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The concept of a “critical load” can facilitate commu-
nication between scientists who study the effects of

air pollutants on ecosystems and those responsible for air-
quality management and policy. Stated simply, a critical
load (CL) is “the quantitative exposure to one or more
pollutants below which significant harmful effects on
sensitive elements of the environment do not occur,
according to present knowledge” (Nilsson and Grennfelt
1988). Exceeding the CLs for nitrogen (N) and sulfur (S)
can cause ecosystem acidification, nitrogen saturation,
and biotic community changes, including a decline in
forest health. Quantifying the pollutant loads at which a
variety of ecosystem changes have occurred or may occur
in the future can be a valuable method for characterizing
ecosystem condition in a way that informs air-pollution
control policy and program development, implementa-
tion, and assessment (Figure 1).

A CL approach to assessing air-pollution impacts has
been used to evaluate the effects of acid precipitation on
ecosystems in Canada and Europe since the 1980s. In
Europe, this approach was formally adopted as a guiding
principal in air-pollution management and policy, as part

of the 1988 Sofia Protocol on the control of emissions of
nitrogen oxides. The European CL approach also typi-
cally involves the calculation of a target load (ie target
load, as the term is used in policy, not target-load func-
tions, as it is known to CL modelers), which is deter-
mined by political agreement, and may be greater than or
less than the critical load (Porter et al. 2005). 

Thresholds of atmospheric-pollutant deposition for sen-
sitive ecosystems in the US have been widely discussed in
the scientific literature, beginning in the 1990s for sulfur
(Gorham et al. 1984; Henriksen and Brakke 1988) and
nitrogen (Aber et al. 1989). This work established that
sulfate and nitrogen deposition were above levels at
which damage occurs in many sensitive ecosystems in
eastern North America. Although an extensive body of
scientific literature was available at the time that policy
makers were discussing how to address acid-rain effects, a
CL approach was never formally incorporated into the
Clean Air Act Amendments of 1990. Such an approach
has yet to be broadly and formally applied to air-pollution
control policy in the US (as it has in Europe and Canada),
where it remains a potentially important but largely
untapped tool for assessing ecosystem response to atmos-
pheric deposition and for developing policies to promote
ecosystem protection and recovery (Porter et al. 2005).
While scientific studies of CL continue to be published in
the US, most have a narrow geographic focus (Pardo and
Driscoll 1996; Sullivan et al. 2003; Baron 2006).

� How CL can be applied to air-pollution control
policy

CLs have primarily been applied to the atmospheric
deposition of sulfur (S) and nitrogen (N), but the
European community has applied a similar critical-levels
approach to managing tropospheric ozone, as well as
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In a nutshell:
• The critical load for an air pollutant defines a deposition level

below which sensitive parts of an ecosystem are protected
• Critical loads have been widely and successfully applied in

Europe and Canada, but not in the US 
• Recent activity in the scientific and policy communities indi-

cates increasing interest in applying critical loads in the US
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trace metals (Sliggers and Kakebeeke 2004).
A CL approach could conceivably be used to
manage the deposition of any air pollutant for
which demonstrated ecological effects and
thresholds can be determined, but here we
will focus on its application in the case of
atmospheric S and N deposition. 

Atmospheric S and N are of concern
because of their role in acidifying sensitive
aquatic and terrestrial ecosystems (Driscoll et
al. 2001). N deposition can also exceed the
assimilation capacity of ecosystems (a condi-
tion commonly known as “N saturation”) and
can contribute to (1) the eutrophication of
estuarine and alpine waters (Paerl 1997;
Wolfe et al. 2003), and (2) shifts in species
composition in alpine plant communities
(Bowman et al. 2006), semi-arid coastal sage
shrub communities (Egerton-Warburton and
Allen 2000), and serpentitic grasslands
(Weiss 1999). Acidification strips the base
cations calcium and magnesium from sensi-
tive soils, and replaces these cations with alu-
minum, which can cause stress and increase mortality in
some tree species (Driscoll et al. 2001). Acidification of
aquatic habitat eliminates sensitive organisms, including
many species of fish, zooplankton, invertebrates, and
diatoms (Schindler et al. 1989). Effects of excess N depo-
sition are of great concern in the western US, and
include shifts in terrestrial and aquatic species (Fenn et al.
2003) as well as indirect effects, such as increased suscep-
tibility of these species to insects and disease (Throop
and Lerdau 2004). In the eastern US, concerns include
both acidification and N saturation (Aber et al. 1989;
Figure 2). 

Several of the aforementioned ecological
changes in terrestrial and aquatic ecosystems
resulting from S and N deposition readily lend
themselves to a CL approach. For example,
many aquatic organisms cannot thrive and
successfully reproduce below certain pH val-
ues or above certain aluminum concentra-
tions. Surface waters that become acidified to
below-threshold pH values tend to lose these
acid-intolerant species (Schindler et al. 1989).
Commonly, either empirical data or models
are used to predict the atmospheric N and S
deposition rates that will allow the recovery of
various species of interest in sensitive waters.
In this manner, ecotoxicological data are
combined with biogeochemical data and
models to provide CL values to managers and
policy makers. Scientists also know that sim-
ple atmospheric dose-responses and thresh-
olds do not exist for some organisms in certain
settings, either because key biogeochemical
processes are not well understood or because

of complex interactions among environmental variables
that affect the survival of a given species or community.
Also, landscape disturbance history (Foster et al. 1997), as
well as a range of environmental stressors in addition to
atmospheric deposition, can affect CL values, especially
for nitrogen (Smithwick et al. 2005). In such situations, a
range of CL values may be the best information that scien-
tists can provide to policy makers.

Language does not exist in the Clean Air Act and its
subsequent amendments that specifically permits the use
of a CL approach, despite the tremendous potential for
this approach to simplify complex scientific information

Figure 1. Coal-fired power plants are the principal source of the sulfur dioxide
and nitrogen oxide emissions that are transported from upwind locations such as
the Ohio River Valley, where they fall as acid precipitation in the mid-Atlantic and
northeastern states. Recovery and protection of sensitive ecosystems in upland
parts of these states has been a principal focus of critical-loads research in the US.

Figure 2. Atmospheric deposition of sulfur and nitrogen has adversely affected
aquatic fauna in many locations. Here, a scientist collects a kick sample of
aquatic macroinvertebrates to evaluate ecosystem recovery from levels of acid
deposition that have been decreasing in the northeastern US since the late 1970s.
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and effectively communicate it to the policy community.
We believe that, despite a lack of statutory authority, the
CL approach simply provides another lens through which
to assess the results of current policies and programs and to
evaluate the potential ecosystem-protection value of pro-
posed policy options. Managers and policy makers must
each decide how to incorporate CL information into pol-
icy evaluation and planning. For example, policy makers
can translate a CL value into a target load of S or N depo-
sition in a given region or ecosystem. This target load
could be higher or lower than the CL, and might be based

on the political and budgetary constraints within which
air-quality managers must operate. 

� Recent developments

Recent efforts suggest that the attitude toward CL in the
US may be changing. For example, between 2002 and
2006, several federal agencies convened conferences and
workshops to review European CL experiences, discuss CL
science and modeling efforts, and to explore the possible
future role of CL in air-pollution control policy in the US.
As a result of these meetings, agencies such as the National
Park Service and US Forest Service developed specific rec-
ommendations for using CL as a tool to assist in managing
US federal lands. More recently, a new CL ad-hoc sub-
committee has formed within the National Atmospheric
Deposition Program (NADP; http://nadp.sws.uiuc.
edu/clad/). This sub-committee will promote information-
sharing, scientific advances, and applied projects in an
effort to explore the potential uses of CL in policy develop-
ment and program implementation (Figure 3).

In 2004, the National Research Council recommended
that the US Environmental Protection Agency (EPA)
should consider using CL for ecosystem protection. In
2005, the EPA included in their Nitrogen Dioxide Incre-
ment Rule a provision that individual states may propose
the use of CL information as part of their air-quality man-
agement approach, in order to satisfy requirements under
Clean Air Act provisions regarding “prevention of signifi-
cant deterioration” (US EPA 2005). 

Several federal agencies, including the National Park
Service and US Forest Service, are employing CL
approaches to protect and manage sensitive ecosystems
(Porter et al. 2005). For example, in Rocky Mountain

National Park, Colorado, the National Park
Service (NPS) has entered into a Memorandum
of Understanding (MOU) with the Colorado
Department of Public Health and Environment
(CDPHE) and the EPA to address harmful
impacts to air quality and other natural resources
occurring in the Park and to reverse a trend of
increasing nitrogen deposition. The MOU
requires NPS to develop a resource management
goal to protect Park resources and requires the
CDPHE to develop an air management strategy
that will help to meet Park goals. Based on
research results that indicate deleterious effects
on natural resources from current levels of
atmospheric N deposition (Wolfe et al. 2003),
NPS has established a resource-management
goal, linked to a critical load for wet N deposi-
tion of 1.5 kg ha–1 yr–1 for high elevation aquatic
ecosystems (Baron 2006). The Colorado Air
Quality Control Commission has also estab-
lished a “Rocky Mountain National Park
Initiative Sub-committee” to involve stakehold-
ers, review the research, identify information

Figure 3. A variety of scientific information on ecosystem
effects and thresholds, empirical chemistry data, model results,
and projected changes in climate and the carbon cycle are needed
to determine critical loads of sulfur and nitrogen deposition. The
air-quality and land-management policy communities lie within
the dark blue oval at the intersection of these various sources of
scientific information, where politically realistic target loads are
developed and implemented. 
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Figure 4. To apply a critical loads approach, scientists must know the
current levels of atmospheric sulfur and nitrogen deposition. These values
can be difficult to quantify, especially in high-altitude settings, such as that
pictured here at Niwot Ridge, CO, where wind and extreme cold test the
ability of instruments to document atmospheric loads. Photo taken at the
D-2 Meteorological Station, ca 1953.
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needs, and discuss options for improving conditions in
the Park (Figure 4). 

� Links to greenhouse gases and climate change

According to the Intergovernmental Panel on Climate
Change (IPCC), human activities are primarily responsible
for increased concentrations of greenhouse gases, such as
CO2, in the atmosphere, and these increases have caused the
Earth’s climate to warm substantially since the early 20th
century (IPCC 2007). The IPCC further concludes that
continued warming is likely, even if greenhouse-gas emis-
sions remain constant. These conclusions have important
implications for deriving critical loads for S and N, because
the cycles of these elements have strong interactions with
climate and the carbon cycle; the emission, transport, and
cycling of S and N in the atmosphere and through ecosys-
tems are affected by, and in turn affect, the climate and
cycles of greenhouse gases (Brasseur and Roekner 2005;
Magnani et al. 2007). Therefore, any future CL projections
for S and N based on models should take into account these
projected future changes in climate and the carbon cycle.

� Conclusions

Given the acknowledged success of CL approaches in
Europe, the US air-pollution science and air-quality policy
communities should explore greater use of this policy-
assessment and resource-management approach in the
future. We would like to encourage greater research and
application of CL in the science and policy communities
in the US, welcome broad participation in the open-
attendance CL ad-hoc sub-committee at NADP, and
invite others to join us in 2008 for a planned multi-agency
CL workshop. Those who are interested should check the
NADP web site (http://nadp.sws.uiuc.edu/CLAD/) for fur-
ther updates and information.
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