 2,4,6-trinitrotoluene in environmental media at hazardous waste
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sites and military arsenals, particularly in groundwater, would be helpful in estimating the doses that

exposed populations may be receiving as a result of contact with these media.

Exposure Levels in Humans.  Diazo-positive and mutagenically active metabolites of

2,4,6-trinitrotoluene have been detected in workers exposed to the compound at military facilities

(Ahlborg et al. 1988a, 1988b). Additional information from biological monitoring of populations

living in the vicinity of hazardous waste sites or military arsenals would aid in assessing the utility of

biomarkers as indicators of human exposure.

Exposure Registries.  No exposure registries for 2,4,6-trinitrotoluene were located. This substance

is not currently one of the compounds for which a subregistry has been established in the National

Exposure Registry. The substance will be considered in the future when chemical selection is made

for subregistries to be established. The information that is amassed in the National Exposure Registry

facilitates the epidemiological research needed to assess adverse health outcomes that may be related

to the exposure to this substance.

5.7.2 On-going Studies

A study is being conducted at the University of Illinois to examine the effect of the addition of

organic amendments to soils contaminated with 2,4,6-trinitrotoluene. The study, which is sponsored

by the U.S. Department of Agriculture, is evaluating the use of organic amendments to stabilize and

bioremediate soils containing residual explosives.

At the Los Alamos National Laboratory, a study is being conducted on the uptake and

biotransformation of explosives, including 2,4,6-trinitrotoluene, by plants.

Remedial investigations and feasibility studies at hazardous waste sites and military arsenals known to

be contaminated with 2,4,6-trinitrotoluene should add to the available data base for environmental

levels, environmental fate, and human exposure.
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The purpose of this chapter is to describe the analytical methods that are available for detecting and/or

measuring and monitoring 2,4,6-trinitrotoluene in environmental media and in biological samples. The

intent is not to provide an exhaustive list of analytical methods that could be used to detect and

quantify 2,4,6-trinitrotoluene. Rather, the intention is to identify well-established methods that are

used as the standard methods of analysis. Many of the analytical methods used to detect

2,4,6-trinitrotoluene in environmental samples are the methods approved by federal organizations such

as EPA and the National Institute for Occupational Safety and Health (NIOSH). Other methods

presented in this chapter are those that are approved by groups such as the Association of Official

Analytical Chemists (AOAC) and the American Public Health Association (APHA). Additionally,

analytical methods are included that refine previously used methods to obtain lower detection limits,

and/or to improve accuracy and precision.

6.1   BIOLOGICAL MATERIALS

Only limited data were located regarding methods of analysis for 2,4,6-trinitrotoluene and metabolites

in biological samples. Methods have been developed to quantify these substances in blood, urine,

tissues, and handswab samples. Details for selected methods are shown in Table 6-l.

The primary method that has been used to analyze for 2,4,6-trinitrotoluene and/or its metabolites in

blood and urine is high-performance liquid chromatography (HPLC)/mass spectrometry (MS) (Yinon

and Hwang 1985b, 1986b, 1986c, 1987). Blood samples are prepared for analysis by centrifuging to

obtain the serum. The serum is extracted with methylene chloride and the solvent is exchanged to

acetonitrile (Yinon and Hwang 1986b, 1987). A second method, in which plasma is extracted with

toluene followed by solvent exchange to acetonitrile and HPLC/ultraviolet (UV) detection, had a

detection limit in the ppb range, with good precision (10% relative standard deviation [RSD]) and

accuracy (Army 1981b). Since no information on sensitivity or reliability was provided for the MSbased

method, and no other methods for blood were located, the adequacy of the available HPLC
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methods for determining 2,4,6-trinitrotoluene and/or its metabolites in blood could not be completely

evaluated. However, HPLC/MS is known to be a highly selective and sensitive method and results

with urine samples indicate that it should also be a good method for determining 2,4,6-trinitrotoluene

in blood. Hydrolyzed urine samples are extracted with toluene and the solvent is exchanged to

acetone prior to separation by HPLC (Yinon and Hwang 1985b, 1986c, 1987). The limited data on

this method of analyzing urine show a high recovery for 2,4,6-trinitrotoluene but much lower recovery

for its metabolites. The high sensitivity (the limit of detection is in the sub-ppb range) and selectivity

of the MS detector compensate for the low recovery of the metabolites. Gas chromatography

(GC)/electron capture detection (ECD) and thin-layer chromatography (TLC)/densitometry have also

been used to detect 2,4,6-trinitrotoluene and/or its metabolites in urine. GC/ECD accurately

determined the 2,4,6-trinitrotoluene metabolite, 4-ADNT, in a toluene extract of hydrolyzed human

urine (Almog et al. 1983). The limit of detection for this method was in the low-ppb range with high

recovery of the analyte. A modification of TLC that employed a computer-linked densitometer for

detection and quantitation reliably measured 2,4,6-trinitrotoluene and its metabolites in hydrolyzed

human urine (Liu et al. 1991). Advantages of this method were its rapidity and low cost, However, it

is about 3-4 orders of magnitude less sensitive than HPLC/MS and requires substantially more sample.

An HPLC/UV method has been developed for determining 2,4,6-trinitrotoluene in animal kidney,

muscle/fat, and liver (Army 1981b). Detection limits for these matrices were in the low-to-mid ppb,

and the analyses were reproducible with RSDs of 15% or better. There were some problems with

recovery of the analytes, especially in liver samples. No other methods were available for comparison.

High-resolution gas chromatography (HRGC) with ECD or thermal energy analysis (TEA) and HPLC

with electrochemical detection (EC) using a pendant mercury drop electrode (PMDE) or TEA have

been proposed for the detection of 2,4,6-trinitrotoluene in handswabs (Douse 1985, 1987; Douse and

Smith 1986; Fine et al. 1984; Lloyd 1983a, 1991). Limited data available indicate that both HPLC

and HRGC are good separation methods for this analysis. Sensitivities for all three detectors are in

the pg-to-low-ng range. TEA is slightly more selective for nitroaromatics, but the PDME has the

advantage of being easily renewable which reduces contamination problems. An additional method

based on monoclonal antibody technology was also located (Fetterolf et al. 1991). The enzyme-linked

immunosorbent assay (ELISA) had a detection limit of about 15 ng/swab and showed no
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cross-reactivity with other explosives or common contaminants. Electron spin resonance spectrometry

has also been tested for handswab analysis and was found to be selective and specific (Bums et al.

1987). Sensitivity was comparable to other methods and precision was high (1.8% RSD).

6.2  ENVIRONMENTAL SAMPLES

Methods have been developed to detect 2,4,6-trinitrotoluene and some of its breakdown products in

air, water, soil, plant tissue, explosives, explosives residues, and postblast debris. Methods include

semiquantitative screening methods that can be used in the field and quantitative laboratory-based

methods. Selected methods for analysis of environmental samples are presented in Table 6-2.

The primary method of analyzing for 2,4,6-trinitrotoluene in air is by GC, usually with ECD

(Andersson et al. 1983; Bishop et al. 1981, 1988; Pella 1976, 1977; Van Slyke et al. 1985). Methods

based on MS, including ion dilution MS (IDMS) (St. John et al. 1975) and glow discharge MS

(GDMS) (McLuckey et al. 1988), have also been used successfully to measure 2,4,6-trinitrotoluene

vapor in air. For most methods, the sample is collected in a tube containing a solid sorbent and

desorbed with an organic solvent. A few methods have been developed that permit direct entry of the

sample into the detecting instrument. These include GDMS (McLuckey et al. 1988) and ion mobility

spectrometry (IMS) (Karasek and Denney 1974; Spangler et al. 1983). The latter can be adapted to a

portable instrument for field use. A field method based on TLC has also been used (Chrostowski et

al. 1976), but is more time consuming and much less sensitive than IMS. The limited data on

sensitivity, accuracy, and precision make it difficult to compare these parameters for the different

methods. However, most of the methods will detect 2,4,6-trinitrotoluene in air at the ppb level or less.

While GC/ECD is the most commonly used method, several of the other methods have distinct

advantages, such as increased sensitivity (GDMS and IMS), simplicity of sample collection/preparation

(GDMS and IMS), or portability (IMS).

Methods have been developed to measure 2,4,6-trinitrotoluene and/or it breakdown products in

drinking water, surface water, groundwater, waste water effluents, and sea water. The two methods

most frequently used to analyze water for the presence of 2,4,6-trinitrotoluene and other

polynitroaromatic hydrocarbons are HPLC/UV and HRGC/ECD. In addition, methods based on
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colorimetry and spectrophotometry have been used to screen field samples for 2,4,6-trinitrotoluene and

other polyaromatic hydrocarbons. A method involving direct injection of water samples into a mass

spectrometer proved to be fast and simple, but the high detection limit makes it useful only for

screening (Yinon and Laschever 1982). In addition, MS is expensive and requires more technical

training than some of the other methods used for analysis of 2,4,6-trinitrotoluene in water.

With the HPLC- and GC-based methods, sample preparation usually involves direct solvent extraction

of the sample (Army 1985b; Bauer et al. 1986; Belkin et al. 1985; Hable et al. 1991; Hoffsommer and

Rosen 1972; Jenkins et al. 1986; Leggett et al. 1990; Maskarinec et al. 1984; Powell et al. 1983) or

concentration on a solid sorbent (Army 1981a, 1983b; Feltes et al. 1989, 1990; Maskarinec et al. 1984;

Richard and Junk 1986).

HPLC/UV is the method usually employed by the Army to measure 2,4,6-trinitrotoluene in waste

water effluents from munitions plants (Army 1981a, 1983b, 1985b; Bauer et al. 1986; Jenkins et al.

1986; Leggett et al. 1990). HPLC methods are relatively simple and fast, accurate, and selective. In

explosives analysis, where many of the analytes are thermally-labile, they also have the advantage of

not requiring heat. Sensitivity is generally in the low-to-mid ppb range. Substitution of a photodiode

array detector (PAD) for the usual ultraviolet detector allowed detection of ppt in water (Feltes and

Levsen 1989). HPLC with EC at a gold-mercury electrode increased sensitivity relative to UV and

also improved selectivity (Maskarinec et al. 1984).

HRGC/ECD is also a sensitive and selective method for determination of 2,4,6-trinitrotoluene in water.

Detection limits in the sub-ppb range are obtainable and recoveries are high (Belkin et al. 1985; Feltes

et al. 1990; Hable et al. 1991; Hoffsommer and Rosen 1972; Richard and Junk 1986). In addition,

precision is excellent with the RSD usually less than 10%. Detection by TEA or MS has also been

used with GC with good results (Feltes et al. 1990). A comparison of these detection methods with

ECD showed that while TEA was more selective than ECD for nitro compounds and had a larger

linear concentration range, ECD was more sensitive than TEA by about three orders of magnitude

(Feltes et al. 1990). MS was the most selective of the three detection methods, and was determined to

be useful for confirmatory analysis. One disadvantage of GC methods in explosives analysis is that

thermally-labile analytes may be destroyed during analysis.
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The available optical methods rely on the conversion of 2,4,6-trinitrotoluene to a fluorescent or colored

complex (Army 1990b; Heller et al. 1977, 1982; Jian and Seitz 1990; Zhang et al. 1989). In general,

these methods are not as sensitive or selective as the more commonly used HPLC and GC methods

and they are primarily useful for simple and rapid screening of samples at field sites to determine

which samples should be subjected to more intensive quantitative analysis. A recently proposed

spectrophotometric method reacts a polynitroaromatic hydrocarbon-contaminated water sample with a

membrane containing polyoxyethylamine. The reaction produces a colored product that can be

analyzed with a spectrophotometer (Zhang et al. 1989). Since different polynitroaromatic

hydrocarbons produce different absorption spectra, the method is selective as well as relatively

sensitive (detection of low ppb). The method is used to screen samples in the field and, by employing

fiber optics, may be useful for remote monitoring (Zhang and Seitz 1989).

An HPLC/UV method developed by the Army is the method most commonly used to analyze soils

and sediments for 2,4,6-trinitrotoluene and its breakdown products (Army 1985c, 1987c; Bauer et al.

1990; Bongiovanni et al. 1984; Jenkins and Grant 1987; Jenkins et al. 1989). Sample extraction

consists of homogenizing the soil or sediment, extraction with an organic solvent, and separation on a

reverse-phase HPLC column. The method is sensitive and reliable and has been used to determine

2,4,6-trinitrotoluene and some of its metabolites at levels in the low ppb range. GC/ECD has also

been used to analyze soil samples for 2,4,6-trinitrotoluene (Army 1985c). Sample preparation is

similar to that used for HPLC. Results from GC analysis were mixed, with some samples producing

results comparable to HPLC, but others (those samples high in organic matter) subject to substantial

interference. More recent efforts by the Army have focused on the development of simple, rapid

methods that can be used to screen samples in the field. Two semiquantitative methods have been

tested, one based on an indicator tube originally designed for testing water samples (Army 1990b;

Heller 1982) and the other based on spectrophotometry (Army 1990a). Both methods could detect

2,4,6-trinitrotoluene in the sub- to low-ppm range but were not specific for 2,4,6-trinitrotoluene. The

indicator tube was inexpensive, simple, rapid, and easy to use. However, it was found to have poor

accuracy and precision. The spectrophotometric method had better accuracy and precision and

estimated concentrations correlated well with laboratory analyses of the same samples. It is not as

convenient as the indicator tube, however, because a battery-operated spectrophotometer must also be

carried into the field.
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A method for determining 2,4,6-trinitrotoluene in plant stems using HPLC/UV was located (Army

1981b). The limit of detection for the method was in the ppb, but both recovery (52%) and precision

(33% RDS) were poor. No other methods in similar matrices were available for comparison,

6.3  ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with

the Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of 2,4,6-trinitrotoluene is available. Where adequate

information is not available, ATSDR, in conjunction with NTP, is required to assure the initiation of a

program of research designed to determine the health effects (and techniques for developing methods

to determine such health effects) of 2,4,6-trinitrotoluene.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that, if met,

would reduce or eliminate the uncertainties of human health assessment. This definition should not be

interpreted to mean that all data needs discussed in this section must be filled. In the future, the

identified data needs will be evaluated and prioritized, and a substance-specific research agenda may

be proposed.

6.3.1 Identification of Data Needs

Methods for Determining Biomarkers of Exposure and Effect.  Only a few methods for

monitoring exposure to 2,4,6-trinitrotoluene were located. These included HPLC/MS, GC/ECD, and

TLC/densitometry for determining 2,4,6-trinitrotoluene or its metabolites in blood and/or urine (Almog

et al. 1983; Liu et al. 1991; Yinon and Hwang 1985b, 1986c) and HPLC/UV for determining

2,4,6-trinitrotoluene in tissues (Army 1981). In addition, there are methods for analyzing for the

chemical and its metabolites in handswab samples (Douse 1987; Fetterolf et al. 1991; Fine et al. 1984;

Lloyd 1991). While these methods appear to be useful and reliable for measuring 2,4,6-trinitrotoluene

in biological samples, the limited information on sensitivity, selectivity, accuracy, and precision make
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it difficult to compare and fully evaluate the reliability of the methods. More information is needed on

these parameters for the different methods in order to assess their usefulness for monitoring exposure

to 2,4,6-trinitrotoluene.

Possible biomarkers of effect for 2,4,6-trinitrotoluene exposure include changes in hematological and

blood chemistry parameters, such as decreased hemoglobin and hematocrit levels, increased

mononuclear leukocyte and lymphocyte counts, and changes in levels of SGOT and LDH (Army 1976,

1978a; Morton et al. 1976). Reliable standard clinical laboratory methods exist to measure these

parameters; however, they are not specific to 2,4,6-trinitrotoluene exposure and have only limited use

as biomarkers of effect for this chemical. Urine discoloration and cataracts are also observed in

workers exposed to 2,4,6-trinitrotoluene, but no methods are available to quantitate these nonspecific

biomarkers.

Methods for Determining Parent Compounds and Degradation Products in

Environmental Media.  Methods exist to detect and quantify 2,4,6-trinitrotoluene in air, fresh water,

sea water, waste-water effluents, soil, and plant material (Army 1981, 1985b; 1986c, 1988, 1990a,

1990b; Bauer et al. 1990; Feltes and Levsen 1989; Feltes et al. 1990; Hable et al. 1991; Hoffsommer

and Rosen 1972; Jenkins et al. 1989; McLuckey et al. 1988; Spangler et al. 1983; Van Slyke et al.

1985; Zhang et al. 1989). The HPLC- and GC-based methods are generally considered to be sensitive

and reliable, but in some cases (e.g., air samples) better characterization is needed. Some of the newer

methods (e.g., IMS, GDMS) and those proposed for field use (e.g., IMS, membrane-based

spectrophotometry) need continued research and characterization in order to be useful quantitative

methods for analysis of environmental samples (Army 1990b; McLuckey et al. 1988; Spangler et al.

1983; Zhang et al. 1989).

6.3.2 On-going Studies

No on-going analytical methods studies were located. However, it is likely that research is continuing

on some of the more recently introduced methods for analyzing biological and environmental samples,
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such as the use of ELISA (Fetterolf et al. 1991). GDMS (McLuckey et al. 1988), IMS (Spangler et al.

1983), and spectrophotometric field methods (Army 1990b; Zhang et al. 1989).
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The international, national, and state regulations and guidelines regarding 2,4,6-trinitrotoluene in air,

water, and other media are summarized in Table 7- 1.

ATSDR has derived an MRL of 0.0005 mg/kg/day for intermediate oral exposure to

2,4,6-trinitrotoluene (see Section 2.4). EPA (IRIS 1994) assigned 2,4,6-trinitrotoluene a reference dose

(RfD) of 5.00x10-4 mg/kg/day with an uncertainty factor of 1,000 based on liver effects observed in

dogs in a 26-week feeding study (Army 1983a).

EPA has assigned 2,4,6-trinitrotoluene a weight-of-evidence carcinogenic classification of C, which

indicates that 2,4,6-trinitrotoluene is a possible human carcinogen (IRIS 1994).

The Drinking Water Equivalent Level (DWEL), a lifetime exposure at which adverse health effects

would not be expected to occur, is 20 µg/L for 2,4,6-trinitrotoluene (EPA 1989b, 1994). Because of

the lack of appropriate data for determination of the One-day Health Advisory and the Ten-day Health

Advisory, it is suggested that the DWEL be used as a conservative estimate. The Longer-term Health

Advisory for both children and adults is 20 µg/L, which is equivalent to the DWEL. The Lifetime

Health Advisory is 2 µg/L.

Based on EPA Guidelines, an acceptable daily intake of 44.25 µg/L was calculated (Army 1987d).

The available data for calculating water quality criteria for 2,4,6-trinitrotoluene were insufficient to

meet all of the EPA guidelines requirements. However, enough information was available to calculate

a reasonable estimate of the criterion maximum concentration, 557 µg/L, to protect aquatic life. The

other component of the criteria, the criterion continuous concentration, needs further research. The

criterion to protect human health has been estimated to be 135 µg/L, but further research is needed to

confirm this value.
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Acute Exposure -- Exposure to a chemical for a duration of 14 days or less, as specified in the
Toxicological Profiles.

Adsorption Coefficient (Koc) -- The ratio of the amount of a chemical adsorbed per unit weight of
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium.

Adsorption Ratio (Kd) -- The amount of a chemical adsorbed by a sediment or soil (i.e., the solid
phase) divided by the amount of chemical in the solution phase, which is in equilibrium with the solid
phase, at a fixed solid/solution ratio. It is generally expressed in micrograms of chemical sorbed per
gram of soil or sediment.

Bioconcentration Factor (BCF) -- The quotient of the concentration of a chemical in aquatic
organisms at a specific time or during a discrete time period of exposure divided by the concentration
in the surrounding water at the same time or during the same period.

Cancer Effect Level (CEL) -- The lowest dose of chemical in a study, or group of studies, that
produces significant increases in the incidence of cancer (or tumors) between the exposed population
and its appropriate control.

Carcinogen -- A chemical capable of inducing cancer.

Ceiling Value -- A concentration of a substance that should not be exceeded, even instantaneously.

Chronic Exposure -- Exposure to a chemical for 365 days or more, as specified in the Toxicological
Profiles.

Developmental Toxicity -- The occurrence of adverse effects on the developing organism that may
result from exposure to a chemical prior to conception (either parent), during prenatal development, or
postnatally to the time of sexual maturation. Adverse developmental effects may be detected at any
point in the life span of the organism.

Embryotoxicity and Fetotoxicity -- Any toxic effect on the conceptus as a result of prenatal exposure
to a chemical; the distinguishing feature between the two terms is the stage of development during
which the insult occurred. The terms, as used here, include malformations and variations, altered
growth, and in utero death.

EPA Health Advisory -- An estimate of acceptable drinking water levels for a chemical substance
based on health effects information. A health advisory is not a legally enforceable federal standard,
but serves as technical guidance to assist federal, state, and local officials.
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Immediately Dangerous to Life or Health (IDLH) -- The maximum environmental concentration of
a contaminant from which one could escape within 30 min without any escape-impairing symptoms or
irreversible health effects.

Intermediate Exposure -- Exposure to a chemical for a duration of 15-364 days, as specified in the
Toxicological Profiles.

Immunologic Toxicity -- The occurrence of adverse effects on the immune system that may result
from exposure to environmental agents such as chemicals.

In Vitro -- Isolated from the living organism and artificially maintained, as in a test tube.

In Vivo -- Occurring within the living organism.

Lethal Concentration(LO) (LCLO) -- The lowest concentration of a chemical in air which has been
reported to have caused death in humans or animals.

Lethal Concentration(50) (LC50) -- A calculated concentration of a chemical in air to which exposure
for a specific length of time is expected to cause death in 50% of a defined experimental animal
population.

Lethal Dose(LO) (LDLO) -- The lowest dose of a chemical introduced by a route other than inhalation
that is expected to have caused death in humans or animals.

Lethal Dose(50) (LD50) -- The dose of a chemical which has been calculated to cause death in 50% of a
defined experimental animal population.

Lethal Time(50) (LT50) -- A calculated period of time within which a specific concentration of a
chemical is expected to cause death in 50% of a defined experimental animal population.

Lowest-Observed-Adverse-Effect Level (LOAEL) -- The lowest dose of chemical in a study, or
group of studies, that produces statistically or biologically significant increases in frequency or severity
of adverse effects between the exposed population and its appropriate control.

Malformations -- Permanent structural changes that may adversely affect survival, development, or
function.

Minimal Risk Level -- An estimate of daily human exposure to a dose of a chemical that is likely to
be without an appreciable risk of adverse noncancerous effects over a specified duration of exposure.

Mutagen -- A substance that causes mutations. A mutation is a change in the genetic material in a
body cell. Mutations can lead to birth defects, miscarriages, or cancer.

Neurotoxicity -- The occurrence of adverse effects on the nervous system following exposure to
chemical.
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No-Observed-Adverse-Effect Level (NOAEL) -- The dose of chemical at which there were no
statistically or biologically significant increases in frequency or severity of adverse effects seen
between the exposed population and its appropriate control. Effects may be produced at this dose, but
they are not considered to be adverse.

Octanol-Water Partition Coefficient (Kow) -- The equilibrium ratio of the concentrations of a
chemical in n-octanol and water, in dilute solution.

Permissible Exposure Limit (PEL) -- An allowable exposure level in workplace air averaged over an
8-hour shift.

q1* -- The upper-bound estimate of the low-dose slope of the dose-response curve as determined by
the multistage procedure. The q1* can be used to calculate an estimate of carcinogenic potency, the
incremental excess cancer risk per unit of exposure (usually µg/L for water, mg/kg/day for food, and
µg/m3 for air).

Reference Dose (RfD) -- An estimate (with uncertainty spanning perhaps an order of magnitude) of
the daily exposure of the human population to a potential hazard that is likely to be without risk of
deleterious effects during a lifetime. The RfD is operationally derived from the NOAEL (from animal
and human studies) by a consistent application of uncertainty factors that reflect various types of data
used to estimate RfDs and an additional modifying factor, which is based on a professional judgment
of the entire database on the chemical. The RfDs are not applicable to nonthreshold effects such as
cancer.

Reportable Quantity (RQ) -- The quantity of a hazardous substance that is considered reportable
under CERCLA. Reportable quantities are (1) 1 pound or greater or (2) for selected substances, an
amount established by regulation either under CERCLA or under Sect. 311 of the Clean Water Act.
Quantities are measured over a 24-hour period.

Reproductive Toxicity -- The occurrence of adverse effects on the reproductive system that may
result from exposure to a chemical. The toxicity may be directed to the reproductive organs and/or the
related endocrine system. The manifestation of such toxicity may be noted as alterations in sexual
behavior, fertility, pregnancy outcomes, or modifications in other functions that are dependent on the
integrity of this system.

Short-Term Exposure Limit (STEL) -- The maximum concentration to which workers can be
exposed for up to 15 min continually. No more than four excursions are allowed per day, and there
must be at least 60 min between exposure periods. The daily TLV-TWA may not be exceeded.

Target Organ Toxicity -- This term covers a broad range of adverse effects on target organs or
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited
exposure to those assumed over a lifetime of exposure to a chemical.

Teratogen -- A chemical that causes structural defects that affect the development of an organism.
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Threshold Limit Value (TLV) -- A concentration of a substance to which most workers can be
exposed without adverse effect. The TLV may be expressed as a TWA, as a STEL, or as a CL.

Time-Weighted Average (TWA) -- An allowable exposure concentration averaged over a normal 8-
hour workday or 40-hour workweek.

Toxic Dose (TD50) -- A calculated dose of a chemical, introduced by a route other than inhalation,
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population.

Uncertainty Factor (UF) -- A factor used in operationally deriving the RfD from experimental data.
UFs are intended to account for (1) the variation in sensitivity among the members of the human
population, (2) the uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in
extrapolating from data obtained in a study that is of less than lifetime exposure, and (4) the
uncertainty in using LOAEL data rather than NOAEL data. Usually each of these factors is set equal
to 10.
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USER’S GUIDE

Chapter 1

Public Health Statement

This chapter of the profile is a health effects summary written in non-technical language. Its intended
audience is the general public especially people living in the vicinity of a hazardous waste site or
chemical release. If the Public Health Statement were removed from the rest of the document, it
would still communicate to the lay public essential information about the chemical.

The major headings in the Public Health Statement are useful to find specific topics of concern. The
topics are written in a question and answer format. The answer to each question includes a sentence
that will direct the reader to chapters in the profile that will provide more information on the given
topic.

Chapter 2

Tables and Figures for Levels of Significant Exposure (LSE)

Tables (2-1, 2-2, and 2-3) and figures (2-l and 2-2) are used to summarize health effects and illustrate
graphically levels of exposure associated with those effects. These levels cover health effects observed
at increasing dose concentrations and durations, differences in response by species, minimal risk levels
(MRLs) to humans for noncancer endpoints, and EPA’s estimated range associated with an
upper-bound individual lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. Use the LSE tables and
figures for a quick review of the health effects and to locate data for a specific exposure scenario. The
LSE tables and figures should always be used in conjunction with the text. All entries in these tables
and figures represent studies that provide reliable, quantitative estimates of No-Observed-Adverse-
Effect Levels (NOAELs), Lowest-Observed-Adverse-Effect Levels (LOAELs), or Cancer Effect Levels
(CELs).

The legends presented below demonstrate the application of these tables and figures. Representative
examples of LSE Table 2-l and Figure 2-l are shown. The numbers in the left column of the legends
correspond to the numbers in the example table and figure.

LEGEND

See LSE Table 2-l

(1) Route of Exposure One of the first considerations when reviewing the toxicity of a substance
using these tables and figures should be the relevant and appropriate route of exposure. When
sufficient data exists, three LSE tables and two LSE figures are presented in the document. The
three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, and
dermal (LSE Table 2-1, 2-2, and 2-3, respectively). LSE figures are limited to the inhalation
(LSE Figure 2-l) and oral (LSE Figure 2-2) routes. Not all substances will have data on each
route of exposure and will not therefore have all five of the tables and figures.
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(2) Exposure Period Three exposure periods - acute (less than 15 days), intermediate (15-364 days),
and chronic (365 days or more) are presented within each relevant route of exposure. In this
example, an inhalation study of intermediate exposure duration is reported. For quick reference
to health effects occurring from a known length of exposure, locate the applicable exposure
period within the LSE table and figure.

(3) Health Effect The major categories of health effects included in LSE tables and figures are
death, systemic, immunological, neurological, developmental, reproductive, and cancer.
NOAELs and LOAELs can be reported in the tables and figures for all effects but cancer.
Systemic effects are further defined in the “System” column of the LSE table (see key number
18).

(4) Key to Figure Each key number in the LSE table links study information to one or more data
points using the same key number in the corresponding LSE figure. In this example, the study
represented by key number 18 has been used to derive a NOAEL and a Less Serious LOAEL
(also see the 2 “18r” data points in Figure 2-l).

(5) Species The test species, whether animal or human, are identified in this column. Section 2.4,
“Relevance to Public Health,” covers the relevance of animal data to human toxicity and Section
2.3, “Toxicokinetics,” contains any available information on comparative toxicokinetics.
Although NOAELs and LOAELs are species specific, the levels are extrapolated to equivalent
human doses to derive an MRL.

(6) Exposure Frequency/Duration The duration of the study and the weekly and daily exposure
regimen are provided in this column. This permits comparison of NOAELs and LOAELs from
different studies. In this case (key number lS), rats were exposed to toxaphene via inhalation for
6 hours per day, 5 days per week, for 3 weeks. For a more complete review of the dosing
regimen refer to the appropriate sections of the text or the original reference paper, i.e., Nits&e
et al. 1981.

(7) System This column further defines the systemic effects. These systems include: respiratory,
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and dermal/ocular.
“Other” refers to any systemic effect (e.g., a decrease in body weight) not covered in these
systems. In the example of key number 18, 1 systemic effect (respiratory) was investigated.

(8) NOAEL A No-Observed-Adverse-Effect Level (NOAEL) is the highest exposure level at which
no harmful effects were seen in the organ system studied. Key number 18 reports a NOAEL of
3 ppm for the respiratory system which was used to derive an intermediate exposure, inhalation
MRL of 0.005 ppm (see footnote “b”).

(9) LOAEL A Lowest-Observed-Adverse-Effect Level (LOAEL) is the lowest dose used in the
study that caused a harmful health effect. LOAELs have been classified into “Less Serious” and
“Serious” effects. These distinctions help readers identify the levels of exposure at which
adverse health effects first appear and the gradation of effects with increasing dose. A brief
description of the specific endpoint used to quantify the adverse effect accompanies the LOAEL.
The respiratory effect reported in key number 18 (hyperplasia) is a Less serious LOAEL of 10
ppm. MRLs are not derived from Serious LOAELs.

(10) Reference The complete reference citation is given in chapter 8 of the profile.
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(11) CEL A Cancer Effect Level (CEL) is the lowest exposure level associated with the onset of
carcinogenesis in experimental or epidemiologic studies. CELs are always considered serious
effects. The LSE tables and figures do not contain NOAELs for cancer, but the text may report
doses not causing measurable cancer increases.

(12) Footnotes Explanations of abbreviations or reference notes for data in the LSE tables are found
in the footnotes. Footnote “b” indicates the NOAEL of 3 ppm in key number 18 was used to
derive an MRL of 0.005 ppm.

LEGEND

See Figure 2-1

LSE figures graphically illustrate the data presented in the corresponding LSE tables. Figures help the
reader quickly compare health effects according to exposure concentrations for particular exposure
periods.

(13) Exposure Period The same exposure periods appear as in the LSE table. In this example, health
effects observed within the intermediate and chronic exposure periods are illustrated.

(14) Health Effect These are the categories of health effects for which reliable quantitative data
exists. The same health effects appear in the LSE table.

(15) Levels of Exposure concentrations or doses for each health effect in the LSE tables are
graphically displayed in the LSE figures. Exposure concentration or dose is measured on the log
scale “y” axis. Inhalation exposure is reported in mg/m3 or ppm and oral exposure is reported in
mg/kg/day .

(16) NOAEL In this example, 18r NOAEL is the critical endpoint for which an intermediate
inhalation exposure MRL is based. As you can see from the LSE figure key, the open-circle
symbol indicates to a NOAEL for the test species-rat. The key number 18 corresponds to the
entry in the LSE table. The dashed descending arrow indicates the extrapolation from the
exposure level of 3 ppm (see entry 18 in the Table) to the MRL of 0.005 ppm (see footnote “b”
in the LSE table).

(17) CEL Key number 38r is 1 of 3 studies for which Cancer Effect Levels were derived. The
diamond symbol refers to a Cancer Effect Level for the test species-mouse. The number 38
corresponds to the entry in the LSE table.

(18) Estimated Upper-Bound Human Cancer Risk Levels This is the range associated with the
upper-bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. These risk levels are
derived from the EPA’s Human Health Assessment Group’s upper-bound estimates of the slope
of the cancer dose response curve at low dose levels (q1*).

(19) Key to LSE Figure The Key explains the abbreviations and symbols used in. the figure.
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Chapter 2 (Section 2.4)

Relevance to Public Health

The Relevance to Public Health section provides a health effects summary based on evaluations of
existing toxicologic, epidemiologic, and toxicokinetic information. This summary is designed to
present interpretive, weight-of-evidence discussions for human health endpoints by addressing the
following questions.

1. What effects are known to occur in humans?

2. What effects observed in animals are likely to be of concern to humans?

3. What exposure conditions are likely to be of concern to humans, especially around hazardous

    waste sites?

The section covers endpoints in the same order they appear within the Discussion of Health Effects by
Route of Exposure section, by route (inhalation, oral, dermal) and within route by effect. Human data
are presented first, then animal data. Both are organized by duration (acute, intermediate, chronic). In
vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also
considered in this section. If data are located in the scientific literature, a table of genotoxicity
information is included.

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using
existing toxicokinetic, genotoxic, and carcinogenic data. ATSDR does not currently assess cancer
potency or perform cancer risk assessments. Minimal risk levels (MRLs) for noncancer endpoints (if
derived) and the endpoints from which they were derived are indicated and discussed.

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to
public health are identified in the Data Needs section.

Interpretation of Minimal Risk Levels

Where sufficient toxicologic information is available, we have derived minimal risk levels (MRLs) for
inhalation and oral routes of entry at each duration of exposure (acute, intermediate, and chronic).
These MRLs are not meant to support regulatory action; but to acquaint health professionals with
exposure levels at which adverse health effects are not expected to occur in humans. They should
help physicians and public health officials determine the safety of a community living near a chemical
emission, given the concentration of a contaminant in air or the estimated daily dose in water. MRLs
are based largely on toxicological studies in animals and on reports of human occupational exposure.

MRL users should be familiar with the toxicologic information on which the number is based.
Chapter 2.4, “Relevance to Public Health,” contains basic information known about the substance.
Other sections such as 2.6, “Interactions with Other Substances,” and 2.7, “Populations that are
Unusually Susceptible” provide important supplemental information.

MRL users should also understand the MRL derivation methodology. MRLs are derived using a
modified version of the risk assessment methodology the Environmental Protection Agency (EPA)
provides (Barnes and Dourson 1988) to determine reference doses for lifetime exposure (RfDs).
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To derive an MRL, ATSDR generally selects the most sensitive endpoint which, in its best judgement,
represents the most sensitive human health effect for a given exposure route and duration. ATSDR
cannot make this judgement or derive an MRL unless information (quantitative or qualitative) is
available for all potential systemic, neurological, and developmental effects. If this information and
r&at& quantitative data on the chosen endpoint are available, ATSDR derives an MRL using the
most sensitive species (when information from multiple species is available) with the highest NOAEL
that does not exceed any adverse effect levels. When a NOAEL is not available, a
lowest-observed-adverse-effect level (LOAEL) can be used to derive an MRL, and an uncertainty
factor (UF) of 10 must be employed. Additional uncertainty factors of 10 must be used both for
human variability to protect sensitive subpopulations (people who are most susceptible to the health
effects caused by the substance) and for interspecies variability (extrapolation from animals to
humans). In deriving an MRL, these individual uncertainty factors are multiplied together. The
product is then divided into the inhalation concentration or oral dosage selected from the study.
Uncertainty factors used in developing a substance-specific MRL are provided in the footnotes of the
LSE Tables.
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