Grand Canyon Monitoring and Research Center Integrated Water Quality Program William S. Vernieu Susan J. Hueftle Grand Canyon Monitoring and Research Center 2255 N Gemini Dr., Room 341 Flagstaff, AZ 86001 June 24, 1999 FINAL DR A F T > GCMRC Library DO NOT REMOVE 120.01 ENV-2.00 V5368 06/24/99 ii # GRAND CANYON MONITORING AND RESEARCH CENTER INTEGRATED WATER QUALITY PROGRAM | ABSTRACT | VII | |--|-----| | CHAPTER 1 INTRODUCTION AND BACKGROUND | 1 | | PURPOSE AND SCOPE | 2 | | WATER QUALITY MONITORING AND ADAPTIVE MANAGEMENT INFORMATION NEEDS | | | White Category | | | Gray Category | | | Black Category | | | CHAPTER 2 WATER QUALITY MONITORING PLAN | 25 | | Introduction | 25 | | A. Proposed Monitoring and Research Activities | 25 | | Monitoring Activities | | | Research Activities | | | Quarterly reservoir surveys | | | Monthly Forebay Surveys | | | Continuous Tailwater Monitoring | | | Downstream Monitoring | | | Mainstem Monitoring Sites | | | Tributary Monitoring Sites | 29 | | Necessary and Complimentary Research | 29 | | Downstream Linkages | 30 | | B. Proposed Activities for FY2000 | | | Hydrodynamic Modeling | | | Data Management | | | C. Proposed Activities for FY2001 | | | Protocol Evaluation | | | Downstream Water Quality Program | | | D. RELATED ACTIVITIES | | | Temperature Control Modifications | | | Beach Habitat Building Flows | | | Conceptual Modeling | | | E. RESOURCE REQUIREMENTS | | | Equipment | | | Staffing | | | Budget | 35 | | CHAPTER 3 SAMPLING LOCATIONS AND FREQUENCY | 37 | | INTRODUCTION | | |---|-------------------| | MONITORED PARAMETERS | 37 | | Physical and Chemical | | | Biological | | | FREQUENCY AND TIMING OF SAMPLING | 40 | | Late Winter | 40 | | Late Spring | 41 | | Late Summer | 42 | | Late Autumn | | | MONITORING LOCATIONS | | | Determination of Sample Locations | 43 | | CHAPTER 4 DATA MANAGEMENT AND ANALYSIS | 47 | | INTRODUCTION AND BACKGROUND | 47 | | Features | 48 | | Database Design | 50 | | Design Considerations | 50 | | References | | | APPENDIX A RELATIONSHIP OF WATER QUALITY MONITORING | TO GI ENI CANVONI | | DAM ADAPTIVE MANAGEMENT PROGRAM | 10 OLLIV CAN 10 N | | | | | HISTORICAL BACKGROUND | | | LAKE POWELL ASSESSMENT | | | SEPARATION OF MONITORING ACTIVITIES | | | RECLAMATION FUNDING PROPOSAL FOR LAKE POWELL MONITORING | | | 1. White Areas | | | 2. Gray Areas | | | 3. Black Areas | | | GCMRC Integrated Water Quality Program | 62 | | APPENDIX B METHODOLOLGY | 65 | | INITIAL OBSERVATIONS | | | Water Quality Profiling | | | CHEMICAL SAMPLING | | | Sample Collection | | | Sample Filtration | | | Preservation | | | Documentation | 71 | | Transportation and Shipment. | | | Trace Element Sampling | | | Quality Assurance | | | BIOLOGICAL SAMPLING | | | Field Collection | 73 | | Samp | le Analysis | 76 | |-----------|--|------------| | Contr | acting Procedure | 76 | | Data 1 | Processing and Analysis | 77 | | Lake | Powell Site Coding and Geo-referencing | 77 | | APPEND | IX C VITAE OF CO-AUTHORS | 7 9 | | LIST OF F | IGURES | | | FIGURE 1. | LAKE POWELL GEOGRAPHIC SETTING AND MAJOR TRIBUTARIES | 1 | | | 35-YEAR PERIOD OF LAKE POWELL MONITORING | | | | CROSS-SECTION ISOPLETH OF RESERVOIR TEMPERATURE SHOWING VERTICAL AND | | | LONG | GITUDINAL ZONES | 41 | | | RESERVOIR WATER QUALITY PROFILE | | | FIGURE 5. | TIME SERIES OF WATER QUALITY IN TAILWATER | 49 | | FIGURE 6. | TIME SERIES TEMPERATURE ISOPLETH OF WAHWEAP FOREBAY STATOIN | 49 | | FIGURE 7. | CROSS-SECTION ISOPLETH OF MAIN-CHANNEL RESERVOIR TEMPERATURE | 50 | | FIGURE 8. | WATER QUALITY RELATIONAL DATABASE STRUCTURE | . 52 | | LIST OF T | ABLES | | | TABLE 1. | COMPARISON OF INFORMATION NEEDS WITH MONITORING PLAN CONTENT | 12 | | TABLE 2. | GRAND CANYON THERMAL MONITORING STATIONS | 25 | | TABLE 3. | PROPOSED BUDGET FOR IWQP FOR FY2000 | . 36 | | TABLE 4. | DETECTION LIMIT AND EPA METHODOLOGY OF CHEMICALS ANALYZED FOR THE IWO | QP. | | | | | | | Lake Powell monitoring locations (LT – long-term station since 1965, NE | | | TATS | ION ADDED SINCE 1990 PRO $=$ profile only no samples INF $=$ inflow station) | 44 | #### Abstract. The Grand Canyon Monitoring and Research Center Integrated Water Quality Program (IWQP) addresses information needs of the Glen Canyon Dam Adaptive Management Program (AMP). The primary goal of the IWOP is to describe and understand the influence of dam operations on water quality in Lake Powell and Glen Canyon Dam releases and its effect on downstream resources. This goal will be met by maintaining a long-term program of basic water quality data monitoring, defined as the periodic measurement of a consistent, repeatable set of common water quality parameters from an integrated network of sites from Lake Powell through the Grand Canyon. The four monitoring components are quaterly reservoir sampling, monthly and continuous forebay and tailwater sampling and downstream sampling. The data will be collected according to standardized monitoring protocols and maintained in a common database. Necessary research will be also be conducted based on specific hypotheses to fully address specific INs, form linkages with other resource components, and to evaluate protocols and methodologies. The four basic long-term monitoring elements of the GCMRC IWQP will be carried through Fiscal Year 2000 and beyond, as the need for this information continues. The research component will be based on prioritized INs and integrated with other resource areas (e.g., aquatic food base, native fish, and trout). This report provides a description of the four proposed monitoring and supporting research activities In addition to the monitoring and research activities outlined, several areas of work that either require additional focus or that are associated with the AMP are identified (e.g., database management, BHBF's, Temperature Control Device). The components are either proposed for FY 2000 and 2001, or simply indicate that some activities will require additional data collection efforts beyond those currently proposed. It is anticipated that progress in these additional focus areas will result in refinements to the existing monitoring program, that will result in more cost-effective execution of the program, better definition of informational requirements, increased data availability and utility, and better feedback to management objectives. The IWQP can be divided into a physical/chemical and biological component. Common physical and chemical parameters of water quality will be routinely collected during the measurement of a reservoir profile, continuously in the tailwater below Glen Canyon Dam, and in conjunction with the collection of all chemical samples. These measurements will include temperature ($^{\circ}$ C), specific conductance (μ S), pH, dissolved oxygen (mg/L), and turbidity (NTU). All of these parameters are identified as important for understanding linkages between reservoir, operations and downstream water quality. The biological component characterizes, in both the lake and the tailwaters, long-term, seasonal, and spatial trends in abundance, community structure, and primary and secondary productivity. It is designed to accomplish the following: quantify primary productivity in the reservoir and tailwaters; use biological indicators to evaluate water quality trends; and quantify secondary productivity of the reservoir and tailwaters. Collectively, this program will provide further understanding of linkages between dam operations, water quality, and the aquatic ecosystem of the Colorado River. # Grand Canyon Monitoring and Research Center Integrated Water Quality Program # Chapter 1 INTRODUCTION AND BACKGROUND Glen Canyon Dam was completed in 1963 and represents the primary regulatory feature of the Colorado River Storage Project. Glen Canyon Dam, constructed and operated by the Bureau of Reclamation, impounds the Colorado River to form Lake Powell, a 32.3 km³ (26.2 MAF) reservoir with a surface area of 65,069 ha (160,784 ac) extending 290 km (180 miles) up the Colorado River at its full pool elevation of 1128 m (3700 ft) above mean sea level. Shoreline length has been estimated at 3,057 km (1900 mi.). The drainage area above Lake Powell is 279,000 km² (108,000 mi²) (Stanford and Ward, 1991). Lake Powell is located on the border of Utah and Arizona within Glen Canyon National Recreation Area (Figure 1). Lake Powell began filling in 1963 and reached a full pool elevation in June of 1980. Figure 1. Lake Powell geographic setting and major tributaries ## Purpose and Scope The purpose of this report is to present an integrated water quality monitoring and research program that addresses information needs of the Glen Canyon Dam Adaptive Management Program (AMP). Information collected from this program will provide further understanding of linkages between dam operations, water quality, and the aquatic ecosystem of the Colorado River. This report provides a description of proposed monitoring and research activities and areas of focus for FY 2000 and 2001. The report contains a brief discussion of the role of the Grand Canyon Monitoring and Research Center (GCMRC) Integrated Water Quality Program (IWQP) within the context of the AMP. The report also describes, in detail, the methodology of the proposed long-term program (Appendix B). # Water Quality Monitoring and Adaptive Management Information Needs The purpose of the IWQP is to address the various water quality-related Information Needs (INs) developed by the Technical Work Group (TWG) to meet the Management Objectives (MOs) of the Adaptive Management Work Group (AMWG) for adaptive management of the Colorado River ecosystem. MOs and INs were developed by the TWG and recommended for approval by the AMWG on July 21, 1998. MOs are defined as desired
future resource conditions obtainable within the Modified Low Fluctuating Flow alternative prescribed by the Secretary of Interior's Record of Decision (ROD) (October, 1996) on the Operation of Glen Canyon Dam Final Environmental Impact Statement (GCDEIS) (USBR, 1995). INs describe monitoring, research, or information management requirements to evaluate the effects of the Secretary's actions on downstream resources and refine management approaches. Several INs currently exist that relate to water quality for Lake Powell and downstream resources. Some of these INs relate solely to downstream resources and are met by monitoring activities conducted below Glen Canyon Dam (White Category). Others relate to downstream resources but are addressed by activities conducted upstream of Glen Canyon Dam (Gray Category). Still others relate primarily to resources upstream of Glen Canyon Dam and can be met by monitoring and research conducted upstream of the dam (Black Category). These categories are discussed in further detail in Appendix A. The grouping of INs into these categories was an attempt to separate activities that address downstream resources based on where these activities were conducted so that appropriate funding sources could be identified. The following summary of water quality-related INs lists the text of the specific Information Needs in the White, Gray, and Black categories, by resource area, along with a description (in italics) of how the IWQP addresses the IN. These are also presented in Table 1. The INs listed below represent a subset of the entire collection that has direct links between water quality and the given resource of concern. The IWQP has been designed to provide data in support of these INs as described below. In some cases, the IWQP provides all of the data required to address an IN and we describe these as water quality-related INs that are directly addressed by the IWQP. In other cases, the IWQP provides baseline data in support of a water-quality IN with the full understanding that additional data may be required. This additional data will be developed within the context of a specific research project addressing that IN and we describe these as water quality-related INs that are indirectly supported by the IWQP. We also acknowledge that some INs can only be fully met through research projects that collect their own water quality data in a manner that is linked spatially and temporally to project specific research activities. Finally, some INs are not addressed, such as in cases where the IN is deemed to be outside the scope of the IWQP, where other studies already address the IN, or the IN has received very low priority by the TWG. The IWQP is intended to provide basic, consistent long-term water quality monitoring and associated research activities to address the INs described below within the financial limits of the program. The IWQP was developed by starting with the INs. We next evaluated the data required to meet a given IN and determined whether this IN could be met through a monitoring or research activity. Following this step, we compared the data needs with ongoing water quality activities and developed the plan presented here. As discussed above, within the specified budget limitations, we have designed a plan that directly or indirectly addresses the specified INs. Finally, as described in Chapter 2, this program will undergo a protocol evaluation panel (PEP) review in FY2001. Overall priorities, as determined by the TWG on 4/28/98, are listed for each IN. These were arbitrarily divided into three categories based on the number of votes received out of a total of fourteen: High (9-14), Medium (5-8), or Low (0-4). Based on a memo from the GCMRC Chief to the TWG dated 5/5/98, "...those information needs ranking highest, between 8 and 14, were the information needs that this group of stakeholders felt needed to have monitoring and research activity started immediately, that is, within 2000 and 2001. Those information needs having a ranking of 0 to 4 are information needs that this 14 member stakeholder group generally felt could be delayed to 2002 or 2003 and still provide value to the Adaptive Management Process." #### White Category The following INs relate to downstream chemical and biological water quality resources and are addressed by activities conducted downstream of Glen Canyon Dam. **Biological Resources** A1 - Aquatic Food Base IN 1.1 Determine status and trends in aquatic food base species composition and population structure, density and distribution and the influence of ecologically significant processes (High Priority-10) IN 1.2 Determine the effects of past, present, and potential dam operations under the approved operations criteria on the aquatic food base species composition, population structure, density, and distribution in the Colorado River ecosystem (High Priority-10) Assessment of the aquatic food base in the Grand Canyon ecosystem is a complicated task requiring the integration of information across several resources areas. The IWQP will support these information needs by providing a record of status and trends of water quality components in Glen Canyon Dam releases and changes occurring downstream. These components that directly affect the aquatic food base include temperature, nutrient concentration, water clarity, and biological composition. Monitoring these components in Lake Powell provides information on the quality of current and future releases as well as that available from the operation of alternative release structures. #### A2 - Trout IN 2.6 Define criteria (e.g., temperatures, flow regimes, contaminants, metals, nutrients) for sustaining a healthy rainbow trout population in Glen Canyon. (Low Priority-4) Definition of criteria for trout requires, in part, an analysis of past and current water quality conditions under which the trout population in Glen Canyon exists. The water quality components of these criteria support life, affect behavior, and determine recruitment success for trout and other fish populations. The IWQP supports this information need by ensuring the appropriate water quality data is available to downstream fishery programs. Information on metals and contaminants is not currently provided by the IWQP program but is addressed by USGS NASQAN monitoring at Lees Ferry. #### A3 - Native Fish- Humpback Chub IN 3/4.3 Develop and implement a program to evaluate effects of factors limiting overwintering survival of young-of-the-year HBC in the Grand Canyon (fall 97, RPM 1) (High Priority-10) Survival of young-of-the-year HBC depends in large part on temperature regimes available in habitat used by these fish. The IWQP will provide basic data describing expected temperatures at a given location and time and expected patterns and trends under various operational scenarios. IN 3/4.7 Determine origins of fish food resources, energy pathways, and nutrient sources important to their production, and the effects of Glen Canyon Dam operations on these resources. Evaluate linkages between the aquatic food base and the health and sustainability of HBC populations. (Medium Priority-7) The IWQP does not directly address this information need but provides information on food resources and nutrient sources from water quality monitoring below Glen Canyon Dam and in Lake Powell. Plankton and nutrient concentrations in the Colorado River that form energy pathways for native fish are dependent on their starting concentrations in Glen Canyon Dam releases. These concentrations, in turn, depend on the concentrations of these parameters in the Lake Powell reservoir at levels affected by dam operations. **IN 5.1** Determine a set of possible temperature changes in the mainstem Colorado River resulting from implementing selective withdrawal. (Medium Priority-6) Research and monitoring specific to a Temperature Control Device (TCD) experiment will be developed separately from the IWQP. However, the basic long-term monitoring specified in this plan provides information to establish baseline patterns on which the operation of a TCD could be evaluated, as well as addressing INs not directly related to the TCD. Downstream thermal monitoring will provide needed information on warming patterns related to discharge levels and geomorphic reach. Tailwater monitoring will describe current annual variations on long-term trends in temperature patterns of Glen Canyon Dam releases. Monitoring of temperature throughout Lake Powell is required to quantify the heat content of the reservoir on a quarterly basis so that effects of periodic and long-term warm water withdrawal can be evaluated. All of the above information will be integrated into hydrodynamic and conceptual models to predict the effects of varying amounts or frequencies of TCD operation. IN 5.2 Determine the anticipated effects on HBC and other native populations which may result from installing a selective withdrawal structure for thermal modification in the mainstem of the Colorado River downstream of Glen Canyon Dam. Determine the range of temperatures for successful larval fish development and recruitment and the relationship between larval/juvenile growth and temperature. (High Priority-10) Studies on behavior and life history requirements of HBC and other native fish will determine effects of a TCD on native fish populations. Temperature of larval/juvenile habitat is important in determining growth and survival of these life stages. The IWQP will provide long-term main-channel temperature information related to current status, trends, and potential effects of a TCD. - IN 5.3 Determine the effects of dam operations, including installing a selective withdrawal structure for thermal modification in the mainstem of the Colorado River downstream of Glen Canyon Dam, on: (High Priority-14) - a) Reproductive success, growth, and survivorship of Grand Canyon fishes; - b) Parasites and disease organisms of
endangered and native fishes in the Colorado River ecosystem; - c) Temperature induced interactions between native and non-native fish competitors and predators; and d) The effects of temperature, including seasonality and degree, on Cladophora and associated diatoms, Gammarus, and aquatic insects. Observed temperature patterns through Grand Canyon and in dam releases will be required, in addition to other information, to evaluate effects of a TCD on HBC and other native fish populations. This temperature data will also be required to determine effects on fish recruitment, parasites, native/non-native interactions, and benthic organisms. While these INs will be primarily addressed by other research specific to these areas, the IWQP will provide the temperature data needed to evaluate these INs in a consistent high-quality format from an integrated database. IN 5.4 Evaluate effects of withdrawing water on the heat budget of Lake Powell, effects of potentially warmer inflow into Lake Mead, and the concomitant effects on the biota within both reservoirs. Evaluate the temperature profiles along with heat budget for both reservoirs. Evaluate effects of reservoir withdrawal level on fine particulate organic matter and important plant nutrients to understand the relationship between withdrawal level and reservoir and downstream resources. (Medium Priority-7) The proposed IWQP plan includes temperature measurements in Lake Powell that could be used to determine heat content and help identify heat budget components. However, the focus is on characterizing the chemical and biological composition of water in Lake Powell that would be available for withdrawal under a TCD scenario and normal operating conditions. Operation of a TCD could affect changes in the water quality of the reservoir, which could result in significant longer-term changes to the water quality of downstream releases, by altering the reservoir's heat budget, chemistry, or biological composition. The IWQP will provide the baseline data describing status and trends of these components. Future monitoring and research specific to the TCD will evaluate these effects of TCD operation. The effects of TCD operations will certainly change the characteristics and fate of water entering Lake Mead, possibly affecting biological processes in Lake Mead significantly. However, study of effects to Lake Mead is not proposed as part of the IWQP and will be left to other parties to accomplish. IN 5.5 Evaluate when to release warmer temperature water, what seasonal pattern of releases to use to avoid establishment of permanent backwater areas, and how best to use floods, to limit expansion or invasion of non-native fish species. (High Priority-9) This IN primarily relates to native fish studies. The IWQP will provide information on the availability of warm water in the reservoir, seasonal temperature variations in dam releases, and warming patterns associated with time of year, discharge levels, and geomorphic reach. ## A3 - Native Fish- Flannel Mouth Sucker and other native fish IN 8.4 Determine historic and current ecosystem requirements (habitat, spacing, food source, interdependencies, etc.) of native fish species. (Medium Priority-5) The IWQP will provide necessary water quality information to support native fish and related food base and behavioral studies. #### Physical Resources - Water Resources **IN 2.1** Monitor water quality, composition and temperature and compare to applicable standards. (High Priority-9 not differentiated between 2.1a and 2.1b) **IN 2.1a** Quantify current selenium levels in water discharged from Glen Canyon Dam. Determine how selenium concentrations are affected by dam operations. The IWQP does not currently provide specific focus on selenium levels in Glen Canyon Dam discharge. The Bureau of Reclamation is currently undertaking an Upper Colorado River basinwide selenium study to address sources of loading and effects to biological resources (Jerry Miller, personal comm.) Field support on quarterly reservoir surveys will be provided for Lake Powell sample collection. Selenium concentrations are also monitored by the USGS at the Lees Ferry and Diamond Creek NASQAN gauging station. No further work in this area is planned unless unacceptable levels of selenium are found and a direct linkage exists relating selenium concentrations to dam operations. IN 2.1b Determine/quantify the dynamics of major cations, anions and nitrate/phosphate ratios resulting from dam operations. The chemical characteristics (major ions and nutrients) of water released from Glen Canyon Dam are affected by different aspects of Glen Canyon Dam operation as well as by hydrological and climatological factors and internal reservoir processes, such a seiche effects. Dam operations, including the use of alternate release structures, high sustained release volumes, and daily fluctuations can significantly affect reservoir and downstream release water quality (Hueftle and Vernieu, in review). Changes in reservoir water quality near the dam have an immediate effect on downstream releases; changes in upstream portions of the reservoir have a longer-term effect on release water quality. The IWQP is designed to measure changes in the reservoir and downstream releases under current and future dam operations to meet this information need. Continued analysis and application of hydrodynamic and conceptual models is planned to further understand the effects of dam operations on downstream water quality. **IN 2.2** Evaluate feasibility of short term or long term changes of water temperature through selective withdrawal. (Medium Priority-6) The feasibility of changing water temperature at a given point in Grand Canyon through the use of a TCD is dependent on availability and quantity of warm water in Lake Powell, depth of withdrawal from the reservoir, time of withdrawal, and warming patterns dependent on discharge level and geomorphic reach. The Bureau of Reclamation is evaluating feasibility of a TCD from an engineering standpoint. While research and monitoring specific to a Temperature Control Device (TCD) experiment will be developed separately from the IWQP, the basic long term monitoring specified in this plan provides valuable information to establish baseline patterns on which the operation of a TCD could be evaluated. #### Recreation Resources IN 1.5 Determine potential impacts of increased heavy metals on sport fishing (Low Priority-0) This information need is not being met by the proposed IWQP. While related to water quality issues (concentration of heavy metals in water, it also has implications to fisheries, public health, and toxicology issues. Metals concentrations are currently measured by the USGS at the Lees Ferry and Diamond Creek NASQAN gauging station. If unacceptable metals concentrations are identified and determined to be related to dam operations, involvement of other agencies such as the EPA or Arizona Dept. of Environmental Quality and other further research could be pursued. This information need received very low priority by the TWG. #### **Gray Category** These INs while characteristic of the Lake Powell reservoir, also relate to downstream resources. Operations of Glen Canyon Dam can affect both the quality of water released from the dam, having immediate effects on the downstream ecosystem, and the quality of water within the reservoir, having longer-term effects downstream. Monitoring activities focus on characterizing reservoir conditions and eventual release water quality and are conducted upstream of Glen Canyon Dam. They meet the INs specified in this category as well as those specified in the white category. #### Lake Powell Water Quality (Physical/Chemical) IN 1.1 Determine the effect of current dam operations on reservoir water quality, including but not limited to the following: (High Priority-10) a) Determine near-dam hydrogen sulfide levels (and other hazardous chemical constituents) within the hypolimnion occurring under current dam operating criteria. The generation of hydrogen sulfide can occur with the depletion of dissolved oxygen, or anoxia. Hydrogen sulfide is both toxic to aquatic organisms and corrosive to powerplant machinery. Dissolved oxygen levels below 1 mg/L have not been recorded during this historical monitoring program. However, the potential exists, under extended periods of meromixis, for anoxia to occur in the forebay with the formation of hydrogen sulfide and potential release downstream. Anoxic conditions are observed with some regularity in Navajo Canyon and the Escalante Arm of Lake Powell and can be used to model main channel anoxia. Dissolved oxygen measurements collected during a reservoir water quality profile will be used to determine when there is a potential for the presence of hydrogen sulfide. When dissolved oxygen levels of less than 1 mg/L are observed, hydrogen sulfide determinations will be made using a portable test kit. b) Determine the dynamics of lake stratification and advective flows and their effects on chemical constituents Lake stratification, convective mixing, and the influence of advective currents in Lake Powell are determined by quarterly reservoir monitoring surveys and monthly forebay monitoring. Forebay monitoring provides information on stratification patterns in the deepest portion of the reservoir on a monthly basis. Quarterly reservoir-wide surveys describe the behavior of advective currents and longitudinal variations in the reservoir, on a seasonal basis, providing a longer-term view of future release water quality and describing how internal mixing processes in the reservoir affect water quality patterns near the dam and in downstream releases. By determining the influence of internal dynamics and other hydrologic and climatological factors the effects of various aspect of dam operations can be determined more clearly. c) Determine/quantify the dynamics of major cations, anions, and
nitrate/phosphate ratios resulting from dam operations Chemical sampling for nutrient compounds and major ions is used to determine and quantify the dynamics of these constituents. These chemical samples are collected from various depths at selected stations during quarterly reservoir surveys, monthly forebay surveys, and on a monthly basis below the dam and at Lees Ferry. Actual hydrodynamics of significant strata related to dam operations are determined by more resolute measurements of temperature and specific conductance during a reservoir water quality profile. These samples characterize the chemical makeup and nutrient concentration of significant strata within the reservoir and in releases downstream and can be used to determine the origin or history of a particular body of water in the reservoir. d) Determine the effects of dam operations (under approved operating criteria) on the physical/chemical dynamics of Lake Powell side channels and embayments The major focus of the IWQP reservoir monitoring program is on the main channel of the Colorado River and other major tributary arms of the reservoir (San Juan and Escalante). The main channel is dominated by advective flow patterns and thus, more directly affected by dam operations. It has been recognized, however, that side channels and embayments are important to biological processes and fishery habitat in the reservoir due to relatively longer retention times of water in these areas. These areas may also exhibit water quality problems related to dissolved oxygen and other contaminants. Direct effects of dam operations in these areas are limited to fluctuations in reservoir elevation and influence of main channel processes. IWQP monitoring activities in these areas are limited to occasional observations of conditions in selected areas for problem identification and to model main channel processes on a smaller scale. e) Quantify/model the heat budget for Lake Powell to determine near-term and long-term (monthly/weekly and annual summaries respectively) effects of a selective withdrawal system The feasibility of changing water temperature released from Glen Canyon Dam through the use of a TCD is dependent on availability and quantity of warm water in Lake Powell, depth of withdrawal from the reservoir, time of withdrawal, and downstream warming patterns. The Bureau of Reclamation is evaluating feasibility of a TCD from an engineering standpoint. While research and monitoring specific to a Temperature Control Device (TCD) experiment will be developed separately from the IWQP, the basic long term monitoring specified in this plan provides valuable information to establish baseline patterns on which the operation of a Temperature Control Device could be evaluated. f) Determine the effect of current dam operations on reservoir levels of selenium. The IWQP does not currently provide specific focus on selenium levels in Lake Powell. The Bureau of Reclamation is currently undertaking an Upper Colorado River basin-wide selenium study to address sources of loading and effects to biological resources (Jerry Miller, personal comm.) Field support on quarterly reservoir surveys is provided for Lake Powell sample collection. Selenium concentrations are being monitored by the USGS at the Lees Ferry and Diamond Creek NASQAN gauging station. No further work in this area is planned unless unacceptable levels of selenium are found and a direct linkage exists relating selenium concentrations to dam operations. #### Lake Powell Water Quality (Biological) **IN 1.1** Determine the impacts of dam operations and resulting water quality on primary and secondary productivity of Lake Powell, including: (Medium Priority-5) - a) Algae (phytoplankton component) - c) Zooplankton The IWQP monitors the basic indicators of primary and secondary productivity in Lake Powell and downstream releases to the Colorado River. Quarterly reservoir sampling characterizes chlorophyll concentration, and the abundance and community structure of phytoplankton and zooplankton populations. These sestonic components of the primary and secondary productivity in Lake Powell are those that are part of the water in the reservoir and could be affected by dam operations and incorporated into down stream releases. The biological components normally attached to the substrate of the reservoir are part of the black category described below and are not addressed by the IWQP. #### **Black Category** These INs relate mostly to the Lake Powell aquatic ecosystem with little or no connection to downstream resources. They are not part of the Adaptive Management Program but are retained in a non-program information-desired category. No support is provided by the IWQP in this area and no activities are proposed in this plan to address these information needs. #### Lake Powell Water Quality (Biological) - **IN 1.1** Determine the impacts of dam operations and resulting water quality on primary and secondary productivity of Lake Powell, including: (Medium Priority-5) - a) Algae (periphyton component) - b) Macrophytes - d) Macroinvertebrates - **IN 1.2** Quantify levels of selenium and describe effects of these levels on primary and secondary productivity, fish and waterfowl, and human consumption. (Low Priority -1) #### Lake Powell Aquatic Ecosystem - IN 2.1 Determine the effects of water temperature caused by dam operations. (Low Priority-1) - IN 2.2 Determine the effects of fluctuations in the reservoir surface elevations caused by dam operations (under approved operating criteria) (Low Priority-0) - IN 2.3 Determine the effects of elevated selenium levels caused by dam operations (under approved operating criteria) (Low Priority-0) - IN 2.4 Determine the effects of advective flow patterns on the Lake Powell aquatic ecosystem caused by dam operations (under approved operating criteria) (Low Priority-0) - IN 2.5 Determine the effects of predator/prey relationships caused by dam operations (under approved operating criteria) (Low Priority-1) - IN 2.6 Determine the effects of fish movements caused by dam operations (Low Priority-1) 12 Table 1. Comparison of Information Needs with Monitoring Plan Content | Category | Information Need | Priority | Support
Level | Supporting Data | Locations | |---------------------------------|---|-----------------|------------------|--|--| | | White Category - Activities below dam addressing downstream resources | ddressing downs | stream res | ources | | | Bio Res
A1-Aq Food
IN 1.1 | Determine status and trends in aquatic food base species composition and population structure, density and distribution and the influence of ecologically significant processes | High - 10 | Indirect | TemperatureNutrientsBiologicalcomposition | Lake PowellForebayTailwaterGrand Canyon(temperature) | | Bio Res
A1-Aq Food
IN 1.2 | Determine the effects of past, present and potential dam operations under the approved operations criteria on the aquatic food base species composition, population structure, density and distribution in the Colorado River ecosystem | High - 10 | Indirect | TemperatureNutrientsBiologicalcomposition | Lake PowellForebayTailwaterGrand Canyon(temperature) | | Bio Res
A2-Trout
IN 2.6 | Define criteria (e.g., temperatures, flow regimes, contaminants, metals, nutrients) for sustaining a healthy rainbow trout population in Glen Canyon | Low - 4 | Indirect | TemperatureNutrientsBiologicalcomposition | TailwaterGrand Canyon(temperature) | | Category | Information Need | Priority | Support
Level | Supporting Data | Locations | |-------------------------------|---|------------|------------------|--|--| | Bio Res
A3-HBC
IN 3/4.3 | Develop and implement a program to evaluate effects of factors limiting overwintering survival of young-of-the-year HBC in the Grand Canyon (Fall 97, RPM 1) | High - 10 | Indirect | Temperature | TailwaterGrand Canyon | | Bio Res
A3-HBC
IN 3/4.7 | Humpback Chub (HBC) - Determine the origins of fish food resources, energy pathways and nutrient sources important to their production, and the effects of GCD operations on these resources. Evaluate linkages between the aquatic food base and the health and sustainability of HBC populations | Medium - 7 | Indirect | TemperatureNutrientsBiological composition | Lake Powell Forebay Tailwater Grand Canyon (temperature) | | Bio Res
A3-HBC
IN 5.1 | Determine a set of possible temperature changes in the mainstem
Colorado River resulting from implementing selective withdrawal | Medium - 6 | Direct | ■ Temperature |
Lake PowellForebayTailwaterGrand Canyon | | Bio Res
A3-HBC
IN 5.2 | Determine the anticipated effects on HBC and other native populations, which may result from installing a selective withdrawal structure for thermal modification in the mainstem of the Colorado River downstream of GCD. Determine the range of temperatures for successful larval fish development and recruitment and the relationship between larval, juvenile growth and temperature. | High - 10 | Indirect | ■ Temperature | Tailwater Grand Canyon | | Category | Information Need | Priority | Support
Level | Supporting Data | Locations | |-----------------------------|--|------------|------------------|---|--| | Bio Res
A3-HBC
IN 5.3 | Determine the effects of dam operations, including installing a selective withdrawal structure for thermal modification in the mainstem of the Colorado River downstream of GCD on: • Reproductive success, growth and survivorship of GC fishes • Parasites and disease organisms of endangered and native fishes in the CR ecosystem • Temperature induced interactions between native and non-native fish competitors and predators and the effects of temperature, including seasonality and degree, on Cladophora and associated diatoms, Gammarus and aquatic insects | High - 14 | Indirect | - Temperature | TailwaterGrand Canyon | | Bio Res
A3-HBC
IN 5.4 | Evaluate the effects of withdrawing water on the heat budget of Lake Powell, effects of potentially warmer inflow into Lake Mead, and the concomitant effects on the biota within both reservoirs. Evaluate the temperature profiles along with heat budget for both reservoirs. Evaluate the effects of reservoir withdrawal level on fine particulate organic matter and important plant nutrients to understand the relationship between withdrawal level and reservoir downstream resources. | Medium - 7 | Indirect | Temperature Specific conductance Dissolved oxygen pH Turbidity Major Ions Nutrients Biological composition | Lake Powell Forebay Tailwater Grand Canyon (temperature) | | | | | Support | ., | , | |--------------|--|------------|------------|----------------------------|--| | Category | Information Need | Frority | Level | Supporting Data | Locations | | | | | | | Lake Powell | | bio Kes | Evaluate when to release warmer temperature water, what seasonal pattern of releases to use to avoid establishment of permanent | Linh 0 | Indirect | Tomnoratire | Forebay | | A3-nbc | backwater areas, and how best to use floods to limit expansion or invasion of non-native fish species | (- mgm - | 133 IIDIII | - Temperature | Tailwater | | C:C NI | | | | | Grand Canyon | | | | | | Ē | Lake Powell | | Bio Res | | | • | - Temperature | Forebay | | A3-FMS et al | Determine historic and current ecosystem requirements (nabitat, spacing, food source, interdependencies, etc.) of native fish species. | Medium - 5 | Indirect | ■ Nuurients | Tailwater | | IN 8.4 | | | | - broughcar
composition | Grand Canyon
(temperature) | | Phys Res | Monitor water quality, composition and temperature and compare to | Link 0 | | | | | IN 2.1 | applicable standards. | rngıı - 2 | | | | | Category | Information Need | Priority | Support | Supporting Data | Locations | |----------|---|----------|---------|--|--| | | IN2.1a Quantify current sclenium levels in water discharged from GCD. Determine how selenium concentrations are affected by dam operations. | | None | Selenium concentrations from UC-BOR program Selenium concentrations from USGS NASQAN program | Lake Powel! Lees Ferry (NASQAN) | | | IN2.1b Determine/quantify the dynamics of major cations, anions and nitrate/phosphate ratios resulting from dam operations | | Direct | Temperature Specific conductance Dissolved oxygen pH Turbidity Major Ions Nutrients Biological composition | Lake Powell Forebay Tailwater Grand Canyon (temperature) | | Category | Information Need | Priority | Support | Supporting Data | Locations | | |----------|--|-----------------|------------|--|----------------------------------|--| | | | | 54.22 | | | | | | | | | | Lake Powell | | | Phys Res | Evaluate feasibility of short term or long term changes of water | Media | T- 45-24 | F | Forebay | | | IN 2.2 | temperature through selective withdrawal | o - Illiannaini | 139 101 | • Teniperature | Tailwater | | | | | | | | Grand Canyon | | | Rec Res | | C | | Selenium concentrations from | Lees Ferry | | | IN 1.5 | Determine potential impacts of increased heavy metals on sport fishing | | None | USGS NASQAN | (NASQAN) | | | | | | | program | | | | Category | Information Need | Duisuite | Support | S. C. | 1 | |---------------|---|----------------|------------|---|-------------------------------| | Caregory | | riorny | Level | Supporting Data | Locations | | | Gray Category - Activities above dam addressing downstream resources | dressing downs | tream reso | urces | | | Lake Powell | | | | | | | Water Quality | Determine effect of current dam operations on reservoir water quality including but not limited to the following: | | | | | | (Phys/Chem) |) | Hign - 10 | | | | | IN 1.1 | | | - | | | | | | | | ■ Temperature | | | | | | | Specific conductance | ■ Lake Powell | | | IN 1 to Determine near-dam hydrogen cultide () within the | | | | | | - 10- | hypolimnion under current damcriteria. | | Direct | Dissolved oxygen | Forebay | | | | | · | Hd ■ | Tailwater | | | | | | Hydrogen sulfide
(if indicated) | | | Lake PowellForebayTailwater | | Lake Powel!ForebayTailwater | |--|-------------|---| | Temperature Specific conductance Dissolved oxygen pH Turbidity Major Ions | ■ Nutrients | Temperature Specific conductance Dissolved oxygen pH Turbidity Major lons Nutrients Biological composition | | Direct | | Direct | | | | | | IN 1.1b Determine the dynamics of lake stratification and advective flows and their effects on chemical constituents | | IN 1.1c Determine/quantify Dynamics of major cations, anions, and nitrate/phosphate ratios from dam operations | | | | | | | | ■ Temperature | |
--|-----------|--|--| | | | Specific conductance | | | | | ■ Dissolved oxygen | | | IN 1.1d Determine effects of dam operations () on the phys./chem. | | Hd ■ | ■ Lake Powell | | Dynamics of Lake Powell side channels and embayments. | יוומזובכר | Turbidity | ■ Forebay | | | | ■ Major Ions | | | | | ■ Nutrients | | | | | Biological composition | | | | | ■ Temperature | ■ Lake Powel! | | IN 1.1e Quantify/model the heat budget for Lake Powell to determine | | | Forebay | | near with and roughterm () cheeks of a selective withdrawar system | Direct | conductance | Tailwater | | | | Biological composition | Grand Canyon
(temperature) | | The Property of the Control C | | Selenium
concentrations from
UC-BOR program | ■ Lake Powell | | levels of selenium | None | Selenium
concentrations from
USGS NASQAN
program | Lees Ferry
(NASQAN) | | | Lake Powell | • Forebay | Tailwater | | | |--|--|--------------|-------------------------------|-----------------------------|--| | TemperatureSpecific conductance | Dissolved oxygen | Hd ■ | Turbidity | Nutrients | Biological composition | | | | Direct | | | | | | | Medium - 5 | | | | | | Determine the impacts of dam operations and reculting water anality on | | phytoplankton and zooplankton | | | | : | Lake Fowell | water Quanty | (Biological) | Z. | | | Category | Information Need | Priority | Support
Level | Supporting Data | Locations | |---|--|------------------|------------------|---|--| | | Black Category - Activities above dam addressing upstream resources | addressing upstr | ream resou | ırces | | | Lake Powell Water Quality (Biological) IN 1.1 | Determine the impacts of dam operations and resulting water quality on primary and secondary productivity of Lake Powell including: periphyton, macrophytes and macroinvertebrates | Medium - 5 | None | None | ■ No support | | Lake Powell Water Quality (Biological) IN 1.2 | Quantify levels of selenium and describe effects of these levels on primary and secondary productivity, fish and waterfowl and human consumption | Low - 1 | None | Selenium concentrations from UC-BOR program Selenium tissue concentrations from USFWS sampling | Upper Colorado Basin Lake Powell | | Lake Powell
Aq. Ecosystem
IN 2.1 | Determine effects of water temperature caused by dam operations on the Lake Powell aquatic ecosystem | Low - 1 | None | Temperature Biological composition | Lake Powell | | Lake Powell Aq. Ecosystem IN 2.2 | Determine the effects of fluctuations in the reservoir surface elevation on the Lake Powell aquatic ecosystem caused by dam operations (under approved operating criteria) | Low - 0 | None | TemperatureBiologicalcomposition | ■ Lake Poweli | |--|--|---------|------|---|---| | Lake Powell
Aq. Ecosystem
IN 2.3 | Determine the effects of elevated selenium levels on Lake Powell aquatic ecosystem caused by dam operations (under approved operating criteria) | Low - 0 | None | Selenium concentrations from UC-BOR program Selenium tissue concentrations from USFWS sampling Biological composition | Upper Colorado Basin Lake Powell | | Lake Powell
Aq. Ecosystem
IN 2.4 | Determine the effects of advective flow patterns on the Lake Powell aquatic ecosystem caused by dam operations (under approved operating criteria) | Low - 0 | Мопе | Temperature Specific conductance Dissolved oxygen pH Turbidity Nutrients Biological composition | ■ Lake Powell | | Lake Powell | Determine the officer of modele (modele modele modele modele modele modele | | | | | | |---------------|--|---------|------|--------------------------------|---------------------------------|--| | Aq. Ecosystem | aquatic ecosystem caused by dam operations (under approved | Low - 1 | None | Biological | Lake Powell | | | IN 2.5 | operating criteria) | | | | | | | Lake Powell | | | | | | | | Aq. Ecosystem | Determine the effects of fish movements caused by dam operations | Low - 1 | None | ■ None | None | | | IN 2.6 | | | | | | | ## Chapter 2 WATER QUALITY MONITORING PLAN #### Introduction The monitoring program described in this report is designed to meet the Information Needs (INs) of the Glen Canyon Dam Adaptive Management Program identified in Chapter 1. The primary goal of the Integrated Water Quality Program (IWQP) is to describe and understand the influence of dam operations on water quality in Lake Powell and Glen Canyon Dam releases and its effect on downstream resources. This goal will be met by maintaining a long-term program of basic water quality data monitoring, defined as the periodic measurement of a consistent, repeatable set of common water quality parameters from an integrated network of sites from Lake Powell through the Grand Canyon. The information will be collected according to standardized monitoring protocols and maintained in a common database. Necessary research will be also be conducted based on specific hypotheses to fully address specific INs, form linkages with other resource components, and to evaluate protocols and methodologies. The IWQP consists of four components of basic long-term monitoring and a research component to meet specific INs. The overall objectives of the program are to evaluate trends in water quality, determine the effects of dam operations and other factors on water quality, and provide information to form linkages between water quality and other components of the aquatic ecosystem. Specific objectives guide monitoring activities under each program component and are listed separately under the description of each component. Under a proposal agreed to by the Technical Work Group (TWG), funding for activities under the "Gray Area" of the IWQP, those conducted upstream of Glen Canyon Dam, will come from the Bureau of Reclamation O&M program (Appendix A). The proposal specifies that GCMRC develop the scope of work in coordination with Reclamation and that GCMRC and/or its contractors will accomplish this work. This plan has been developed in coordination with Reclamation personnel and has undergone technical review by independent
experts and the TWG. We provide an overview of the plan components and proposed scientific activities that would be conducted in addition to the monitoring plan. It is now presented to the Adaptive AMWG for recommended adoption. ## A. Proposed Monitoring and Research Activities The proposed GCRMC IWQP consists of four monitoring components and a research component: #### **Monitoring Activities** - 1. Quarterly reservoir water quality surveys. - 2. Monthly Forebay water quality surveys above Glen Canyon Dam. - 3. Monthly Tailwater sampling immediately below the dam and at Lees Ferry. - 4. Downstream water quality monitoring. Each of the four monitoring components is designed to meet specific objectives and INs. #### **Research Activities** 1. Necessary and Complementary Research. The four basic long-term monitoring elements of the GCMRC IWQP will be carried through Fiscal Year 2000 and beyond, as the need for this information continues. The research component will be based on prioritized information needs and integrated with other resource areas (e.g., aquatic food base, native fish, and trout). A brief discussion of the activities and objectives of the monitoring and research areas follows. #### Quarterly reservoir surveys The objective of quarterly reservoir surveys will be to characterize the chemical, physical, and biological conditions in the major strata of the reservoir, and describe seasonal and longitudinal variations in stratification patterns, mixing processes, effect of inflows, trophic status, planktonic community structure and abundance, and quality of water released downstream. Information from reservoir surveys provides a prediction of future release water quality or potential water quality problems and forms a baseline from which the long-term effects of management actions related to dam operations can be evaluated. Reservoir surveys will be conducted four times per year, coinciding with seasonal patterns observed on the reservoir. Primary focus will be given to the main channel of the Colorado River and its major tributaries in Lake Powell. When appropriate, additional efforts will be made to characterize conditions in smaller tributaries and embayments where conditions differ significantly from the main channel. A thirty-four-year period of record exists for reservoir-wide surveys, varying in frequency from monthly to yearly (Figure 2). Quarterly sampling has been shown to sufficiently describe major seasonal patterns in the reservoir. Sampling at less frequent intervals does not show these seasonal patterns, nor can it give context to observed conditions at the forebay. Profiling of common physical and chemical parameters will be performed at 20-25 stations on the reservoir. At a smaller number of selected long-term station locations, chemical sampling (nutrients and major ions) and biological sampling (chlorophyll, phytoplankton, and zooplankton) will be performed. The objective of this sampling will be to describe chemical and biological conditions of the major strata of the reservoir, significant inflow patterns, or other unusual conditions. General field observations of existing weather conditions, water depth, and water clarity will also be made. #### **Monthly Forebay Surveys** The objective of monthly forebay surveys will be to characterize the physical, chemical, and biological conditions of the Glen Canyon Dam forebay and describe monthly variations in stratification patterns, mixing processes, planktonic community structure and abundance, and quality of water released downstream. Information from forebay monitoring forms a baseline from which the immediate effects of management actions at Glen Canyon Dam can be evaluated. Sampling will focus on characterizing conditions within the major strata of the reservoir and at potential release depths. The monthly sampling frequency provides increased temporal resolution of conditions existing upstream of the dam. Conditions in the forebay have an immediate effect downstream and follow operational patterns at Glen Canyon Dam more closely than those monitored on a less frequent basis. A thirty-four-year period of record exists for forebay surveys on an approximately monthly basis, with the exception of the period 1982-1990 (Figure 2). Monthly forebay monitoring will consist of a profile of physical parameters through the water column; chemical sampling for nutrients and major ions specified depths, and biological sampling for chlorophyll, phytoplankton, and zooplankton. General field observations of existing weather conditions, water depth, and water clarity will also be made. These data have utility to researchers involved in both the reservoir and downstream (USBR/TCD, aquatic foodbase, trout, and native fish). Figure 2. 35-year period of Lake Powell monitoring 06/24/99 #### **Continuous Tailwater Monitoring** The objective of the tailwater monitoring program will be to characterize the quality of water released from Glen Canyon Dam and measure changes occurring in the tailwater below Glen Canyon Dam. These characteristics are the result of long-term climatological and hydrological processes in the Colorado River basin, advective and convective mixing processes within Lake Powell, and the operation of Glen Canyon Dam. The water quality of Glen Canyon Dam releases forms a baseline from which changes occur downstream and directly affect the aquatic ecosystem. A ten-year period of record exists for these data. Continuous monitoring of tailwater quality will be performed below Glen Canyon Dam and at Lees Ferry. Monitors will be maintained inside Glen Canyon Dam, in the tailwater immediately below the dam, and at Lees Ferry, 25 km (15.5 mi.) downstream of the dam. Measurements of temperature, specific conductance, dissolved oxygen, and pH will be made at 20-minute intervals and logged within the monitor. Monitors will be downloaded, serviced, and recalibrated on a monthly basis. On a monthly basis, chemical sampling for nutrients and major ions, and biological sampling for chlorophyll, phytoplankton, and zooplankton will be performed inside Glen Canyon Dam and at Lees Ferry. Researchers working in other resource areas within the Colorado River ecosystem (e.g., primary productivity, trout, and native fish) can utilize these data. #### **Downstream Monitoring** The purpose of this monitoring will be to describe downstream water quality conditions in the Colorado River and its tributaries and evaluate warming patterns that vary with geomorphic reach and release patterns from Glen Canyon Dam. Thermal conditions are of significant importance to fish, aquatic invertebrates, aquatic vegetation, and other components of the ecosystem. Evaluation of warming patterns is needed to describe baseline levels and the potential for instream warming of dam releases. As the water quality of Glen Canyon Dam releases forms a baseline from which changes occur downstream, the continued monitoring of some of these parameters provides more clarity regarding the direct affect of water quality on the downstream aquatic ecosystem. Thermal monitoring will be performed at several sites on the Colorado River in Grand Canyon and at major tributary mouths. Submersible monitors will be placed unobtrusively at 8 main-channel locations on the Colorado River spaced approximately 50 km apart, and 9 tributary sites in Grand Canyon (Table 2). An isolated group of warm springs near Fence Fault (RM 30) that have been identified as potential spawning areas will also be monitored. Instruments will be downloaded and serviced on a quarterly basis, in conjunction with other scheduled research trips. Monitoring of parameters other than temperature, will take place at gauging stations in Grand Canyon that are either supported by GCMRC through a contract with the U.S. Geological Survey (USGS), or are data that are available from the USGS. The GCMRC directly supports data collection efforts at the Lees Ferry, above the Little Colorado River and at the Grand Canyon Gages. These gages collect temperature, specific conductance and turbidity data. The Lees Ferry Gage and Diamond Creek Gage are also national water quality monitoring sites (NASQAN). These sites collect dissolved organic carbon, dissolved oxygen, bacteria counts, nitrogen and phosphorous data. While these latter efforts will not be supported by the integrated water quality plan, these data are available to downstream researchers. Sampling for these latter constituents occurs six times per year, rather then on a continuous basis. Table 2. Grand Canyon thermal monitoring locations | Mainstem Monitoring Sites | Tributary Monitoring Sites | |--------------------------------------|--------------------------------| | Colorado R. above Little Colorado R. | Paria R. above Lees Ferry | | Colorado R. near Grand Canyon | Nankoweap Creek | | Colorado R. at RM 127 | Little Colorado R. above Mouth | | Colorado R. above National Canyon | Bright Angel Creek | | Colorado R. at RM194 | Shinumo Creek | | Colorado R. above Diamond Ck. | Tapeats Creek | | Colorado R. at RM230 | Kanab Creek | | Colorado R. above Spencer Canyon | Havasu Creek | | | Spencer Creek | #### **Necessary and Complimentary Research** Several information needs associated with water quality are research oriented. Additionally, monitoring programs require regular analysis and assessment in order to provide quality information. A research program will be a component of the IWQP. We are proposing that a three-phase approach to research that include historical assessment, protocol review and integrated water quality research. The later component will stress forming linkages between water quality parameters with trophic level processes. The feedback loop between monitoring and research ensures that adequate baseline data for water quality are collected in support of other downstream resources. Possible management strategies and technological advances may exist in the future that the
long-term IWQP cannot address or that requires revisions to the program. These new developments or information from the monitoring program may lead to small-scale research projects to test new technologies or approaches that can advance the management objectives and information needs, as well as to respond to emergency actions or unusual events within Lake Powell or the tailwater. Examples of such research could include quantification of seiche effects on dam releases (wind- driven internal oscillations), sidebay trophic status and interactions, sediment movements, and advances in food web linkage technology (stable isotope research). These projects would be of short duration and limited expenditure, with possible integration into the monitoring program if appropriate. #### **Downstream Linkages** The quality of downstream releases of reservoir water has direct effect on the downstream aquatic food base. Stratification and hydrodynamic flow patterns in the reservoir influence the chemical, physical and biological features of the discharge. Linkages are being found relating lake water chemistry and temperature discharges to light attenuation patterns (M. Yard, pers. comm.) and phyto-benthic communities and productivity in the tailwaters (Blinn et al. 1998, P. Benenati et al., 1997). GCMRC is collaborating with other researchers to link these factors. This primarily includes collaboration with tailwater food-base and fisheries scientists, but also links to research performed throughout the Colorado River ecosystem. Water quality changes (e.g., DO, pH, nutrients, temperature, and selenium) can indirectly affect higher trophic level resources (fish, amphibians, and avifauna) through food chain linkages. The IWQP seeks to serve and collaborate with downstream research by providing the relevant water chemistry and physical analysis, and appropriate biologic sampling. The proposed monitoring and research program addresses many of these issues. Gaps in the information will be addressed through specific research or collaboration with other agencies. High-resolution trace metal sampling is not currently included in this program, though Reclamation performs some selenium analysis. Further research with stable isotopes may be needed to establish food-web connections. Other techniques may become available that assist in linking reservoir sidebay interactions with the mainstem and consequently downstream discharges. Other linkages may evolve as information is evaluated. # B. Proposed Activities for FY2000 In addition to the monitoring and research activities outlined above, several areas of work requiring additional focus are proposed for FY2000. It is anticipated that progress in these areas will result in refinements to the existing monitoring program, that will result in more cost-effective execution of the program, better definition of informational requirements, increased data availability and utility, and better feedback to management objectives. #### Hydrodynamic Modeling Reclamation is currently working on applying and refining various hydrodynamic computer simulation models for Lake Powell. The primary purpose for this modeling effort has been to predict immediate effects of temperature control modifications at Glen Canyon Dam. Having a well-calibrated model to simulate historical conditions and predict future conditions could benefit the management of Lake Powell and Glen Canyon Dam and could potentially reduce of some of the current monitoring effort. Cooperation between Reclamation and GCMRC in the setup, calibration, validation and application of a hydrodynamic model for Lake Powell is crucial to ensure its effectiveness for multiple purposes. Several objectives of applying a hydrodynamic model for Lake Powell are proposed. The model could evaluate the long-term data collection program and recommend refinements to the current scheme of sample location and monitoring frequency. The relative effects of climate and hydrology could be more accurately separated from those of dam operations. The model could be used to fill in previous gaps in the historical data set. Scenarios for different aspects of dam operation and predicted downstream effects could be evaluated. Future predictions could be coupled with the downstream conceptual model to anticipate downstream ecosystem effects. Conditions that may result in sustained periods of meromixis and potential water quality impacts could be evaluated. Applying and calibrating a hydrodynamic model requires several types of information in order for the model to function properly (Cole and Buchak, 1995). Inflow water quality and meteorological data is needed to meet these basic requirements. Reclamation will be working with other federal agencies to establish additional weather stations on Lake Powell. GCMRC and/or other agencies can participate with field collection, maintenance of remote monitoring equipment, and data management to facilitate data input to the modeling effort. During FY2000, GCMRC will evaluate water quality data collected at existing upstream gages. If a need for additional monitoring is required in the inflow areas of Lake Powell, GCMRC will deploy and maintain this instrumentation on quarterly reservoir surveys. GCMRC will collaborate with Reclamation in the development, application, and calibration of the hydrodynamic model. #### **Data Management** Effective management of water quality data is crucial for gathering large amounts of historical monitoring information together for analysis. The establishment of a comprehensive data management system for water quality is proposed for FY 2000. Details of this plan are presented in Chapter 4. This plan describes the proposed design, implementation, and integration of the database within the GCMRC Information Technology program. It also describes the various tools and methodologies for analyzing and presenting these data. In order to provide effective and timely feedback on current conditions and the effects of management actions, further work needs to be done making these data, summary products, and other analyses readily available to the AMWG, other researchers and the general public. Several means are currently in place and will be enhanced. Information will be developed for availability on the World Wide Web, GCMRC technical reports, and in peer-reviewed journal articles. Proposed activities for FY 2000 include conversion of existing data files to Microsoft Access, maintaining the relational structure proposed in 0. As the GCMRC Oracle database development proceeds, this database will be migrated in modular form to that system. A primary goal of this project is to evaluate all existing data within a common system, provide error checking and validation, make it easily available to interested parties. The EPA STORET Version 1.1 will be evaluated for providing this function. # C. Proposed Activities for FY2001 As in FY2000 the monitoring and research activities outlined above would continue, but the emphasis of additional work will change. The focus in FY2001 will be protocol evaluation and further evaluation of the downstream water quality program. The timing of this protocol evaluation is linked to the aquatic food base evaluation scheduled to take place in FY2001. #### **Protocol Evaluation** New developments or information from the monitoring program may lead to small-scale research projects to test new technologies or approaches that can advance the management objectives and information needs of the proposed program. In addition, the program will undergo protocol evaluation in conjunction with the established review of the Biological Resources Program. Examples of such research could include use of a fluorimeter to provide in situ chlorophyll analysis, acoustic Doppler for defining current velocities, alternate chemical analysis methods, sampling methodology or locations. Some elements may be integrated into the monitoring program, if appropriate, under approval of TWG. # **Downstream Water Quality Program** The IWQP recognizes that the information collected in the downstream reach may not be adequate to a number of management objectives and information needs identified by AMWG. It is proposed that a 3-phase program be considered to fill this gap. This program would be contracted out via the RFP process. #### 1. Assessment: - Literature would be reviewed to develop a synthesis of past collections of water quality data since the construction of the dam. - Existing data collections would be evaluated. - An evaluation of downstream researchers' water quality data needs (parameters, collection frequency, and data quality requirements) for addressing AMWG information needs would be conducted. - 2. Research will be designed to ascertain the best methodologies for describing water quality trends and will integrate with existing programs. It will address long-term versus short-term data needs and may include a testing phase. - 3. The research will be used to design an efficient water quality monitoring program. #### D. Related Activities There are activities associated with the adaptive management program that will require additional data collection efforts. While these activities are not developed in this document, the IWQP recognizes that the level of monitoring and research covered in this plan may not adequately cover the needs of these planned actions. ## **Temperature Control Modifications** Modifications at Glen Canyon Dam for the installation of a temperature control device have been proposed. This device would withdraw warmer water from the epilimnion of the reservoir at a higher level than that normally used for powerplant operations. This has the potential for creating significant changes both in the downstream environment and the reservoir within Lake Powell as the surface has much higher biological productivity and different chemistry than penstock depths. This experiment will require
modification to the existing water quality program to include more detailed baseline data, document changes under operation of the device, and evaluate its effect to longer-term reservoir and downstream water quality patterns. The biological monitoring program in particular would need revision as it currently does not have the spatial and temporal resolution to reflect short-term effects. The distribution and abundance of plankton is of a patchier nature than chemicals in solution; it is regulated by dynamics within the fisheries community, penetration of light, temperature and location of the thermocline, wind patterns, nutrient availability, and many other factors (Horne & Goldman 1994, Wetzel 1975, and others). A monitoring plan specific to the temperature control device experiment will be developed by GCMRC. At this point, the monitoring plan described in this document does not include specific activities related to the temperature control device. Maintenance of the current program, however, ensures that minimal baseline data is being gathered. #### **Beach Habitat Building Flows** In January 1998, the AMWG approved hydrologic triggering criteria that must be met before a Beach Habitat Building Flow (BHBF) is conducted. The ROD specifies that the objectives of the BHBF were to be accomplished in high reservoir storage years using releases in excess of powerplant capacity required for dam safety purposes. When appropriate hydrologic triggering criteria are met, releases above powerplant capacity will occur, which will involve the withdrawal of water from alternate release structures on Glen Canyon Dam. A similar release in 1996 resulted in significant changes to the water quality in Lake Powell and Glen Canyon Dam releases (Hueftle & Stevens, in review). A research plan is included in the BHBF contingency plan, but it may also need to incorporate special water quality monitoring requirements beyond those proposed or those elements specified in this plan. #### **Conceptual Modeling** Further work is proposed to the existing Grand Canyon Conceptual Model to allow for better linkage with Glen Canyon Dam release water quality. Currently, water quality inputs to the model are limited to historical temperature patterns. Further work needs to be done to allow better linkage to the model from Glen Canyon Dam release water quality. While providing a needed linkage between reservoir release water quality and the downstream ecosystem, this project will be part of the development of the Grand Canyon Conceptual Model and will not be funded from O & M funds. Proposed objectives of this effort are: - 1. Identify critical parameters in Lake Powell that have direct effects on downstream resources - 2. Quantify the effects of dam operations and long-term hydrology on these parameters - 3. Determine the usefulness of linking a reservoir simulation model with the downstream conceptual model and modification to the food base component of the downstream conceptual model. Detailed conceptual modeling of the broader Lake Powell ecosystem is not proposed at this time. # E. Resource Requirements In order to accomplish this program, certain resources are required in several areas. Equipment and instrumentation must be in safe and reliable condition and meet technological requirements of precision and accuracy. Staffing needs must be met to provide program direction, contract support, technical analysis and interpretation, data management, field support, maintenance of instrumentation and equipment and clerical support. An adequate budget must be established and maintained to ensure the continuation of the long-term monitoring program. # **Equipment** Equipment is currently in place at GCMRC to effectively execute this water quality monitoring program. One of the most important tools for accomplishing reservoir work is the 32-foot Uniflite limnology vessel and its associated equipment. This boat has been in service on Lake Powell since 1970 and much of the limnological equipment and field methodology has been customized around it. Auxiliary equipment includes a sonar depth finder, radio, motorized reel for deployment of the Hydrolab Surveyor 3/H20 profiling instrument, motorized winch for sample collection, and a sample filtration station. The boat is currently in need of mechanical and exterior work to ensure its safety and reliability into the future. This work will be performed in FY 1999 and includes replacement of the engines and power train, replacement of the generator, refinishing of the exterior, and some remodeling of the interior of the boat. Water quality instrumentation consists of a Hydrolab Surveyor3/H20 with a 160-m cable, four Hydrolab Recorder multi-parameter dataloggers, and a collection of thermal dataloggers for Grand Canyon thermal monitoring use. The purchase of additional Hydrolab Recorders is proposed to initiate Lake Powell inflow water quality monitoring and to provide backup units for tailwater monitoring. Other sampling equipment consists of plankton nets, secchi disks, filtration apparatus, and other associated equipment. #### Staffing Presently, the GCMRC IWQP is being conducted with two permanent staff positions. Ancillary help is received from an Interagency Acquisition from the National Park Service, part time term appointees, and volunteers as available. Reclamation's Upper Colorado Regional Office has provided assistance for quarterly reservoir surveys for the past several years. Staffing requirements include field activities for sampling and instrument deployment and retrieval. These activities require trip planning and preparation, ensuring adequate supplies and needed equipment, and scheduling of personnel. Instrument downloading, maintenance, calibration and servicing are performed in the field or in a laboratory setting. Sample processing and shipment and equipment maintenance is required following a field survey. Data management, statistical summarization, and graphical analysis of the data are required prior to interpretation and subsequent reporting. #### **Budget** The budget presented below allocates the costs of the program by program element as well as source of funding. Currently, \$162,000 of program funds is allocated through a competitive contracting process. These include the costs for sample processing and for downstream water quality data collected at the USGS gages. In addition, about 10 to 20 percent of the time of the limnologist and aquatic biologist are allocated to GCMRC activities outside of the IWQP. Research funds, are estimated at \$50,000 per year and will be used to support necessary research activities. Consistent with GCMRC policies, it is anticipated that the monitoring funds are allocated for the long-term whereas the research funds are expected to role over from year to year and become available to support a subsequent research activity, once the prior research activity is completed. Finally, in FY 2001 approximately \$25,000 will be spent on a protocol evaluation panel. Table 4. Proposed budget for IWQP for FY2000 Source of Funds | Program Elements | O&M | AMP | <u>Total</u> | |--|-----------|-----------|--------------| | | | | | | 1. Personnel ¹ | | | | | Limnologist | \$54,000 | \$23,000 | \$77,0002 | | Aquatic Biologist | \$54,000 | \$23,000 | \$77,000 | | Environmental Studies Asst. | \$25,000 | \$10,000 | \$35,000 | | Other | \$22,000 | \$10,000 | \$32,000 | | Sub-total | \$155,000 | \$66,000 | \$221,000 | | 2. Sample Processing ³ | \$ 85,000 | \$ 7,000 | \$ 92,000 | | 3. Downstream Water Quality (USGS) ⁴ | \$ - 0 - | \$70,000 | \$ 70,000 | | 4. Research | \$ 30,000 | \$ 20,000 | \$ 50,000 | | 5. Logistics ⁵ | \$ 20,000 | \$ 8,000 | \$ 28,000 | | 6. Travel | \$ 8,000 | \$ 2,000 | \$ 10,000 | | 7. Data Analysis & Report Preparation ⁶ | \$ 2,000 | \$ 1,000 | \$ 3,000 | | TOTAL | \$300,000 | \$174,000 | \$474,000 | ¹ These costs cover personnel for Lake Powell data collection, data analysis, and reporting, as well as tailwater and downstream activities, including thermal monitoring. Also included are trips required to maintain the sensors that are in the field. ² Includes base salary, benefits, and leave assessment. ³ Sample analysis is contracted out through a competitive process to a qualified water quality lab. ⁴ USGS currently has a contract, obtained through the competitive RFP process to collect water quality data at gages in the Grand Canyon. ⁵ Includes boat operating and O&M expenses, foodpacks, equipment maintenance and reagents. ⁶ This covers the cost of additional sample analysis that may be required, and the cost of report preparation, including color copies, as well as the cost of preparing slides and posters for scientific and public meetings. 06/24/99 # Chapter 3 SAMPLING LOCATIONS AND FREQUENCY # Introduction The primary goal of the GCMRC Integrated Water Quality Program (IWQP) is to describe and understand the influence of dam operations, in the context of climatological and hydrological factors, on water quality in the reservoir and downstream releases and anticipate the effects of future operational scenarios. #### **Monitored Parameters** # **Physical and Chemical** Common physical and chemical parameters of water quality will be routinely collected during the measurement of a reservoir profile, continuously in the tailwater below Glen Canyon Dam, and in conjunction with the collection of all chemical samples. These measurements will be taken using a multi-probe instrument, such as a Hydrolab Surveyor3/H20 or Hydrolab Recorder. These measurements will include temperature (°C), specific conductance (µS), pH, dissolved oxygen (mg/L), and turbidity (NTU). Temperature and specific conductance are important in reservoir surveys because they primarily define the density of the water and determine the fate of an inflow and degree of stratification. Specific conductance is also an indirect measure
of salinity and is one indicator of the chemical composition of water. DO and pH indicate layers of biological respiration that can influence concentrations of nutrients. Temperature is important to downstream chemical and biological processes. Specific conductance is also used in a river system to quantify additional chemical inputs from non-gauged tributaries by mass balance. Dissolved oxygen is important to downstream biological processes. Aquatic organisms have specific requirements for dissolved oxygen. In the reservoir, dissolved oxygen levels indicate the relative age of inflow currents, suitability for release to downstream organisms, and the degree of decomposition of organic matter in a particular stratum. pH is affected by biological and chemical processes such as respiration and oxidation-reduction potential and reflects changes in dissolved oxygen, indicates amounts of carbon dioxide and degree of buffering in the water from biological or atmospheric processes. Turbidity is used to track inflow currents, indicating the concentration of organic or inorganic particles and the amount of light available underwater. Chemical samples for major ion analysis will be collected to characterize the overall chemical makeup of the water being sampled. Laboratory analysis will include specific conductance, pH, total dissolved solids and total suspended solids, which describe the physical aspects of the water. Chemical concentrations will also be determined for the major cations and anions (sodium, calcium, magnesium, potassium, sulfate, chloride, carbonate, and bicarbonate), in addition to alkalinity, total dissolved solids, iron and dissolved organic carbon. Alkalinity determinations are also performed in the field concurrently with the collection of a chemical sample. Samples will be collected to determine the concentration of nutrient compounds (total phosphorus, soluble reactive phosphorus, dissolved ammonia nitrogen, total Kjeldahl nitrogen, and dissolved nitrate-nitrite nitrogen). These nutrient compounds support primary productivity in the reservoir and downstream aquatic ecosystem. Phosphorus levels in the reservoir and tailwater are low; most concentrations are below detectable limits by currently used analytical procedures. Further exploration of techniques to achieve lower detection levels will be pursued (Table 4). Table 4. Detection limit and EPA Methodology of chemicals analyzed for the IWQP. | Analyte | Symbol | Sample
Units | Detection
Limit | EPA
Method | |---------------------------|-------------------|-----------------|--------------------|---------------| | Ph | ysical (Hyd | lrolab pro | ofiles) | | | Temperature | T | °C | 0.1 | | | Specific
Conductance | EC | μS/cm | 1 | | | РН | pН | рН | 0.01 | | | Dissolved
Oxygen | DO | mg/L | 0.01 | | | Oxidation-
Reduction | ORP | mV | 1 | | | Turbidity | | ntu | 0.1 | | | Major lon | s | | | | | Specific
Conductance | Lab EC | μS/cm | 2 | 120.1 | | рН | pН | pН | N/A | 150.1 | | Total Suspended
Solids | TSS | mg/L | 4 | 160.2 | | Total Dissolved
Solids | TDS | mg/L | 10 | 160 | | Calcium | Ca | mg/L | 0.03 | 200.7 | | Magnesium | Mg | mg/L | 0.03 | 200.7 | | Sodium | Na | mg/L | 0.03 | 200.7 | | Potassium | K | mg/L | 1.0 | 200.7 | | Carbonate | CO3= | mg/L | 1.0 | 310.1 | | Bicarbonate | HCO ³⁻ | mg/L | 1.0 | 310.1 | | Chloride | Cl. | mg/L | 1.0 | 300 | | Sulfate | SO ₄₌ | mg/L | 1.0 | 300 | | Silica | SiO_2 | mg/L | 0.02 | 200.7 | | Alkalinity | CaCO ₃ | mg/L | | Calc. | | Nutrients | | | | |-----------------------|------|-------|-------| | Total Phosphorus TP-P | mg/L | 0.005 | 365.1 | | Analyte | Symbol | Sample
Units | Detection
Limit | EPA
Method | | | | |---------------------------------|--|--------------------|--------------------|---------------|--|--|--| | Soluble Reactive
Phosphorous | OP-P | mg/L | 0.005 | 365.1 | | | | | Ammonia | NH ₃ -N | mg/L | 0.01 | 350.1 | | | | | Nitrate +
Nitrite | NO ₃ + NO ₂
N | mg/L | 0.03 | 353.2 | | | | | Total Kjeldahl
Nitrogen | TKN-N | mg/L | 0.05 | 351.4 | | | | | Biologica | Biological | | | | | | | | Chlorophyll-a | | | 0.01 | | | | | | Chlorophyll-b
Chlorophyll-c | | mg/m³ | 0.1 | | | | | | | | | 0.1 | | | | | | Pheophytin-a | | | 0.01 | | | | | | Phytoplankton | N | Mostly spp |). | | | | | | Density | y | #/L & % | 6 | | | | | | Biovolum | e 1 | mm³/L &% | 6 | | | | | | Zooplankton | N | Mostly spp |), | | | | | | Density | y | #/L&9 | 6 | | | | | | Biovolum | e n | nm³/L & % | 6 | | | | | | Fecundit | y | egg ratio | S | | | | | #### **Biological** The objective of the biological program is to characterize, both in the lake and tailwaters, long-term, seasonal, and spatial trends in abundance, community structure, and primary and secondary productivity. This is a long-term program focussing on broader trends. Separate research programs must address quantification of shorter-term effects. Specific goals of the program include the following: Quantify primary productivity in the reservoir and tailwaters. We can determine trophic status with long-term, seasonal and reach trends in chlorophyll and phytoplankton. Using statistical correlation, limiting and determinative factors of the food-base (physical, chemical, and biotic) can be indicated. Use biological indicators to evaluate water quality trends. Zooplankton and especially phytoplankton have been used to indicate trophic status, presence of pollutants and other chemical concentrations relevant to plankton growth. The IWQP can both benefit from previous research (Hutchinson 1967) and be instrumental in developing an index for arid reservoirs and regulated rivers. Quantify secondary productivity of the reservoir and tailwaters. Zooplankton are integral both as predators upon themselves and algae and as prey for fisheries, particularly during the periodic crash of forage fish. The ability to track fisheries lies in part on tracking zooplankton dynamics, both spatially and temporarily. # Frequency and Timing of Sampling Lake wide surveys will be conducted on a quarterly basis to correspond to significant seasonal processes occurring in the reservoir. These surveys will be timed to coincide with the timing of these processes, rather than being based on strict calendar intervals. #### **Late Winter** Late winter sampling will be conducted within the period from late January to early March. The objective of sampling during this period is to describe conditions when maximal winter mixing of the reservoir surface has occurred, inflows are of high density and levels of discharge are low, and biological processes are at a minimum. The epilimnion, or surface layer, of the reservoir (Figure 3) has received the maximum amount of mixing from convective and wind processes, cooling the reservoir surface during the previous winter months. In the deep lower to mid-lake regions of the reservoir, mixing has occurred to its greatest depth; however, temperature and chemical stratification persists, with the underlying hypolimnion, or bottom layer, containing colder and more saline water. In the upstream areas of the reservoir, where depths are less than the maximum depth of winter mixing, turnover, or complete mixing occurs. Figure 3. Cross-section isopleth of reservoir temperature showing vertical and longitudinal zones Inflows to the reservoir are cold and saline, resulting in densities greater than that of the reservoir water. Therefore, a plunging current flows along the bottom of the lake until it 1) dissipates and mixes with water of equal density, 2) moves through the reservoir as a inter-flow, or 3) continues along the bottom of the reservoir, displacing water of lesser density. The fate of this winter inflow current appears to be a function of the volume of inflow and relative density difference between the inflow current and the existing water in the reservoir (Hueftle & Vernieu, in review). # **Late Spring** Late spring sampling in May and early June will be performed to describe conditions which have developed during the spring months. Sampling during this period describes the transition between winter mixing and summer stratification. By this time, the lake begins to experience significant thermal stratification from spring warming, biological processes are peaking and the inflows to the reservoir have increased. As sunlight angle, day length, and ambient air temperature increases, the surface of the lake begins to warm. In areas unaffected by the inflow current, a thermal density gradient is created between the surface and the underlying colder water and a barrier to mixing develops at the thermocline, or depth of maximum temperature change. As the surface waters continue to warm, the depth of the thermocline deepens and the thickness of the new epilimnion increases. The increased inflows are the result of snowmelt runoff from the high mountains in the upper portions of the basin, which have flowed through the warmer lower elevation agricultural areas 06/24/99 and canyon lands. These inflows tend to be warm and dilute, resulting in waters of lower density than the reservoir and a current that overflows the surface of the reservoir. Biological processes in these areas of the reservoir increase, resulting from warmer conditions, increased sunlight, and higher nutrient availability from winter mixing. The biological processes are limited mainly by nutrient levels and, in the inflow areas, by available light from the increased turbidity of the runoff inflows. Corresponding to the increased biological productivity dissolved oxygen concentrations above the saturation level and high chlorophyll levels are frequently seen in the epilimnion. #### **Late Summer** Late summer sampling, to be performed during the period of early August to late September, will represent conditions when the reservoir is at its maximum degree of thermal stratification and surface
warming. Biological processes are declining and inflows have tapered off, becoming denser and migrating to intermediate depths of the reservoir. The high flows of the spring snowmelt runoff have subsided; the large inflow volume of this water has extended to downstream regions of the reservoir's epilimnion. Reservoir surface temperatures have reached a maximum. These factors combine to increase the volume and thickness of the epilimnion and maximize the density gradient between the epilimnion and hypolimnion, which defines the degree of stratification. Inflow temperatures are usually less than reservoir surface temperatures and salinity levels have increased with the return to base flows. This results in an inflow slightly denser than of the epilimnion which usually plunges to intermediate depths in the reservoir. Biological processes, which have developed throughout the summer, typically become limited by temperature (Blinn 1983, Blinn et al. 1976, Stewart & Blinn, 1976) and nutrient concentrations in the late summer. The resulting decomposition of biomass from the biological activity, combined with organic and inorganic matter contained in the runoff volume begins to depress oxygen concentrations in the reservoir. This decomposition results in significant oxygen deficits at the lower boundary of the epilimnion. These metalimnetic oxygen deficits typically reach a maximum in early autumn. #### Late Autumn Late autumn sampling will be performed within the months of November to December. During this period the lake is in a transition state between the strongly stratified conditions of the previous summer and the maximally mixed conditions of late winter. Biological processes are reduced and inflows migrate to deeper portions of the reservoir. Cooler conditions result in the onset of convective winter mixing. As warm water at the reservoir surface cools, it becomes denser, and mixes with water of equal temperature at lower depths. As this process continues, this mixed surface layer thickens as it mixes with underlying cooler water. As this new epilimnion cools, its increased density reduces the strong stratification gradient that developed in the summer. It then becomes susceptible to further mixing by winds on the lake's surface. This winter mixing process will eventually cause the breakdown of the strongly stratified epilimnion that developed during the previous summer. Inflow currents are generally low and have cooled considerably. The low inflow volumes are more sensitive to increases in dissolved minerals from natural and man-made sources become more saline. Decreased temperatures and increased solute concentrations cause inflow currents to plunge to deeper depths in the reservoir due to their increased density. Biological processes are still active, but on the decline due to lower water temperatures, decreased sunlight and lower nutrient levels. The metalimnetic dissolved oxygen deficits seen during the late summer may still be present at this time but will begin to disappear as winter mixing processes incorporate the metalimnetic waters into the mixed epilimnion. Dissolved oxygen throughout the reservoir is at a minimum as bacterial respiration outpaces algal productivity. # Monitoring Locations # **Determination of Sample Locations** Based on the Lake Powell assessment, the evaluation of the data required to support the INs identified above, the sample locations identified below were developed. In the future, new stations will be selected based on the following considerations. First, is whether the general location will provide the required additional information considering trip logistics and expense of data processing and sample analysis. Secondly, is whether or not the proposed station is located at a narrow point or constriction of the lake surface. This is to avoid anomalies which may be present in open bays due to wind effects or other phenomena which may not be representative of main channel conditions. Furthermore, advective density currents, which may be present in upstream reaches, can be better defined in a constricted zone rather than thinned and dissipated in an open bay. Lastly, because the station is selected to represent the entire water column of the reservoir, the station should be located in the deepest portion of the lake or the original river channel. Other considerations may be incorporated to adjust the sampling location, such as direction of prevailing winds to aid in maintaining position for the duration of sampling and availability of landmarks or other features to aid in repositioning. Table 5. Lake Powell monitoring locations (LT - long-term station since 1965, NEW - station added since 1990, PRO - profile only, no samples, INF - inflow station) | Station Code | RCD
(km) | Station Name | Туре | | | |---|---|---------------------------------|------|--|--| | Colorado River | Colorado River Main Channel (river channel distance from Glen Canyon Dam) | | | | | | LPCR0024 | 2.4 | Wahweap | LT | | | | LPCR0453 | 45.3 | Crossing of the Fathers | LT | | | | LPCR0905 | 90.5 | Oak | LT | | | | LPCR1169 | 116.9 | Escalante | LT | | | | LPCR1400 | 140.0 | Iceberg | PRO | | | | LPCR1589 | 158.9 | Lake | PRO | | | | LPCR1692 | 169.2 | Bullfrog | LT | | | | LPCR1772 | 177.2 | Moki | PRO | | | | LPCR1932 | 193.2 | Knowles | PRO | | | | LPCR2085 | 208.5 | Lower Good Hope Bay | NEW | | | | LPCR2255 | 225.5 | Scorup | PRO | | | | LPCR2387 | 238.7 | Hite Basin | LT | | | | LPCR2483 | 248.3 | Colorado River above North Wash | PRO | | | | LPCR**** | | Colorado River Inflow | INF | | | | Escalante Main Channel (river channel distance from confluence) | | | | | | | LPESC072 | 7.2 | Escalante above Clear Creek | PRO | | | | LPESC119 | 11.9 | Escalante at Davis Gulch | NEW | | | | LPESC200 | 20.0 | Escalante at Willow Creek | PRO | | | | LPESC276 | 27.6 | Escalante above Garces Island | PRO | | | | LPESC*** | | Escalante Inflow | INF | | | | San Juan River (river channel distance from confluence) | | | | | |---|------|-----------------------|-----|--| | LPSJR193 | 19.3 | Cha (SJR) | LT | | | LPSJR329 | 32.9 | Lower Piute Bay (SJR) | PRO | | | LPSJR431 | 43.1 | Upper Piute Bay (SJR) | PRO | | | LPSJR625 | 62.5 | Lower Zahn Bay (SJR) | PRO | | | LPSJR*** | | San Juan River Inflow | INF | | | Other Tributary Stations | | | | | | LPNVC124 | 12.4 | Mid Navajo | NEW | | # Chapter 4 DATA MANAGEMENT AND ANALYSIS # Introduction and Background Before computerized database management systems were used to store and manage data from Lake Powell and other reservoirs, information was stored on field sheets and hard copy reports in the Upper Colorado Regional Office in Salt Lake City. As the amount of information gathered from this program and from other projects increased, the need for a computerized tool for data management and analysis became apparent. During the 1980's, information from the Lake Powell monitoring program was stored in a relational database, residing in Reclamation's Upper Colorado Regional Office in Salt Lake City, Utah. Applications were developed to provide random access to data collected at selected locations and times, tabular reporting and graphical representation of profile information. Concurrent with the development of the Lake Powell data management system were similar relational databases for other limnological and water quality projects in the Upper Colorado region. As each new database developed, it incorporated new characteristics and enhancements reflective of the specific monitoring program and current state of database management techniques. In 1995, the databases for the various Upper Colorado basin projects were consolidated, integrated, and converted to a standardized database residing on a server in Salt Lake City, Utah (Wheeler, 1995). This database received limited usage due to difficulties with data transfer and the availability of other PC-based software applications for processing data locally. Data now reside in several applications, depending mostly on the type of data, its point of origination, and the primary analysis application. A consolidation of all water quality information collected by GCMRC is planned to begin in 1999 and is proposed to carry over into FY 2000. The advantage of this system is to facilitate integration of different types of water quality data in a common system for access by the TWG and AMWG, GCMRC analysts, downstream research efforts, and other interested parties. Linkage to other databases such as Glen Canyon Dam releases, USGS gauging stations and other GCRMC monitoring and research projects will also be incorporated. Information from this system will be made available as part of the State of the Canyon Resources Report, developed by GCMRC for the TWG, via the Internet from web-based query engines, or directly from the GCMRC database. Once consolidated, the data will go through a verification and quality assurance process and be transmitted to the EPA STORET system for wide availability to the general public. Plans for consolidation of the water quality information include the use of Microsoft Access as the primary database for development and population. It will be based on the features described below using a relational database model. The relational structure will facilitate modular development and migration of the data to other systems. Once the GCMRC Oracle database becomes operational, data from this system will be migrated to that database as a permanent repository. #### **Features** The design structure of the water quality database allows for the incorporation of similar information from other components of the IWQP and is flexible to allow for adaptation of other types of data. This database will be directly accessible by authorized users from
within and outside of GCMRC. Preliminary design of the database has used preexisting standards and protocols for station and sample identification, parameter coding and other design factors from the EPA STORET system whenever possible. Continued progress has occurred with the development and refinement of analytical tools to retrieve selected data from the database, perform statistical and other types of numerical analyses, and display these data in tabular and graphical format. Currently, the majority of below-dam data analysis is being performed with the use of SAS software (SAS Institute, 1990), which provides comprehensive data management, statistical, and graphical analysis capabilities for data served from the water quality database. In addition to its analytical capabilities, the SAS system stores and maintains hydrologic, water quality and climatic databases for the Grand Canyon maintained by the GCMRC office. Capabilities existing with the SAS system include providing tabular reports, data manipulation, statistical summaries, multi-parameter color graphs of individual profiles (Figure 4), and graphical analysis Figure 4. Reservoir water quality profile. of time series information (Figure 5). # 10FEB99:19:20 to 10MAR99:03:00 orbd.bd990210 12 11 10 9 0 8 8.5 7.0 8.6 7.0 8 7.0 8 Colorado River below Glen Canyon Dam NOTE: Specific Conductance in mS * 10 07FEB99 Figure 5. Time series of water quality. Figure 6. Time series temperature isopleth of Wahweap forebay station, with penstock intakes and river outlet works intakes indicated at 1058m and 1028 m, respectively. Much of the Lake Powell reservoir data is analyzed using SURFER (Golden Software, Inc.), a three-dimensional analysis program used to develop isopleths of various parameters of the Lake Powell monitoring program. This provides a valuable tool for depicting information which changes with time at a given station (Figure 6), or which changes across the reservoir at a specific time (Figure 7). The isopleths allow increased understanding of advective and convective processes in the reservoir on a spatial and temporal basis. Timing and frequency of sampling efforts and as well as selection of sampling locations are important considerations when using this tool to represent three dimensional data sets. Figure 7. A cross-section of an isopleth of main-channel reservoir temperature. Recently, a revised station identification scheme has been developed to allow for a standardized system of identifying reservoir sites and incorporating this information as spatial data into the GCMRC geographical information system. As a result, a digitized map of the reservoir has been developed using GIS. Stations can be located and river channel distances from a given reference point can be determined. A record of visual and verbal documentation, geographical coordinates, and river channel distance is maintained for each main channel station. # Database Design #### **Design Considerations** The design of the IWQP database will determine from the consideration of several factors. First and foremost, it should be a repository for all significant information collected by the monitoring program and be easily retrievable for a variety of purposes. It should follow established standards of relational database management principles such as normalization, optimization, and security. It should have a structure compatible with other existing water quality databases such as the EPA STORET system and the USGS WATSTORE system. In some cases, these goals may be conflicting and choices have to be made to achieve an effective compromise. This compromise is usually made in favor of ease of use and data accessibility. Furthermore, it is not anticipated that the current design and structure of this database will remain static in the future, as different types of data are stored and further optimization of the existing design occurs. Therefore, a final goal of the database design is that the data exist in a modular format for ease of portability and the table structure and data definitions remain flexible while ensuring the information's overall integrity. A schematic of the proposed structure of the IWQP database is shown in Figure 8. Figure 8. Water quality relational database structure. # Reporting A number of reports are expected to result from the IWQP. These include quarterly and yearly technical reports, and a five-year review and assessment of the program. In addition, regular research articles are expected to be produced based on the data collected as a part of the IWQP monitoring and research activities, as well as from collaborations with other researchers supported by GCMRC. # References American Public Health Association. 1992. Standard methods for the examination of water and wastewater. 18th edition. APHA, Washington, D.C. ISBN 0-87553-131-8. Angradi, T.R., Clarkson, R.W., Kinsolving, D.A., Kubly, D.M., & Morgensen, S.A. 1992. Glen Canyon Dam and the Colorado River: Responses of the Aquatic Biota to Dam Operations. Prepared for Bureau of Reclamation Glen Canyon Environmental Studies. Flagstaff, AZ. Cooperative agreement # 9-FC-40-07940. 155 pp. Ayers, A.D., & McKinney, T. 1996. Water chemistry and zooplankton in the Lake Powell Forebay, Glen Canyon Dam discharge and tailwater. Arizona Game and Fish Department. Phoenix, AZ. Benenati, P.L., Shannon, J.P., Blinn, D. W., & Wilson, K.P. 1997. Temporal Changes of Phytobenthos in the tailwaters of Glen Canyon Dam in the Colorado River. Bull North Am. Benthol. Soc. 14:61. Blinn, D. W. 1993. Diatom community structure along physiochemical gradients in saline lakes. Ecology. 74: 1246-1263. Blinn, D. W., Shannon, J.P., Benenati, P.L., & Wilson, K.P. 1998. Algal Ecology in Tailwater Stream Communities: The Colorado River below Glen Canyon Dam, Arizona. J. Phycology. 34: 734-740. Blinn, D. W., Tompkins, T., & Stewart, A. J. 1976. Seasonal Light characteristics for a newly formed reservoir in southwestern USA. Hydrobiologia. 51: 77-84. Cole, T.M. and E.M. Buchak. 1995. CEQUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, version 2.0. Instructional report EL-95-1. Army Corps of Engineers, Washington, DC. Eckhardt, D.W. 1995. Mapping Water Quality on Lake Powell using Landsat Thematic Mapper Imagery (Remote Sensing). Applied Sciences Referral Memorandum No. 94-4-1. Unpublished results. EPA - Methods for chemical analysis of water and wastes, EPA-600/4-79-020, (Environmental Monitoring and Support Laboratory, Cincinnati, OH, March 1983). Ferrari, R.L. 1988. 1986 Lake Powell survey. U.S. Bureau of Reclamation Rep. REC-ERC-88-6. NTIS, Springfield, VA. Gloss, S.P., R.C. Reynolds, Jr., L.M. Mayer and D.E. Kidd. 1981. Reservoir influences on salinity and nutrient fluxes in the arid Colorado River basin. In: H.G. Stefan (ed.) Symposium on Surface Water Impoundments ASCE. June 2-5, 1980. Minneapolis, MN. Pages 1618-1629. Haury, L.R. 1983-1987. Summary Report of Zooplankton Collections from Lake Powell. Unpublished results to Glen Canyon National Recreation Area. Page, AZ. Horne, A.J., & Goldman, C.R. 1994. Limnology. 2nd edition. McGraw-Hill, Inc. New York. 576 pp. Horn, M. & G. Mueller. Hydro-Acoustic measurement of zooplankton and fisheries dynamics in Lake Powell Bureau of Reclamation, Denver CO. (in draft). Hutchinson, G.E., 1967. A Treatise on Limnology. II. Introduction to Lake Biology and the Limno-plankton. New York, John Wiley & Sons, Inc., 1115 pp. Hueftle, S. J. and L.E. Stevens. 1999. Experimental Flood Effects on the Limnology of Lake Powell Reservoir, Southwestern USA. Ecological Applications. (In review). Hueftle, S. J. and W. S. Vernieu. Assessment of Impacts of Glen Canyon Dam Operations on Water Quality Resources in Lake Powell and the Colorado River in Grand Canyon. Grand Canyon Monitoring and Research Center, Department of Interior. Flagstaff, AZ. (In review). Miller, Jerry, Personal communications, (801)524-5454. Millipore Corporation 1994. Bedford MA. SAS Institute, Inc. 1990. SAS Language: Reference, Version 6, First Edition, Cary, NC. Sollberger, P., Vaux, P.D., & Paulson, L.J. 1988. Investigation of Vertical and seasonal distribution, abundance and size structure of zooplankton in Lake Powell. Lake Mead Limnological Research Center, University of Nevada, Las Vegas. 263 pp. Stanford, J.A. and J.V. Ward. 1991. Limnology of Lake Powell and the chemistry of the Colorado River. In: Colorado River Ecology and Dam Management. WSTB. May 24-25, 1990. Santa Fe, NM. Pages 75-101. Stewart, A. J., and Blinn, D. W., 1976. Studies on Lake Powell, USA: Environmental factors influencing phytoplankton success in a high desert warm monomictic lake. Arch. Hydrobiology. 78, 2, 139-164. Thornton, K.W., B. L. Kimmel, F. E. Payne, ed. 1990. Reservoir Limnology: Ecological Perspectives. John Wiley and Sons, Inc. New York, NY.246 pp. US Bureau of Reclamation. 1995. Operation of Glen Canyon Dam final environmental impact statement. Salt Lake City, UT. US Geological Survey, National handbook of recommended methods for water data acquisition, Office of Water Data Coordination, 1977. Vernieu, W. S., Effects of reservoir drawdown on resuspension of deltaic sediments in Lake Powell. Lake and Reservoir Management, in print, 1995. Wheeler, G. 1995. Water quality water management: user's guide. Bureau of Reclamation, Information Resources Division, Salt Lake City, UT. Wetzel, R. G. 1975. Limnology. W. B. Saunders Co., Philadelphia, PA. 767 pp. Wildco. 1998. 301 Cass St. Saginaw, MI. # Appendix A RELATIONSHIP OF WATER QUALITY MONITORING TO GLEN CANYON DAM ADAPTIVE MANAGEMENT PROGRAM # Historical Background The Lake Powell water quality monitoring program was revised and enhanced in 1990 under the direction of the Glen Canyon Environmental Studies (GCES) Program Manager to provide information on physical, chemical, and biological processes in the reservoir and how these processes affected the quality of releases to the
downstream ecosystem. Funding was accomplished under the GCES overall program budget. Since the establishment of the Glen Canyon Dam Adaptive Management Work Group (AMWG) on February 4, 1997, several of the Adaptive Management Program (AMP) stakeholders raised questions about whether monitoring activities in Lake Powell were appropriate within the scope of the Adaptive Management Program. A primary concern related to whether changes in dam operations, as specified under the Record of Decision, affected the water quality of Lake Powell and Glen Canyon Dam releases. #### Lake Powell Assessment To address this question, GCMRC agreed to undertake a one-year assessment of existing water quality information to determine whether historical operations of Glen Canyon Dam had significant effects on the water quality of the Lake Powell and the Colorado River downstream of Glen Canyon Dam (Hueftle & Vernieu, in review). Three professional limnologists from outside the federal government reviewed the preliminary findings of this assessment and comments were received from several water quality specialists within the federal government. A final draft of this document was issued March 6, 1998 to the AMWG and its Technical Work Group (TWG). This assessment concluded that, while major water quality changes in Lake Powell and downstream releases are primarily governed by hydrological and climatological factors, several aspects of dam operations have significant effects on the water quality of the reservoir and downstream releases to the Colorado River. Changes to water quality have been identified from the operation of alternate release structures, high-sustained releases during several historical periods, and from daily powerplant fluctuations. Some of the historical release scenarios have had significant effects on the reduction of meromictic conditions in Lake Powell. Meromixis is characterized by a buildup of dense water in the deepest portions of the reservoir, which stagnates and loses dissolved oxygen over time, causing the potential for detrimental impacts to aquatic ecosystems and power generation facilities. Based on the findings of significant effects to Lake Powell and Colorado River water quality from Glen Canyon Dam operations, the AMWG requested GCMRC to develop a five-year monitoring and research plan for future water quality monitoring. This plan was presented to the AMWG on July 22, 1998, along with the GCMRC FY 2000 budget request. The plan, at that time, focussed primarily on addressing the information needs developed to meet management objectives specific to Lake Powell. Several elements of downstream water quality monitoring were incorporated. The plan also specified the development of a conceptual model for the Lake Powell reservoir ecosystem as well as other studies confined to Lake Powell. Additional concern was raised at this meeting as to whether water quality monitoring activities in Lake Powell related to effects to downstream resources. Expansion of the geographical scope of the AMP monitoring and research program and GCMRC funding levels were also concerns. Report language of the Grand Canyon Protection Act specifies that the Glen Canyon Dam Adaptive Management Program focuses on effects primarily to downstream resources. From this discussion, the Technical Work Group was charged to determine which water quality monitoring activities in the five-year plan related to effects to downstream resources and which had relationship solely to resources upstream of Glen Canyon Dam. # Separation of Monitoring Activities Three categories were described to facilitate separation of activities, White, Black, and Grey. The White category was defined to represent those activities conducted below Glen Canyon Dam that address effects to downstream resources. As an example, monitoring of Glen Canyon Dam release water quality would fall under this category. The Black category was defined to represent those activities conducted upstream of Glen Canyon Dam that are not directly related to downstream effects. An example of an activity in this category might be evaluating water quality impacts to recreation or shoreline vegetation in Lake Powell. The Grey category included those activities conducted upstream of Glen Canyon Dam which relate to effects to resources downstream of Glen Canyon Dam. An example of this category would be monitoring of the water column in the forebay immediately above Glen Canyon Dam. It was felt that responsibility for activities in the White and Grey areas would remain under the AMP, while those in the Black area were beyond the scope of the AMP and would not be funded. It is recognized that there may be a great deal of overlap between activities in the Grey and Black areas. Monitoring performed in Lake Powell characterizes both conditions within the Lake Powell reservoir and the water that will be discharged from Glen Canyon Dam to the downstream environment. The chemical, physical, and biological conditions of all water within Lake Powell is affected by advective and convective mixing processes and influenced by the operation of Glen Canyon Dam. These conditions and the processes that act on them directly influence the quality of releases to the aquatic ecosystem downstream of Glen Canyon Dam (Hueftle & Stevens 1999, Hueftle & Vernieu 1998, in review, Gloss et al. 1981). 06/24/99 60 # Reclamation Funding Proposal for Lake Powell Monitoring In an effort to resolve the difficult questions of authority and responsibility for the various components of the proposed five-year plan for Lake Powell monitoring and research, an ad hoc committee of the TWG was formed. A proposal was developed by this committee, with approval of various stakeholder groups, to fund all water quality monitoring activities conducted upstream of Glen Canyon Dam though the Reclamation O&M budget from CRSP power revenues or other sources, as appropriate. Doing so would place less budgetary obligation on the AMP and would maintain a definite geographic boundary (Glen Canyon Dam) for AMP monitoring and research activities. GCMRC would develop the scope of work, in coordination with Reclamation, and would accomplish the work with internal staff and/or contractors. Activities within the White category would remain under AMP responsibility and funding authority and those within the Black category would not be part of the AMP, but would be accomplished and funded by Reclamation, members of an interagency group of entities with interest in Lake Powell, or other sources. This committee further defined the White, Black, and Grey categories as follows: #### 1. White Areas Those AMWG MO/INs that relate to downstream (below GCD) effects and conducted downstream of the dam: - -- Funded by the AMP budget - -- Scope of work reviewed and approved by AMWG/TWG - -- Includes all appropriate approved MOs and INs - -- GCMRC protocols apply (peer review, etc.) - -- Accomplished by GCMRC and/or its contractors - -- GCMRC will determine its capabilities to accomplish the work within funding personnel and other constraints #### 2. Gray Areas Those AMWG MO/INs that relate to downstream effects, but conducted upstream of the dam: - -- Funded by the Reclamation O&M budget for Glen Canyon Dam or other sources, as appropriate - -- Scope of work developed by GCMRC with Reclamation and the Lake Powell Group to respond to all appropriate AMWG MOs and INs and those of Reclamation and the Lake Powell Group, as appropriate - GCMRC protocols apply with PEP review before submission to AMWG/TWG - -- Submitted to AMWG/TWG for review and recommended adoption - -- Accomplished by GCMRC and/or its contractors #### 3. Black Areas Those AMWG MO/INs not directly related to downstream effects and conducted upstream of the dam - -- Funded by Reclamation, Lake Powell Group, or other sources - -- MO's and IN's are retained until next revision. - -- GCMRC protocols may not apply, but data collection should be consistent for sharing of results - -- Accomplished by Reclamation or participants in the Lake Powell Group - -- Results will be shared with GCMRC and AMWG # GCMRC Integrated Water Quality Program Since the establishment of the Grand Canyon Monitoring and Research Center (GCMRC), water quality activities have formerly been spread across different program areas. Water quality monitoring at mainstem gages in Grand Canyon, as well as some forebay monitoring and tailwater research, were administered by the GCMRC Physical Science Program. Thermal monitoring through Grand Canyon and selected tributaries was administered through the Biological Science Program. Lake Powell and tailwater monitoring were separate from these programs. In order to coordinate water quality monitoring and research activities, reduce redundant data collection, facilitate data integration, and standardize methodology, these activities were combined to form the GCMRC Integrated Water Quality Program (IWQP) as part of the GCMRC strategic planning process. This program now falls under the direction of the GCMRC Biological Science Program. This reflects the direct linkage of the aquatic ecosystem to the water quality conditions that sustain it. This program encompasses all water quality activities conducted by the GCMRC office. The GCMRC IWQP is designed to address the various water quality-related information needs developed by the TWG to meet the management objectives of the AMWG for adaptive management of the Grand Canyon ecosystem. The proposed GCRMC IWQP consists of four main components of monitoring activities: 1. Quarterly reservoir water quality surveys - 2. Monthly water quality surveys in the immediate forebay above Glen Canyon Dam - 3. Continuous monitoring and monthly sampling of the Glen Canyon Dam tailwater immediately below the dam and at Lees Ferry - 4. Downstream monitoring within Grand Canyon and major tributaries Based on the above definitions, Items 1 and 2 would fall under the Grey
category and be funded by Reclamation while Items 3 and 4 would remain the responsibility of the AMP. It is proposed that, regardless of funding source, these components remain as part of the GCMRC IWQP and continue to be accomplished with GCMRC resources. GCMRC would continue to define the scope of work, in coordination with Reclamation and AMWG information needs, and would make revisions to the monitoring program as needs change and other information becomes available. Contracting for specific work items would occur as needed according to established GCMRC protocols. This proposal is based on the following: These monitoring activities have been designed and implemented by personnel staffed at GCMRC with extensive experience with Reclamation reservoirs. These activities have been conducted consistently, producing high-quality information using standardized methods and procedures for the past nine years. They have built upon and integrate with the previous 26-year program conducted by the Bureau of Reclamation and were modified to address issues related to the effects of dam operations on downstream water quality. Provide for integration of all data collected in a common system for availability to all interested parties according to GCMRC information packaging protocols and plan. They address AMP water quality-related management objectives and information needs for Lake Powell and downstream resources. They take advantage of a broad array and substantial investment of equipment, expertise and experience, and protocol development residing within GCMRC. # **Appendix B** Methodololgy Field activities associated with the Lake Powell monitoring program will be generally conducted at established main channel stations throughout the reservoir from a 31-foot Uniflite sedan powered by twin inboard engines. This vessel provides workspace for sampling activities on its aft deck and living quarters for a crew of four to six people for weeklong reservoir surveys. At times, a smaller runabout will be used in addition to the Uniflite to increase the efficiency of the sampling effort. At each station, several activities will be conducted to gathered information and collect samples representative of the reservoir at that location. Initial observations characteristic of the location and time of sampling will be recorded. A depth profile of physical water quality parameters will be recorded. Water samples from several discrete depths will be collected and processed for later analysis. Finally, measurements and samples of biological conditions are taken at selected locations in the water column. These activities are described in detail below. #### **Initial Observations** Upon arrival at a sampling location, a general time will be recorded, which is used to nominally identify the profile and all samples collected during the site visit. General meteorological observations will be recorded describing cloud cover, wind speed and direction, air temperature, and wave height. Secchi depth readings will be recorded, using the unaided eye and a subsurface viewing scope. The surface elevation of the lake is obtained from daily National Park Service radio reports and the bottom depth will determined using a Lawrence X-16 sonar depth finder. These readings are descriptive of conditions measured at the surface for a single site visit. They will be recorded on the header of the field data sheet and form one observation in the data table SURFACE in the IWQP database. This observation will be uniquely identified by the station code and time identified for the site visit, which are the key fields of the SURFACE data table. See 0 for a description of the WQWM database. Secchi disk transparency will be recorded using a standardized 20-cm disc with alternating quadrants of black and white. The secchi disk is attached to a metric surveyors tape or a calibrated line marked in tenths of meters. The disk will be lowered over the side of the boat to a depth at which it disappears from view. This observation is made over a sufficient time to allow for variations in surface disturbance and glare. Frequently, several measurements will be made by different observers that will be later averaged after an evaluation of quality. The secchi depth, observer's initials, and quality of observation conditions will be noted on the field data sheet. Beginning in 1994, a subsurface viewscope (Lawrence Enterprises, Aqua Scope II) will be employed to eliminate effects of glare or surface disturbances. Viewscope secchi depths are usually greater than those obtained by traditional methods. While they probably represent more accurate estimates of water transparency, they are not comparable to the depths obtained by traditional methods. Therefore, secchi depths by both methods will be recorded for comparison purposes. # **Water Quality Profiling** Water quality profiles in Lake Powell will be obtained with the use of a Hydrolab H20/Surveyor 3 multi-parameter measurement system. The H20 is a submersible, multi-parameter sonde unit capable of measuring temperature, specific conductance, dissolved oxygen, pH, oxidation-reduction potential, and turbidity. Formal calibration procedures will be followed, according to established protocol and manufacturers guidelines, in a controlled laboratory setting before and after use in the field. Accuracy checks will be made while in the field, but actual calibration will be avoided due to the unstable environment affecting the equilibrium of the instrument's sensors. The H20 will be connected to the Surveyor 3; a shipboard display and datalogger unit used for calibration of the sonde and for display and logging of the profile readings. These units will be connected by a 165 m underwater cable mounted on an AC powered motorized reel. A palmtop computer (HP 200LX) will be connected to the Surveyor 3 and is used to temporarily store readings for immediate display after the profile is completed. This immediate display aids in the identification of sampling depths throughout the water column. Permanent readings will be stored in the Surveyor 3 for subsequent downloading and processing. After the initial surface observations have been made the water quality profile will be conducted. The H20 sonde will be lowered to selected depths throughout the water column; readings will be stored in the Surveyor 3 datalogger after equilibration at a given depth is achieved and readings have stabilized. The main objective of the profiling effort is to characterize the major limnological strata which comprise the water column with sufficient resolution to accurately define boundaries of the strata and identify other significant phenomena such as inflow density currents and depths at which dissolved oxygen minima or maxima occur. Initial subsurface readings will be taken immediately below the surface and at approximately 0.5 to 1- meter intervals for the first few meters to determine any surface warming phenomena. Below these initial measurements, the "Rule of Fives" will be observed to determine intervals between measurements. The "Rule of Fives" states that if the value of any parameter changes by more than a decimal fraction of five units (i.e. 0.5 units for temperature and dissolved oxygen, 0.05 units for pH, or 50 μ S for conductance), a smaller depth interval should be chosen, usually with 0.5 meter being the minimum interval. If parameters are not changing at this rate, a larger interval (up to 10 meters) may be selected. This allows for sufficient vertical resolution in the profile while allowing for a reasonable time on station to conduct the profile and allow full equilibration between measurements. The profile will be conducted from the surface to the bottom, with efforts made to come as close to the bottom as possible without disturbing bottom sediments, which can foul sensors and cause ambiguous readings. After the bottom reading is recorded, the datalogging equipment will be disconnected, the reel rotated into its vertical retrieval position and the sonde retrieved. After retrieval, it will be stored in a cylinder filled with lake water between stations. After the profile is conducted, the structure of the water column will be determined from readings recorded on the field sheet or from the graphic display of data recorded on the palmtop computer. From this information, depths at which discrete water quality samples will be collected are determined based on the sampling objectives described below. The readings recorded at each depth are descriptive of the physical conditions at that point in the water column. They form one observation in the data table PROFILE (Figure 8). The station code, time, and depth of the reading uniquely identify each observation. # **Chemical Sampling** Water samples for determination of major ion and nutrient concentrations will be collected at various depths from all regular long-term stations on Lake Powell. Detection limits currently obtained are indicated in **Table 4.** Table 4. Detection limit and EPA Methodology of chemicals analyzed for the IWQP. | Analyte | Symbol | Sample
Units | Detection
Limit | EPA
Method | | | | |------------------------------|--------|-----------------|--------------------|---------------|--|--|--| | Physical (Hydrolab profiles) | | | | | | | | | Temperature | Т | °C | 0.1 | | | | | | Specific
Conductance | EC | μS/cm | 1 | | | | | | РН | pН | pН | 0.01 | | | | | | Dissolved
Oxygen | DO | mg/L | 0.01 | | | | | | Oxidation-
Reduction | ORP | mV | 1 | | | | | | Turbidity | | ntu | 0.1 | | | | | | Major Ions | | | | | | | | | Specific
Conductance | Lab EC | μS/cm | 2. | 120.1 | | | | | рН | pН | pН | N/A | 150.1 | | | | | Total Suspended
Solids | TSS | mg/L | 4. | 160.2 | | | | | Total Dissolved
Solids | TDS | mg/L | 10. | 160 | | | | | Calcium | Ca | mg/L | 0.03 | 200.7 | | | | | Magnesium | Mg | mg/L | 0.03 | 200.7 | | | | | Sodium | Na | mg/L | 0.03 | 200.7
 | | | | Potassium | K | mg/L | 1.0 | 200.7 | | | | | Carbonate | CO3= | mg/L | 1.0 | 310.1 | | | | | Bicarbonate | HCO3- | mg/L | 1.0 | 310.1 | | | | | Chloride | Cl- | mg/L | 1.0 | 300 | | | | | Sulfate | SO4= | mg/L | 1.0 | 300 | | | | | Silica | SiO2 | mg/L | 0.02 | 200.7 | | | | | Alkalinity | CaCO3 | mg/L | | Calc. | | | | | Nutrients | | | |-----------|--|--| | Analyte | Symbol | Sample | Detection | | | | | |---------------------------------|---------------|------------|-------------|--------|--|--|--| | | Symbol | Units | Limit | Method | | | | | Total Phosphorus | TP-P | mg/L | 0.005 | 365.1 | | | | | Soluble Reactive
Phosphorous | OP-P | mg/L | 0.005 | 365.1 | | | | | Ammonia | NH3-N | mg/L | 0.01 | 350.1 | | | | | Nitrate +
Nitrite | NO3+
NO2-N | mg/L | 0.03 | 353.2 | | | | | Total Kjeldahl
Nitrogen | TKN-N | mg/L | 0.05 | 351.4 | | | | | Biological | | | | | | | | | Chlorophyll-a | | | 10.0 | | | | | | Chlorophyll-b | | mg/m3 | 0.1 | | | | | | Chlorophyll-c | | mg/ms | 0.1 | | | | | | Pheophytin-a | | | 0.01 | | | | | | Phytoplankton | lankton | | Mostly spp. | | | | | | Density | | #/L &% | | | | | | | Biovolume |) | mm3/L &9 | | | | | | | Zooplankton | | Mostly spp | | | | | | | Density | | #/L & % | | | | | | | Biovolume | ; | mm3/L & % | Ó | | | | | | Fecundity | | egg ratios | 3 | | | | | The main objective of the sampling effort will be to characterize chemical conditions at the surface and in each major stratum, or layer of distinct water, through the water column. A secondary purpose will be to describe unusual phenomena that occur at specific depths such as a severe metalimnetic oxygen deficit or a narrow inflow plume inter-flowing into an intermediate layer in the reservoir. Samples are seldom collected at depths that characterize rapidly changing values of the profile parameters. Since all samples will be correlated with the previously collected profile measurements (temperature, conductance, pH, dissolved oxygen, etc.), the chance of erroneously equating a sample with a profile measurement made at a slightly different depth in that rapidly changing environment becomes significant. In that case, the chemical conditions represented by the water sample are not representative of the measurements from the water quality profile. Furthermore, the water present in this rapidly changing transition zone is not representative of any major stratum in the reservoir and reduces the value of a sample collected at this point, except to identify unusual phenomena. All samples for chemical analysis will be collected in high-density polyethylene bottles that have been pre-cleaned to EPA Contract Laboratory Program (CLP) specifications (I-Chem 300 Series). The pre-cleaning process involves acid washing and DI water rinsing under controlled conditions to remove any impurities from storage conditions or the manufacturing process which may affect the determination of low-level analytes. # **Sample Collection** Samples will be collected using Van Dorn samplers attached to a 160-m stainless steel cable connected to a motorized winch. This task involves two people, one to operate the winch and one to attach and remove the samplers. The cable is marked at one-meter intervals for accurate sampling depths. Samplers are lowered in a string to their desired depths and are activated by a weighted messenger that travels down the cable. As one sampler is tripped, it releases a second messenger which, in turn, trips the sampler below. The samplers are retrieved, noted as to which depth they were deployed, and set aside for sample processing. For both major ion and nutrient analysis, a total of four sub-samples will be collected, which include two unfiltered sub-samples of 250 ml and two filtered sub-samples of 125 ml. The unfiltered major ion sub-sample will be used for the laboratory determination of total suspended solids, pH, specific conductance, and alkalinity. The filtered major ion sample will be used for the determination of major dissolved ion concentrations. The unfiltered nutrient sample will be used for the laboratory digestion and determination of total phosphorus and total Kjeldahl nitrogen. The filtered nutrient sample will be used for the determination of dissolved compounds of phosphorus and nitrogen. Both nutrient sub-samples will be preserved with sulfuric acid in the amount described below. 06/24/99 69 # Sample Filtration The Environmental Protection Agency states that samples to be analyzed for the determination of dissolved substances are to be filtered thorough a 0.45 μ m membrane filter as soon as possible after collection, preferably in the field (EPA, 1983). This will be performed on shipboard for Lake Powell samples immediately after their collection, within 15 minutes. This will be accomplished using a peristaltic pump (Geotech Series II) with silicon tubing connected directly to the Van Dorn sampler. A segmented flow of air and sample is used to thoroughly rinse the pump tubing before connecting to the filter apparatus. The filter apparatus is a 47 mm in-line filter holder (Millipore Swinnex 47) housing a 47 mm 0.45 μ m polycarbonate membrane filter, low in water extractable compounds (Poretics #1035, lo extractable). After approximately 50-100 ml pass through the filter apparatus, the filtered sub-sample is collected into a high density polyethylene bottle which has been pre-cleaned to EPA Contract Laboratory Program (CLP) specifications (I-Chem 300 Series). The pre-cleaned bottles will also be used for the collection of unfiltered sub-samples. ### **Preservation** Both types of samples will be stored and shipped on ice; the nutrient samples will be acidified with 1+9 sulfuric acid (approximately 1.2 N H₂SO₄) in a proportion of 1 ml acid per 250 ml sample. The acid preservation solution is supplied by Reclamation's Denver Laboratory. Fresh acid preservation solutions will be used for each reservoir survey. The purpose of preserving samples collected for later analysis is to 1) retard biological activity, 2) reduce chemical changes occurring between collection and analysis, 3) reduce volatility of constituents, and 4) reduce adsorption affects with the sample container. Acid preservation is not currently recommended by some sources for the determination of soluble reactive phosphate; however, it has been selected for the IWQP for several reasons. Recommended methods of preservation include the addition of mercuric chloride (HgCl₂) (USGS, 1989), and chilling to 4° C with no preservative and analyzing within 48 hours (EPA, 1983). Neither method is practical for use on Lake Powell. The use of HgCl₂ has obvious environmental consequences if spilled and will poison cadmium reduction columns used for nitrate determination. Analysis within 48 hours is not possible due to logistical constraints on shipping samples from remote locations on Lake Powell. The primary reason against using H_2SO_4 is due to possible hydrolysis of polyphosphate compounds that could cause an overestimation of SRP. However, high levels of polyphosphates are typically more characteristic of sewage effluent discharges and not expected in significant concentrations in Lake Powell. Furthermore, concentrations of SRP in Lake Powell are usually well below a detection limit of $5\mu g/l$; any overestimation due to hydrolysis is negligible. ### **Documentation** The location of all samples collected at a specific station will be noted on the field sheet for that station, along with the identifier of the particular Van Dorn sampler that would be used, the person collecting the sample, and a sequential field number for each sample. The four bottles comprising the nutrient/major ion sub-samples at a given depth are treated as a single sample. Quality control samples collected at a given station are treated and numbered in the same manner as all other samples. Starting with the first sample of the trip, a sequential field number is assigned to each sample for identification and tracking purposes. This number is recorded on the cap of each bottle as well as on the field sheet and sample labels. A circled field number on the bottle cap identifies nutrient sub-samples. This allows rapid inventory of the samples before shipment and aids identification in the event of mislabeling. Each sub-sample receives a label which identifies the station code and name, sampling time and depth, field number, type of analysis requested, and the presence of any preservative. Label material and marking pens are chosen that are resistant to damage from submersion. The combination of station code, time, and depth of sampling uniquely identify each sample collected. These fields and other information pertaining to the sample such as laboratory ID numbers for each analysis comprise one observation in the data table LAB_LOG. The LAB_LOG table is used to link sample collection information with the actual analytical results from the laboratory, which are contained in the tables, MAJOR_IONS and NUTRIENTS (Figure 8). # Transportation and Shipment. After sample processing, samples will be stored on ice in coolers for the duration of the reservoir survey. Nutrient samples will be stored in a separate cooler from major ion samples. On return from the field, samples will be checked to ensure all samples are accounted for and proper documentation has been performed. The coolers will be re-iced and shipped via overnight delivery to Reclamation's water quality laboratory in Denver, CO for analysis. # **Trace Element Sampling** Samples for trace element determination will not be routinely collected as part of the IWQP, but non-quality controlled preliminary ICAP scan values will be made available on demand. They will also be collected on occasion as part of other special studies relating to the reservoir (Miller, personal communications, Vernieu, 1995). Depending on the objectives of the particular study, special methods will be
employed when collecting this type of water sample. A non-metallic Kemmerer sampler will be used (e.g. Wildco #1290), nylon line instead of stainless steel cable will be used for deployment of the sampler, plastic gloves will be used at all times during the sampling process, reagent grade rinse water will be used to clean equipment and ultra pure nitric acid (HNO₃) or other solutions will be used to preserve the samples. # **Quality Assurance** Quality control procedures are a critical part of the chemical sampling program for the IWQP. The procedures employed will 1) verify the lack of contamination of samples from the collection process, 2) establish the variability of sampling methods in the field, and 3) provide an additional means of establishing the precision and accuracy of laboratory analyses over and above the laboratory's internal quality assurance program. Precision is a measure of the variability of multiple measurements or analyses performed on a given sample. Accuracy is a measure of how closely a result comes to the actual value of the parameter being measured. Through the course of a reservoir survey, approximately 10% of the total number of samples collected will be quality control samples. Three basic types of quality assurance samples collected will be 1) replicates, 2) blanks, and 3) spikes. Replicate Samples. Replicate samples will be collected to determine the precision of a sampling or analytical technique. Replicates resulting from separate sampling efforts, or sample replicates, are used to evaluate the variability or precision of sampling activities. This type of replicate would not routinely be collected as part of the monitoring program. It is assumed, for the parameters being analyzed, that the variability of samples collected from a repeated effort at given site is low; previous sampling of this type has shown this to be true. Replicates resulting from the same sample, or laboratory replicates (also called "splits") will be used to evaluate the precision of the laboratory analytical process. These samples are collected from a continually mixed sampler and identified as two separate samples. Blank Samples. Blank samples will be used to determine the presence of, or verify the absence of, any contamination in the sampling or sample processing efforts. A field blank is used to evaluate any sources of contamination from any aspect of the sampling or sample processing steps. For this sample, reagent grade water is passed through every step of the sample processing process. The Van Dorn sampler is rinsed three times with reagent grade water then filled with a sufficient volume to fill all sample bottles. This water is used to rinse the filter apparatus in the same manner that an actual sample in used. It is finally collected into pre-cleaned sample bottles. Field blanks for nutrient analysis are preserved with sulfuric acid; unfiltered blanks are not passed through the filtration apparatus. Any detectable analyte that shows up in these samples is indicative of contamination occurring somewhere in the sampling process. A reagent blank is collected to verify the presence of absence of contamination in the sampling bottles, reagent grade rinse water or acid preservation solution. For this sample, reagent grade water is collected directly into pre-cleaned sample bottles and preserved as appropriate for the analysis. No filtration step is performed, although the bottles for dissolved constituent analysis are still labeled as being filtered. Any detectable analyte that shows up in these samples indicates contamination from sources other than the sampling or filtration apparatus. Spike samples. Spike samples will be collected for two purposes, 1) to determine the accuracy of an analytical process and 2) to ascertain the loss of a particular substance from volatilization or adsorption. To evaluate these characteristics, a field spike is prepared by collecting a known volume of a laboratory replicate of the sample and adding a known volume of a solution of known concentration. This spike solution, prepared at the Denver laboratory, is prepared with known concentrations of the nutrient compounds that are determined in the laboratory analysis. The solution contains concentrations of 10 mg/l SRP (PO₄ as P), 100 mg/l nitrate nitrogen (NO₃ as N), and 10 mg/l ammonia nitrogen (NH₄ as N). Volumes of the spike solution are added to a measured volume of sample such that resulting concentrations are well into the range of detectability and not more than 10 times the concentration of the sample itself. The resulting "spiked" sample is then either transferred directly to sample bottles (for unfiltered sub-samples) or passed through the filtration apparatus (for filtered sub-samples). When possible, a larger Van Dorn or other type sampler (Wildco 6.2 l Beta Bottle #1900) will be used for this type of sample so that the original sample, the laboratory replicate and the spike may be collected from the same sampler. Another type of spike sample, a reagent spike, is prepared by adding a known amount of spike solution to reagent grade water. The purpose of this type of spike sample will be to provide a measurement of analytical accuracy in the absence of any sample matrix effects and to verify the concentration of the spike solution being used. The purpose of laboratory replicates and field spike samples are primarily to evaluate the performance and quality control of the analytical laboratory. They will be sent to the laboratory as blind samples. An accurate evaluation of these samples requires that the laboratory treats them the same as any other sample and not give any preferential treatment to them. To accomplish this, most quality control samples are labeled and identified with station codes, times, and depths in the same manner as other samples. These blind samples are sent to the laboratory for analysis with the actual samples. On field sheets and in the database, these samples will be properly identified as quality control samples and not included in analyses of representative conditions. Exceptions are samples that are included as sample replicates, reagent blanks or reagent spikes; these will be identified as such to the laboratory. # Biological Sampling ### **Field Collection** ### Zooplankton Zooplankton samples will be collected using a closing Wisconsin- style plankton net. This will allow single tows to the surface or discreet tows at depth. It has a 12.7 cm (5 inch) diameter mouth, and 80 µm nylon monofilament mesh. This collects "net" phyto- or zooplankton; which includes the largest zooplankton or ichthyoplankton down to most rotifers and all but the smaller nannoplankton. (APHA 1992, Wildco 1998) The net will be weighed to speed its descent to the desired depth. After a brief pause to allow disturbed plankters to recolonize the water column, the net is towed back to the desired depth at a consistent rate of 0.5 m/s. The line is maintained in a vertical position by adjusting the boat and/or one's position on the boat. A messenger trips the net at depth if a sub-surface tow is required. The net is rinsed 3 times in the lake to clean the sides of the cone into the net's bucket. The bucket is then rinsed into a small (~125 ml) polyethylene bottle, immediately preserved with 1% Lugol's solution and stored in a cool dark location. Bottles will be labeled with station name, date, time, tow depths, and a sequential field number. In flowing water, if a reliable vertical sample cannot be taken, a known volume (minimum of 100 liters) of water will be poured from a bucket through the net. Within the dam, water is routed from a penstock by-pass valve through the plankton net for a known period of time (minimum of 20 minutes). Several bucket tests gage the discharge of the valve at the start and finish of the collection. If none of these methods are appropriate, (i.e., too much lateral drift, shallow water, etc.) a horizontal tow may be taken. This will probably be a qualitative sample only. ### Phytoplankton Phytoplankton samples will be collected at the surface (-1 meter) depth with a 6.2-Liter vertical Beta bottle whole water sampler. In non-uniform flowing conditions, an integrated composite sample may be taken using a weighted (swimming pool) hose to a depth of 5 to 15 meters. The chlorophyll sample will be taken from the same bottle. A one-liter whole water sample is taken in a polyethylene bottle pre-preserved with of 1% Lugol's solution (~10-15 ml) and pre-labeled for station name, date, depth, time and a sequential field sample number. The sample will be cataloged and stored in a dark cooler or box until shipped for analysis. ### Chlorophyll Chlorophyll samples will be taken at every station a physical profile is measured. Because of the ease of collection and low cost, this is a relatively cheap measurement for indicating primary productivity. The sample will be taken from the 6.2-Liter vertical Beta bottle whole water sampler. It will always be taken from the same sample as the phytoplankton sample, as they reflect similar measurements. Since much of Lake Powell and the tailwaters are oligotrophic (low productivity), a large volume sample (minimum of 3 liters) is required. The sample is quickly filtered in field upon retrieval through a 1.0 mm glass filter (Whatman GF/C #1822C47 or Gelman type A/E #61631). The filter is removed from the filter holder, assessed for general color, folded in half and placed in an envelope labeled for station name, date, depth, time, and volume filtered. The sample is immediately placed in a plastic ziplock and stored on dry ice on quarterly sampling trips. Samples may be desiccated if dry ice is not available. Controlled experiments demonstrated that quickly desiccating the filter on a darkened hot surface is a reliable alternative to dry ice if there is a low number of samples, such as on monthly samplings. 06/24/99 74 ### **Sample Locations** Zooplankton and
phytoplankton samples will be taken at the full water quality stations on the lake during the quarterly sampling trips. This includes 11-13 stations on the main channel, 3-5 on the San Juan, and 2-4 on the Escalante. Inflow and transitional zone samples may vary in location with lake elevation, seasonality, and inflow dynamics. The transitional zone can be more dynamic, both in location and plankton response, and sampling will be flexible enough to respond to this if both cost and return of information are to be balanced. Pending further analysis, the depth of zooplankton tows will include a 0-30 m surface tow, which typically (but not always) encompasses the densest communities (Ayers and McKinney 1996, Sollberger 1988, Horn pers. comm., Hueftle unpublished) and a 30-60 m tow. Deeper tows may be required if deeper populations are identified. This sampling neglects some of the short-term dynamics of diel fluctuations, variable light, temperature, and nutrient availability, and predation dynamics; but will provide baseline data on overall productivity and community structure. On the monthly trips, the forebay station will have 4-5 discrete depth tows from the surface to below the penstocks to a depth of \sim 100 or more meters. Typically this will be 0-15 m, 15-30 m, 30-50 m, 50-75 m, and 75-105 m, compensating for changes in lake elevation to ensure samples will be taken at penstock and river outlet works depths. Monthly collections will be made from the dam draft tubes and in flowing water from the upstream end of the dock at Lees Ferry. Phytoplankton will be taken 1-meter deep at the same stations as the zooplankton, both during quarterly and monthly trips. Although time consuming, composite collections for phytoplankton are more representative of the community and are preferable. Algal communities typically congregate as far as 5 to 10 meters below the surface of the lake, especially as water temperatures rise (Blinn 1993, Stewart and Blinn 1976, Thornton 1992, Haury, unpublished). A composite sample from 0-15 m would better characterize the phytoplankton community. It is also preferable to sample all plankton communities in daylight hours as many species migrate on a diurnal basis (Ayers and McKinney 1996, Wetzel 1975 and others). Samples are not regularly taken at depth, but are seasonally indicated by metalimnetic oxygen minima or maxima. Approximately 25 samples are taken on quarterly trips and 3 on monthly trips. Chlorophyll samples will be collected at all sites where a physical profile is measured and always accompany phytoplankton samples, as they offer a check on biomass estimates. Sampling frequency increases in the transitional zone. This includes 30-40 samples per quarterly trip including several sets of duplicates or triplicates. Monthly trips will include 3-5 samples. ### **Quality Control** Replicate samples will be taken for all parameters. Chlorophyll analysis will be most rigorously evaluated. Duplicate or triplicate samples are taken on each quarterly trip and occasionally on monthly samplings. Calculations for relative percent difference are made for each of these samples. Replication is less frequent for zooplankton and phytoplankton samples. Split samples are periodically sent to different labs for analysis. ### Preservation Phytoplankton and zooplankton samples will be preserved with Lugol's solution. This is a versatile non-toxic preservative that affords the least damage to short and long-term storage of organisms, including delicate structures. It consists of 20 g potassium iodide (KI); 10 g iodine crystals in 200 ml distilled water containing 20 ml glacial acetic acid. (APHA 1992). Samples are preserved with 1% Lugol's, or about 10 ml /Liter, and are stored out of light in polyethylene bottles. # Sample Analysis # **Contracting Procedure** Sample analyses will be performed according the standard methods procedures (EPA 1992) unless stated otherwise. Outside laboratories will be contracted for all analyses. Currently, chlorophyll is contracted to a Bureau of Reclamation lab in Boulder City, NV under the management of David Hemphill. Following a thorough search, several suitable labs will be identified for the analysis of zooplankton and phytoplankton. Prices, services, and experience with this region will be criteria for selection. Several of these labs have been used historically and their prices, quality of work and experience with southwestern reservoir assemblages is known. # **Contract Specifications** ### Zooplankton Three sub-samples will be analyzed unless the sample has less than 200 zooplankters. Large, unusual organisms will first be enumerated (fish eggs, macro-plankton, etc.). The samples will be enumerated and identified to species. Fecundity status and measurements for the determination of bio-volume will be made on each of the Wahweap and below dam samples, while quarterly trips will pool measurements by reach and trip, as specified at the time of shipment. Nannoplankton in the tows will be identified to genus and given a subjective abundance classification. ### Phytoplankton For each sample, 400 individuals or colonies will be counted and identified to species. Three replicate sub-samples will be counted and identified if the sample has more than 400 phytoplankters. Wahweap, Glen Canyon Dam and Lees Ferry samples will be identified to species. Quarterly lake-wide trip groupings will also be identified to species. Bio-volume estimates will be calculated based on length/width measurements for each of the Wahweap and below dam samples, while quarterly trips will pool measurements by reach and trip, as specified at the time of shipment. A minimum of 10 measurements will be made for each species. Calculations for species density (# / Liter), relative abundance on the mean replicates, measurements, bio-volume, and bio-volume abundance will be reported for each sample. ### Chlorophyll Samples will be analyzed according to standard methods (APHA 1992). The filters are ground and the chlorophyll is extracted in an acetone solution. A spectrophotometer returns trichromatic readings to determine amounts of chlorophyll-a, -b and -c, which reflect amounts of algal biomass. Chlorophyll-a is present in all photosynthetic algae, while chlorophyll-b represents green algae and euglenophytes and chlorophyll-c represents diatoms and others. Pheophytin-a concentrations (a degradation product) are determined from readings taken on acidified and non-acidified samples. Samples are spectrally corrected for turbidity. If available, a fluorimeter may be used in the future to collect chlorophyll profiles in vivo. ### **Archiving** After analysis, phytoplankton and zooplankton samples will be concentrated and archived in 35 ml polyethylene bottles. Future uses of the sample may include confirmations in speciation, biomass, chemical or lipid analysis. # **Data Processing and Analysis** Data will be organized in a standard spreadsheet and entered into the available database software (ultimately the Oracle Database). Statistical analysis will be performed in spreadsheets or with an appropriate statistical package. Biomass and density estimates by family, genus and species will be performed. Diversity indices, similarity indices, and taxa richness will be evaluated for trend analysis. Trophic status will be evaluated and correlations done to determine limiting nutrients or conditions. Data may be clumped into reaches to simplify analysis and interpretation, where appropriate. Raw data may be made available on the web once it has been verified. # Lake Powell Site Coding and Geo-referencing Using the ARC/INFO geographical information system, a digitized map has been developed from mosaic Digital Line Graphs (DLG) of USGS 1:100,000 scale maps of the Lake Powell region. The maps include the pre-dam Colorado River channel and those of other major tributaries. Additional information has been manually digitized and added to the maps. Overlays to this map have been developed to include surface hydrology; natural features, roads and other man made features, registered sampling locations, and other pertinent annotations. Sampling stations on the reservoir have had their geographic coordinates determined using Global Positioning system (GPS) technology. Written descriptions and photo documentation for each station have been recorded to aid in relocating a station based on landmarks and other physical features. Using the GPS coordinates, the sampling stations will be incorporated into the digital map as a GIS overlay. Using dynamic segmentation methodology, river channel distances (RCD) to each station, from a fixed reference point, may be determined (Table). The base reference point is Glen Canyon Dam for Colorado River main channel stations. For stations on tributary arms, the reference point is the confluence of the tributary with the Colorado River main-channel. From this information a revised station coding scheme can be developed which incorporates the general project code, the stream channel of the station and the river channel distance from the given reference point. Historically, stations were numbered sequentially in the order of their establishment. Frequently, there is no information in the station name or code to locate a particular station with reference to another. The new coding scheme will allow the location of a station within a particular tributary arm to be determined from its station code. The station code for a particular station is an eight character alphanumeric string. The first two letters represent the project; in this case, LP represents the Lake Powell project. The second two to three letters represent the tributary arm; CR represents the Colorado River, SJR the San Juan River, ESC the Escalante, and so on. The remaining characters are integers expressing the number of river channel kilometers in tenths from a given reference point for the tributary arm. For example, the Cha
Canyon station which resides 19.3 river channel kilometers from the predam Colorado River channel on the San Juan River arm of Lake Powell has historically had a station code of SCUCLP15. Under the revised coding scheme, this station has an 8-character identification code of LPSJR193. This station code uniquely identifies a main channel station. This code, along with other information such a station name, geographical coordinates, state, county, hydrologic basin code forms a record in the water quality database table STATION which includes all information required by the EPA STORET system to sufficiently identify a sampling location. Each entry to the database for a given sample or measurement will have a station code identifier associated with the data. # Appendix C VITAE OF CO-AUTHORS Response to Comments on GCMRC Integrated Water Quality Program (IWQP) Draft of May 10, 1999 # Comments responded to from: Norm Henderson, NPS Cliff Barrett, CREDA Bill Davis/Richard Meyerhoff, CREDA Gary Burton, WAPA Bob Lynch, Attorney at Law Anonymous reviewers # GLEN CANYON NATIONAL RECREATION AREA REVIEW OF DRAFT # GRAND CANYON MONITORING AND RESEARCH CENTER INTEGRATED WATER QUALITY MONITORING PLAN (5/10/99) (comments by Norm Henderson, NPS) June 3, 1999 The overall style and organization of the plan is good. The writing style was easy to follow. It was obvious the authors put a great deal of time into the refinement of the April draft. This effort is much appreciated at least by this reader. Further, it is clear within the plan that the authors are extremely knowledgeable about the general character of the Lake Powell aquatic system and have been instrumental in retrieving past data and organizing a rather large and complex data set. Notwithstanding the great strides that have been made, there are several points of concern that must be addressed to improve the proposed program and the current document to make it more usable and responsive to AMWG/TWG needs. These points are the following: ### 1. General - a. The purpose and scope of the plan itself was somewhat unclear and should be specified early in the document, i.e., what is this plan intended to accomplish? Is the plan a long-range strategic plan or an annual plan? It should be more than just what INs will be addressed. For example, a detailed budget summary and justification must accompany the FY-2000 annual work plan (including contracts, equipment, salaries etc.) in order for the plan to be meaningful to TWG. A generalized budget summary is also needed for the out-years. The budget summary should include the various funding sources to be used, i.e., AMP/O&M, O&M, appropriated etc. **Response:** A short narrative is included below each water quality-related information need in Chapter 1. This includes a statement of whether the IWQP will fully support this information need through its research and monitoring or partially support the information need by providing necessary water quality information for separate studies specifically answering the information need. A budget summary is included at the end of Chapter 2. b. The objectives and goals of the program (IWQP) are stated and paraphrased at various locations throughout the plan but each description is, somewhat, different. I suggest that the program goals and objectives be stated once and then either used by reference or stated verbatim throughout the remainder of the plan. Better yet, use the INs verbatim. Response: Information Needs are stated verbatim in Chapter 1 with a brief paragraph describing how the IWQP addresses each IN. Each IN is categorized into an overall priority category, based on voting by TWG members on April 28, 1998. A statement of whether information from the program fully addresses the Information Need or partially supports it by supplying basic long-term water quality information for use by other investigators is also included. This information is summarized in a table at the end of Chapter 1. **Response:** The introduction to Chapter 2 has been rewritten to clarify the primary goal of the IWQP and its linkage to the Management Objectives and Information Needs of the AMP. It specifies general objectives of the four monitoring program components, which aid in guiding monitoring activities. The specific objective of each program component is listed separately under the description of each component c. Two authors are listed on the proposal. One person should be designated as the Principal Investigator for the project. Only in this way can the responsibility for the program be adequately tracked. **Response:** The plan as written has been co-authored by the GCMRC staff members. The plan will be implemented by the co-authors in a collegial manner with each co-author having defined responsibilities. d. Subheading and heading characteristics (font size and bolding) are so similar as to be mostly indistinguishable to the reader. As a result it is difficult to follow the outline format of the plan. Response: Document style has been reformatted to enhance readability. e. Very important and missing from the proposal/plan is a deliverable section detailing the reports to be provided and on what schedule. **Response:** Deliverables include annual status reports, publications addressing specific research or information needs, updating of web site/SCORE report, data accessibility, and public presentations. f. The terms "characterization," "monitoring," and "basic-level monitoring" are variously used throughout the plan but are never really defined. As a consequence, it is unclear just how such characterization and monitoring addresses the specific INs. Each of these terms suggests the acquisition of general data about a system rather than the acquisition of specific information designed to answer scientific questions. At this point, almost 30 years of baseline data exist to "characterize" Lake Powell. It is now time to address specific hypotheses. **Response:** The primary goal of the IWQP will be met by maintaining a long-term program of basic water quality monitoring, defined as the periodic measurement of a consistent, repeatable set of common water quality parameters from an integrated network of sites from Lake Powell through the Grand Canyon. The information will be collected according to standardized monitoring and maintained in a common location. To fully address specific Information Needs, form linkages with other resource components, and evaluate protocols and methodology, necessary research will be also be conducted based on specific hypotheses. g. As required for all other research proposals to GCRMC, this proposal should include a vitae or qualifications summary for each of the authors. **Response:** This is included as Appendix C. h. A data analysis section must be included to indicate how the acquired data will be assessed to address the specified objectives. This section should specify the statistical methods employed as well as the parameter comparisons to be made. **Response:** A brief description of data analysis techniques is given in Chapter 4. These focus mainly on summarization and graphic representation of the data. Analytical methods specific to answering a given Information Need or hypothesis will be specified in the plan for that specific research project. 2. Page 2, purpose and scope - This section implies that the GMCRC IWQP addresses both AMP and BOR-specific information needs [outside the AMP]. It is unclear whether BOR needs are in addition to AMP requirements or are included. Any new responsibilities separate from AMP requirements must be identified as such with a specific funding source also identified, and included in the long-term program only if GCMRC personnel are able. Since it is obvious that the GCMRC limnology staff is stretched pretty thin, it seems unreasonable to add responsibilities without providing additional staff and/or funding. **Response:** This section has been revised so that only AMP needs are addressed in this plan. As needs from other agencies with associated funding sources are identified, it is possible that the IWQP can be modified to accommodate these needs. These activities will be accomplished by GCMRC staff or outside contract, as appropriate. 3. Page 2, water quality monitoring and adaptive management information needs - It is not at all clear how the INs are utilized in this section. Certain INs, mostly related to downstream resources (white area) are not addressed directly within this plan. Other INs, mostly related to Lake Powell, are more specifically addressed. It is important to make this distinction clear to the reader since one could legitimately expect specific results for the entire suite of downstream INs. **Response:** The narrative below each IN in Chapter 1 states whether the IWQP addresses the IN directly or provides supporting information. 4. Page 3-6 - The description of black, white and gray areas is unnecessary and confuses the reader not familiar with the process. All that is necessary is to list the INs to be addressed within the plan. **Response:** The confusion over which activities address upstream or downstream resources has been ongoing and continues to be misunderstood. The black, white, and gray concept was introduced by an AMWG member to resolve this confusion. The definitions of these categories are based on where the activities are conducted and whether they address upstream or downstream resource effects. Sources of funding are based on these definitions. This concept was adopted by the TWG, which drafted the definitions, identified funding sources, and instructed GCMRC to separate activities and develop a plan to accomplish this work. It is felt that the inclusion of this discussion as necessary to provide clarification and common definitions. 5. Page 7, Introduction, paragraph 1 - As in 2 above, the latter part of this paragraph specifies that the GCMRC IWQP is being developed for other agencies. As
stated above, the GCMRC program specifically addresses only the INs of concern to the AMWG. Other agencies are free to contract with GCMRC but only if GCMRC has sufficient resources to devote to these additional responsibilities. The GCMRC plan is "coordinated" with BOR and others to ensure that there is no duplication of effort, not to meet the needs of those agencies. **Response:** This sentence has been revised to remove references to the needs of other agencies. 6. Page 7, Introduction, paragraph 2 - I recommend not including specific dates or a chronology within this section since changes are likely that will quickly date the plan. **Response:** Reference to the July 1999 AMWG meeting and FY2000 will be removed. The statement that this plan proposes a "basic-level" long-term water quality monitoring program is confusing. What is meant by basic level? I was under the impression that the plan was not "basic-level" at all but was intended to specifically address one or more of the INs specified in Chapter 1. **Response:** This definition is provided at the beginning of Chapter 2 and states how the IWQP consists of a basic long-term monitoring program and specific research. It is not the intent of the IWQP to fully address all INs specified in Chapter 1. A primary function of the IWQP is to provide consistent high-quality information on water quality resources to the entire Adaptive Management Program. The final sentence is confusing as well. How do these "main objectives" pertain to the INs presented in Chapter 1? **Response:** The general and specific objectives of the four components of the water quality monitoring program have been developed to guide specific monitoring activities and methodologies. The goal of the program is to meet the overall needs of the AMP in understanding the effects of dam operations on water quality by providing consistent data to a broad range of research interests. To fully address specific Information Need additional targeted research activities may be required. 7. Page 7, last paragraph - The detailed methodology is found in Appendix D not Appendix A as stated. Response: This change has been made. 8. Page 7-9, Proposed monitoring activities - It is not at all clear how the proposed four general monitoring activities described here (and in Appendix D) will specifically address the information needs presented in Chapter 1. For example, to address IN 1.1d, I would have expected a very detailed study plan to study a couple of side channels to assess water movement at various layers (refreshment rates), influence of tributary inputs, nutrification rates, differences between side channels and main channel, dam operational effects etc. I suggest that each of the INs to be addressed have a specific hypothesis to be tested and a methodology (including data analysis) to address each hypothesis. Without this nexus between the INs and a standard scientific protocol, it is difficult for me to see how the INs will be specifically addressed by the generalized sampling scheme proposed. An example showing the process might be the following for hydrogen sulfide: - a. Testable hypothesis: hydrogen sulfide concentrations in the hypolimnion are undetectable and not affected by dam operations. (This is a very simplistic hypothesis. Given an expert limnologist's understanding of the system, more complex hypotheses would be likely and more meaningful. To me this is the hardest step in developing a research/monitoring program) - b. Methods: Take water samples from the water column of the forebay, main channel, and a specified number of side channels at 1 meter intervals from the hypolimnion/thermocline boundary to the bottom. Sample at monthly intervals under routine operating conditions. Take additional samples just before major changes in dam operations (specify). - c. Data analysis: Utilize standard analysis of variance statistics to determine differences in time and space within Lake Powell and between different operational criteria. **Response:** It is beyond the scope of the IWQP to fully address each water quality related Information Need. However, the IWQP will have separate research items to address specific questions. Before research to address a specific Information Need is implemented, a detailed study plan will be developed. It just seems incredulous to me that the past monitoring program, where no objectives were stated, is so robust that it immediately incorporates this new set of specific objectives. **Response:** The previous program was developed as a basic long-term monitoring program. The data required for the INs identified by the AMWG were developed. These were compared against the previous program and changes were made as required. Protocol evaluation will be conducted in FY2001. The relationship between the proposed monitoring plan and the downstream INs specified in the plan is even more fuzzy. The authors seem to be arguing that general monitoring of the tailwater and thermal monitoring through the canyon are all that is necessary to specifically address almost 20 biological INs related to water quality. At this point, general INs and specific INs are being mixed which entirely confuses this reader. **Response:** The IWQP does not propose that the data from this program will completely address all the downstream INs. The program would, however, provide basic water quality information required by other projects in support of addressing a particular IN. The INs listed in Chapter 1 are organized in the order they appear in the Management Objectives and Information Needs document. The table at the end of Chapter 1 addresses whether the program directly meets or generally supports a particular IN. The authors argue that a consistent long-term monitoring program provides supporting data to a variety of disparate programs and reduces the need for individual studies to initiate their own water quality monitoring. Difficulties with different methodologies, data management techniques, quality assurance protocols, inconsistency, and redundant resource expenditures can result when individual projects are left to collect common parameters that are also applicable to other studies. 9. Page 10, Proposed Activities for FY2000 - The relevance of this section is unclear since the overall purpose and scope of the plan has not really been made clear or described (see above). It is not clear whether the authors are proposing that yearly changes be made with no plan amendments, a yearly work plan be produced with anticipated changes, a revision to this plan be made each year etc. **Response:** Once the IWQP program is approved, the annual planning process of GCMRC would also include annual planning for water quality. This yearly work plan would contain a plan for continuation of long-term monitoring, with changes made that address changing information needs and protocol evaluation, and a plan for specific necessary research to be conducted that year. The proposed FY 2000 activities are listed in Chapter 2. 10. Page 10-11, hydrodynamic modeling - This section does not explain what GCMRC intends to accomplish within the timeframe of the plan regarding hydrodynamic modeling. More, it implies that GCMRC will work generally with BOR in their modeling efforts. It would seem that an explanation as to modeling needs should be explained in a little more detail including how the BOR effort will meet those needs. **Response:** Development of a hydrodynamic model is anticipated with BOR collaboration. Modeling needs of each entity may vary but basic input data gathering, reservoir geometry, meteorological inputs, and initial calibration would be common to all further uses of the model. A more detailed explanation of GCMRC modeling needs are provided in Chapter 2. 11. Page 11, data management - Data management is very different from data analysis. This section describes only how data will be stored not how data will be utilized and analyzed to answer specific INs or hypotheses. I recommend that a section entitled "data analysis and management" replace the current section with detailed data analysis included for each of the hypotheses. Response: Current methods for analyzing water quality data are briefly explained in this chapter. The chapter does not exclusively address data management, although the importance of adequate data management protocols cannot be de-emphasized. Without an effective data management system for basic long-term monitoring, the data are of little use for broader purposes. Analysis is closely tied with data management and ranges from graphical representations and statistical summaries to more rigorous hypotheses testing. Details of specific data analysis are more appropriate to a specific research study plan. 12. Page 12, paragraph 1 - Research or monitoring projects outside the scope of the specified INs do not seem appropriate. For example, a project regarding seiche effects does not seem to be responding to any particular IN specified by AMWG/TWG. **Response:** The research projects listed here can be directly related to specified IN's. Research regarding the nature of seiches, or internal oscillations within Lake Powell is related to all INs addressing water quality in downstream releases. Understanding and defining the nature of these seiches aids in prediction of discharge water quality and the separation of these effects from operational effects. 13. Page 12-13, Temperature Control Modifications - The IWQP should address TCD objectives and information needs. The TCD EA, input from stakeholders, and the expert panel on TCD all have provided input on these needs. Further, the GCMRC FY-2001 budget has already made projections on needs. If the needs are known for 2001 they should be known for other years. **Response:** The IWQP plan was developed without specific consideration for TCD. Research and monitoring specific to a TCD will be developed and funded separately from the IWQP.
Data would be collected under the IWQP that, while not specific to the evaluation of a TCD, would provide valuable baseline information for such an evaluation. 14. Page 13, conceptual modeling - The 1998 Lake Powell program (approved by AMWG) included a conceptual model for Lake Powell. If the model can be included and funded as part of the Grand Canyon conceptual model now being developed then describe it clearly that way. As now described, it is a little fuzzy about whether adequate funding is available for this effort from that source. I recommend that a timetable for development of the conceptual model be included in the plan. Response: At the July 1998 AMWG meeting, the Lake Powell program was approved provided that activities be separated into the "Black, Gray, and White" category and appropriate funding mechanisms established. Since that time the previously proposed Lake Powell conceptual model has been identified as belonging to the "black" category and no further attention has been given to it. In order to focus primarily on downstream effects, the linkages between data from the IWQP or other hydrodynamic models are proposed. A time table for development of a Lake Powell conceptual model is currently inappropriate until other needs and funding sources are identified. 15. Page 14, Resource Requirements - A budget is referenced here but is not included in the plan. **Response:** A budget for the IWQP is included in Chapter 2. 16. Page 14, equipment/staffing - This section briefly summarizes the proposed major equipment and staffing required to implement the program. However, a clear justification for these needs is not made along with the funding requirements. It seems that the authors assume continuance of what has occurred in the past for both items. They should justify why it is necessary and/or cost effective to maintain the proposed monitoring platform (Uniflite) for the sampling effort rather than renting or leasing such equipment. Further, they should explain why it is necessary and/or cost effective for data collection to be carried out by internal staff rather than contracted, and why two staff members are needed to implement the program. It would seem that a well-tailored contract could eliminate or greatly reduce the field time needed by the authors leaving more time to them for analysis and study. A contract would eliminate or greatly reduce the time required to maintain complex field equipment and even the monitoring platform itself on Lake Powell again allowing more time to the authors to analyze and report on the results. **Response:** A goal of the IWQP is to conduct and maintain a consistent long-term monitoring program for water quality. One means of achieving this goal in the past has been to utilize the expertise, experience, equipment, and methodology currently existing in the GCMRC. A substantial investment has been made in all areas. Another way would be initiate a contract for all or part of this work. Adequate staff would need to be maintained for contract administration, data integration, and quality assurance in addition to analyzing and reporting results. It is the view of GCMRC that this high quality work can be continued with the resources and budget outlined in Chapter 2. If the proposed program is approved, several monitoring and research aspects of the program could be contracted where appropriate. The proposed program would continue to remain under the direction of GCMRC. Execution of the program would be accomplished with the two existing GCMRC staff members and two additional technical positions. These could be GCMRC staff positions, student positions, contract positions, or details from other agencies. The Uniflite vessel used as a monitoring platform is a 32 foot twin-engine sedan capable housing a sampling crew for a weeklong reservoir survey. It is equipped with sampling winches, cable reels, depth sounder radio and other equipment that have been customized for this particular vessel. In short, it works very well for supporting reservoir water quality monitoring on a lake the size of Lake Powell. No equipment with similar capability has been found to be available by rental or lease. 17. Page 15-25, Chapter 3 (Appendix D) - This chapter and appendix describes the current sampling program and history. The relevance of this ongoing program (whatever the history) to the proposed new program is not really made clear except for the unstated implication that the current program exactly meets the needs of the new one. On the other hand, a summary of results of these past efforts would have been highly useful to determine the needs of the current program proposal. In my view, the "history" of the existing program is somewhat irrelevant. Describing the proposed program in terms of the ongoing program and continually in the past tense can cause some to question the authors independence, and does, at a minimum, confuse the reader who is trying to determine what is being proposed within the plan. **Response:** The historical description of water quality monitoring in Lake Powell is given to give context to the current level of monitoring in Lake Powell. The history of the program must be evaluated in order to interpret the results of past data collection efforts. Methods are improved, and the monitoring locations and frequency have been modified to represent a balanced and more efficient restructuring compared with past phases of the program. As understanding of the system improves, new methodology and tools such as hydrodynamic modeling become available, and further direction is received from the AMP, it is expected that the program will be refined further. With implementation of the data management efforts described in Chapter 2 more information and increased understanding can continue to be gleaned from past efforts. It is expected that findings or the previous Lake Powell assessment will be enhanced by further synthesis work with past data. 18. Page 15, paragraph 3 - Reference to Appendix B is incorrect. Response: This reference has been corrected. 19. Page 18, paragraph 1 - The objective of the biological program is stated to be the "characterization" of the lake and tailwater. However, this objective seems at odds with other statements of objectives and goals in the plan, and the INs specified by TWG. **Response:** This objective meets with the goal of basic long-term monitoring program of the biological resource as the effects of releasing this biological component to the downstream ecosystem. 20. Page 24 - A specific section devoted to site coding and geo-referencing is unnecessary. **Response:** The section was moved to Appendix B 21. Page 26-30, Chapter 4 - Although interesting, I question the need for a lengthy discussion about data management history in this plan. Further, a description of the current data management features, design, techniques, protocols, and structure is not really necessary in any great detail, and is more a subject for the GCMRC information management program than for the IWQP. I recommend that such lengthy discussions be reserved for a complete presentation of hypotheses to be tested and descriptions of the specific data analysis techniques used. Response: We have left chapter 4 as it stands, with a little simplification. ### Comments from Cliff Barrett: ----Original Message---- From: cliff barrett < barrett(a)trilobyte.net> To: <u>bgold@flagmail.wr.usgs.gov</u> <<u>bgold@flagmail.wr.usgs.gov</u>> Date: Tuesday, June 01, 1999 1:32 PM Subject: IWQP Barry, I've not reviewed the entire draft document in detail, but here are some initial reactions. Appendix A - page 50 should make the definition for the Black area the same as in the AMWG approved paper. Replace the term "solely within Lake Powell" with the same wording as used on pg. 52 - i.e. "not directly related to downstream effects". I think there is a major difference in these two terms. **Response:** This correction has been made. Chapter 1 - the discussion of IN's beginning on pg. 3: White area - several are related to the TCD. They are probably still a part of the IWQP, but should be funded separately as part of the total TCD program. Examples are Bio Res 5.1, 5.2, 5.3c, 5.4, and 5.5. **Response:** Research and monitoring specific to a TCD will be developed and funded separately from the IWQP. The basic long-term monitoring specified in this plan provides information to establish baseline patterns on which the operation of a TCD could be evaluated as well as addressing Information Needs not directly related to the TCD. In other words, IWQP temperature monitoring does not exclusively address TCD needs and therefore should be funded as other White area activities. - Some are listed in White that seem to me to be Gray (Phys Res 2.1b) or Black (Bio Res 5.4) **Response:** See narrative for each information need. Bio Res 5.4 addresses affects to both reservoir and downstream resources. It is hoped that the narrative below this information need makes clear that the focus is on "characterizing water...available for withdrawal under a TCD scenario" and that addressing effects to Lake Mead is NOT proposed as part of the IWQP. - What is the location of the activities and the effects of Phys Res 2.1b and Rec Res 1.5? **Response:** IWQP activities that respond to Phys Res 2.1b occur at sampling locations on Lake Powell, below Glen Canyon Dam, and Lees Ferry where chemical samples for nutrients and major ions are collected. There are NO IWQP sampling activities that address Rec Res 1.5. Information on metals concentrations to support this IN is provided by USGS NASQAN sampling at Lees Ferry and Diamond Creek. Grey Area - I have questions about the inclusion of any of the MO/INs referred to on pg.5 in the Grey area. Probably they should be in the Black area. Please see the introduction to the Lake Powell section of the Mgmt Obj Document adopted by AMWG, which clearly states that all of these are
related to "upstream effects only". **Response:** Reservoir monitoring provides a longer-term view of future release water quality and describes how dam operations and other factors affect water quality patterns in the reservoir and eventual downstream releases. Water in Lake Powell is affected by dam operations and is available for withdrawal to the downstream ecosystem downstream. An ad hoc group of the TWG developed the breakdown of information needs and definitions of the White, Grey, Black Categories listed in the plan and instructed GCMRC to develop a water quality monitoring and research program from that effort. Chapt. 2 - This is short on the type of details needed to evaluate a program for FY2000 and 2001. I would like to see: - A direct link between the work items proposed and the particular IN being met. **Response:** A short narrative has been added to each water quality-related information need discussing how the IWQP meets or supports that information need. - An indication that the top priority INs are given priority in the proposed program. **Response:** Based on the TWG prioritization of 4/28/98, each information need was assigned a priority, High, Medium, or Low, based on the number of votes out of fourteen. This ranking is given in the text of each information need. - Costs for each element of the monitoring program, with a breakdown between the White and Grey areas. **Response:** A budget for the IWQP is presented at the end of Chapter 2. - Some assurance that no Black area work is included in the GCMRC/AMP program. **Response:** It is stated under the listing of Information Needs in Chapter 1 that no support is provided by the IWQP in this area and no activities are proposed in this plan to address these information needs. **DATE:** July 27, 1999 TO: Barry Gold William Davis FROM: Richard Meyerhoff RE: Comments on GCMRC: Integrated Water Quality Plan Thank you for the opportunity to review the above-referenced draft document. Please find our comments attached. If you have any questions, please contact us at (480) 831-8780. Attachment cc: Leslie James, CREDA Cliff Barrett, CREDA Robert Lynch Ted Rampton, UAMPS ## Comments on GCMRC: Integrated Water Quality Monitoring Plan We have summarized our comments into three key points: 1. The proposed monitoring activities are not clearly linked to the management objectives and information needs, the stated purpose for the development of the plan. Consequently, it is difficult to follow a clear path from a given information need to the monitoring activity designed to meet that need. The attached table lists the information needs (white, gray, black) and our attempt at evaluating whether the appropriate data would be collected by the proposed monitoring activities. While it is understood that resources may limit what can be researched, it appears from our evaluation that many of the information needs will not be met by the proposed monitoring plan. **Response:** A short narrative is included below each water quality-related information need in Chapter 1. This includes a statement of whether the IWQP will fully support this information need through its research and monitoring or partially support the information need by providing necessary water quality information for separate studies specifically answering the information need. The table attached to the comments from Bill Davis has been modified and incorporated into the IWQP plan. 2. The monitoring plan lists three main objectives (Chapter 2, Introduction), a primary goal and "four main components of monitoring activities" (Chapter 2, Proposed Monitoring Activities). However, the relationship among objectives, the goal and the monitoring components is not clear. It is also not clear how these various objectives and components support the need "to evaluate the effects of the Secretary's actions and refine management approaches." **Response:** The introduction to Chapter 2 has been rewritten to clarify the primary goal of the IWQP its linkage to the Management Objectives and Information Needs of the AMP. It specifies general objectives of the four monitoring program components, which aid in guiding monitoring activities. The specific objective of each program component is listed separately under the description of each component. 3. The monitoring plan emphasizes water quality monitoring in Lake Powell. However, many of the information needs involve the area downstream of the dam. The tailwater site is within the dam and while it will provide important baseline data, it will not provide data about what happens to water quality below the dam as a result of river processes. There is only one downstream site for water quality monitoring (other than thermal data) - Lee's Ferry. How data from Lee's Ferry alone can be used to address the information needs downstream of Glen Canyon dam needs clarification. Response: Conditions in Lake Powell are monitored because water withdrawn from the reservoir can be affected by various aspects of dam operation and is eventually exported to the downstream environment. Future release water quality can be predicted by monitoring conditions and understanding processes in the reservoir. The physical, chemical, and biological components of dam releases directly affect the aquatic ecosystem below the dam. These biological processes, in turn, affect the water quality of the river, especially in the Glen Canyon Reach above the Paria River. Below this point, primary productivity becomes limited by light availability and biological oxygen dynamics are masked by aeration from rapids in Grand Canyon. Other water quality data are collected downstream by USGS at gauging stations (conductance, temperature, stage level, DO,DOC, N, P, bacteria) and this is a part of the water quality plan as part of these data collection efforts are funded by GCMRC. Data collection at Lees Ferry and Diamond Creek Gauges include DO, DOC, N, P, and bacteria as a part of the NASQAN Program. These data are available from USGS. Thermal monitoring is maintained because of the importance of temperature to the aquatic ecosystem and the effect of dam operations on release temperatures and warming patterns in Grand Canyon. ### Recommendations • Revise the plan to clearly show how the proposed monitoring activities will yield data needed for the information needs developed by the TWG and evaluate the effects of the ROD. For example, the first information need, IN 1.1, which involves the aquatic food base downstream of the dam, should be linked to the proposed monitoring activities to show how these activities will provide appropriate data to address this particular need. This type of analysis and presentation for each information need would demonstrate how the monitoring plan is designed to meet the research needs for Glen Canyon. Response: See Chapter 1 for a narrative of how the IWQP addresses each information need. Reevaluate the number of sampling stations below Glen Canyon Dam. It is not clear how reliance on one sampling station, Lee's Ferry, to provide the kinds of data needed to research complex issues such as the aquatic food base below Glen Canyon Dam, will meet the objectives of the monitoring plan. **Response:** The number of sampling stations are maintained in the current proposal based on the reasons given above. This could be reevaluated based on the need for this information by the TWG or other researchers. ----Original Message---- From: Gary Burton < BURTON@wapa.gov > [SMTP:Gary Burton BURTON@wapa.gov >] Sent: Monday, June 14, 1999 3:39 PM To: B PERSONS@GCES@PHX Cc: SMTP@AZGF_PHX1@Servers["CLAYTON PALMER" <u>CSPALMER@wapa.gov</u>>] Subject: WAPA Comments on IWQP Bill, Our concise comments are included below. I apologize that they did not make it out to you last Friday. Western is glad to see the draft plan come out and appreciates the opportunity to provide comments. The Introduction to Chapter 2 states the draft has been sent out for independent technical review by a panel of experts. Please note we would like to receive a copy of the panel's comments when available. 1. The direction given by the ad hoc group was to create a plan that describes what is required and how water quality monitoring should be accomplished in Lake Powell and downstream. The draft plan does propose what should be done to effectively monitor water quality in these areas. It also gives the appearance of an implementation plan to begin the proposed (continue current) monitoring. While efficient, implementation is a step beyond the task given. **Response:** The TWG instructed GCMRC to develop a monitoring plan, addressing the split of upstream and downstream activities for recommendation by the AMWG in July 1999. This plan incorporates the funding mechanism, proposed for FY2000 for Lake Powell work and is part of the GCMRC FY2000 Annual Plan. 2. Western is pleased to see the Temperature Control Device monitoring issue separated from IWQP thermal monitoring and believes this to be the appropriate approach. Only when the TCD is authorized would monitoring needs develop. If the TCD is authorized for construction, an experiment-specific monitoring plan, as proposed, would then be developed. Depending on the results of the experiment, if authorized, a long-term, TCD monitoring plan could be integrated with the IWQP. **Response:** This philosophy is incorporated in the plan. The IWQP would continue to provide baseline water quality information, not specific to, but in support of, the evaluation of the operation of a TCD. 3. It is a positive aspect of the document to have the background and developmental history of the water quality monitoring issue included in Appendix B. The monitoring activity and funding source separations are accurate and clarify those portions that are presented in the body of the document. However, it is inappropriate at this point to include a justification for GCMRC staff to conduct the program for the
Adaptive Management Program and Reclamation in the canyon reaches below Glen Canyon Dam and in Lake Powell. Once the "what is required and how" of the plan are finalized, the "who" can be determined. AMP and Reclamation have some separate, but related monitoring responsibilities. Some of the AMP responsibilities may need to be accomplished through the competitive bid process. This is a determination to be made after the IWQP is final. **Response:** Pending approval by the AMWG, implementation of the IWQP will begin October 1, 1999. While there may be many ways to accomplish this task, the in-house efforts of GCMRC are currently providing a cost-efficient and effective solution. It is also felt that this approach is of benefit over the long-term in terms of quality, consistency, and central data management. For these reasons, the justification for an in-house program was included. ### Robert S. Lynch Attorney at Law 340 E. Palm Lane Office: (602) 254-5908 Suite 140 Fax: (602) 257-9542 Phoenix, Arizona 85004-4529 Email: RSLynchAty@aol.com ### **Emailed only** #### MEMORANDUM TO: Barry Gold (bgold@flagmail.wr.usgs.gov) FROM: Robert S. Lynch DATE: June 7, 1999 SUBJECT: Draft GCMRC Integrated Water Quality Monitoring Plan I have briefly reviewed the draft Plan. I am concerned that most of the activity is centered on Lake Powell and too little of it is centered on the Colorado River below Glen Canyon Dam. Given the limited financial resources that Reclamation can apply to this effort, I am concerned that water quality studies in Lake Powell will divert resources from data gathering below Glen Canyon Dam that is essential to building a proper data base about the effects of the current dam operating criteria for power generation on downstream resources. Response: The concern that efforts are centered on Lake Powell was shared by other reviewers (see Bill Davis, Item 3). This has been addressed through a plan to assess past downstream activities and develop a research plan for monitoring downstream (Grand Canyon) water quality resources. Additionally, other data are collected downstream by USGS at gaging stations (conductance, temperature, stage level, DO,DOC, N, P, bacteria) and this is a part of the water quality plan as part of these data collection efforts are funded by GCMRC. The peer review of the draft environmental analysis of the proposed temperature control device pointed out substantial gaps in baseline data that made impact predictions from the facility problematic at best. I viewed that peer review as a wake-up call about the focus of ongoing studies. **Response:** Most of the TCD-EA comments were focussed on fisheries monitoring gaps. The point is taken, as addressed above. The TCD is a separate proposal and a monitoring and research plan focussed on the TCD is being developed. Regardless of the source of funding, there are only so many people and so many hours in a day. Even if studies are contracted out, Reclamation personnel must supervise and manage those efforts. Ultimately, the Center is going to have to answer the question: What are the impacts of the use that has been made of the operating criteria? Without proper baseline data of downstream impacts, neither the Center nor Reclamation will be able to do so credibly. Launching into a wide array of water quality studies in Lake Powell will likely shortchange the monitoring program the 1992 Act directed be done. This ambitious Plan needs to be measured against the scientific deficiencies in the database below Glen Canyon Dam. **Response:** Some GCMRC contractors have and are doing water quality collections downstream. Specifically, USGS, NAU Aquatic Food Base, NAU geology, and most fisheries researchers perform some water quality monitoring. These are not comprehensive and are difficult given logistics and timing issues for the transient nature of the fluvial environment. A PEP will be used to evaluate past data, determine exact water quality monitoring needs, and develop research to guide the implementation of a downstream water quality plan. RSL:psr ## Reviewer 1: # GRAND CANYON MONITORING AND RESEARCH CENTER 2255 N. Gemini Dr., Room 341, Flagstaff, AZ 86001 (520) 556-7094 ### PROPOSAL EVALUATION FORM PRINCIPAL INVESTIGATOR(S) (Name & Address: last name first; show first name and/or initials as shown in manuscript) Vernieu, W.S. and S.J. Hueftle, INSTITUTION Grand Canyon Monitoring and Research Center P.O. Box 22459, Flagstaff, AZ 86002-2459 PROPOSAL TITLE Integrated Water Quality Monitoring Plan #### PROGRAM: A. UTILITY OR RELEVANCE OF THE MONITORING/RESEARCH PROPOSAL - LIKELIHOOD THAT RESEARCH WILL CONTRIBUTE TO PROGRAMMATIC GOAL OR PROVIDE KNOWLEDGE THAT WILL SERVE AS THE BASIS FOR IMPROVED UNDERSTANDING AND MANAGEMENT OF COLORADO RIVER ECOSYSTEM. The proposed monitoring work should be very useful and contribute to understanding both Lake Powell and the export of nutrients, plankton and water of specific temperatures into the Grand Canyon. Due to the proposed penstock changes the detailed monitoring in the forebay would appear to be the most pragmatic aspect of the study, but since the forebay is "fed" by the entire reservoir, the monitoring of the entire system is warranted. Removal of warmer surface water that is more nutrient deficient will likely influence the productivity of the lotic system below the dam, as well as the productivity of the reservoir itself, and the monitoring will be necessary to anticipate what changes will occur. It is not clear how tightly-linked the temperature, nutrient and plankton work in the reservoir is to the studies of production in the lotic areas. The two groups responsible for these different aspects should be working closely together to facilitate the most appropriate data gathering. **Response:** Integration of downstream work is in a developmental stage and ongoing. Linkages are continuing to be found and explored. The monitoring plan intends to provide long-term data that can reflect operational changes including epilimnetic releases, whether they result from spillway operation or a TCD. The nature of the epilimnion has been demonstrated to influence the water quality of the releases (Hueftle & Vernieu, in review). A very important aspect of the proposed work is that it will continue the long-term data base that is established. This will allow investigators and managers to determine how dam-modifications are impacting the reservoir and, in turn, how those changes in the reservoir will influence the Grand Canyon. With the long-term data base in hand, it is unfortunate that the program is not planning on integrating a reservoir model with the model being constructed for the Grand Canyon. Although a hydrological model will be implemented, it would be much more productive to integrate a hydrological-chemical-biological model such as DYRESM (Imberger and Patterson, 1981). This would provide a model not only of the hydrological functions of the reservoir and linkage with the Grand Canyon, but it would allow the prediction of nutrient and organic carbon export. It would also facilitate understanding of how biological aspects of the reservoir would function with modified withdrawal scenarios. **Response:** Concerns for collection of nutrient and organic carbon are being evaluated as a part of an on going effort to refine the current monitoring plan. - B. INTRINSIC MERIT OF THE MONITORING/RESEARCH PROPOSAL LIKELIHOOD THAT RESEARCH WILL: -LEAD TO NEW DISCOVERIES OR FUNDAMENTAL ADVANCES WITH REGARD TO PROGRAMMATIC GOALS; PROMOTE TECHNICAL ADVANCES IN THE SUBJECT AREA; - -PROVIDE RESOURCE MANAGEMENT ALTERNATIVES NOT PRESENTLY AVAILABLE; IMPROVE UNDERSTANDING OF THE LINKAGES BETWEEN RESOURCES; ANTICIPATED PARTNERSHIPS/LINKAGES WITH OTHER FACILITIES. The research is designed as a basic monitoring project and as configured it seems unlikely to lead to new discoveries, or to provide fundamental advances in the subject area. The monitoring data will, however, address resource management alternatives with regard to the proposed changes in water withdrawal depth. It will also provide the needed data for linking reservoir and river productivity. **Response:** Although research is not the main focus of the IWQP, discoveries have been found under the scope of the past program, even if not as directly under focussed research. The element suggested here implicates the need for the category of *necessary research* identified in chapter 2 that allows this type of research and discovery on a limited scale. Furthermore, elements of research are a necessary product of analyzing monitored data-sets. Although several partnerships with other research groups were mentioned, the linkages between the groups were not clearly delineated. One linkage that appears to be entirely missing is between the GCMRC and the Utah Division of Wildlife Resources who monitor the fish populations in Lake Powell. Because of top-down controls on zooplankton by the fish in the reservoir, there are obvious potential interactions with the biotic community in the Colorado River. The hydroacoustic surveys mentioned in the proposal could be linked with the netting surveys of the Division of Wildlife Resources to gain a better understanding of the fish populations in the lake, and their importance in controlling the plankton community. **Response:** It is agreed greater integration with reservoir fisheries would benefit both science in general as well as upstream and downstream linkages. These linkages are continuing to be forged and efforts will be increased to integrate Utah Div. Of Wildlife Resources. The IWQP, however, does not propose to do any first hand fisheries work. C. TECHNICAL SOUNDNESS OF THE PROPOSED APPROACH. APPROPRIATENESS OF HYPOTHESES TO BE TESTED; METHODS ARE APPROPRIATE AND SCIENTIFICALLY VALID; PROPOSED SCHEDULE IS REALISTIC. The monitoring program which has evolved over several decades is general quite sound. The sampling frequency and
number of stations sampled is appropriate, and the methods are rigorous. Some minor modifications and/or additions that would improve the data sets include: 1. Because temperature stratification in the forebay is critically important for the river temperatures, it would be wise to install thermistor strings there. Fifteen HOBO temperature recorders, costing about \$70 each, could record data at 10-minute intervals throughout the water column for months. This would provide better data on seasonal cycles of temperature, and more importantly, would provide valuable information on internal waves (seiches). If the seiche data were combined with the wind data to be collected at the weather stations, one could model the variability expected in outflow temperatures at time scales varying from hourly to monthly. Thermistors strings could be profitably used at other sites along the reservoir, but they would seem to be critically important in the forebay. **Response:** The effects of seiches on release water quality has been discussed for the monitoring suggested in item 1. This will be a priority item, particularly in the face of a possible BHBF, as these effects may significantly influence the interpretation of just such a short-duration experiment. 2. The zooplankton collection should include a metering device at the mouth of the net, as net efficiency can vary from 50-80% with an 80 um mesh, depending on the amount and size of phytoplankton in the water that can clog the net. **Response:** The use of a flow meter for zooplankton tows has been considered previously and is being evaluated. 3. Depth-stratified sampling of zooplankton during the day at monthly intervals in the forebay may not be justified, as the plankton's depth distribution is dependent on time of day when sampled. It would be more informative to do depth-stratified sampling quarterly with both day and night samples taken. This would provide a clearer idea of the amount of zooplankton that would enter the outflow under different withdrawal scenarios. **Response:** The concerns for diurnal zooplankton sampling are valid and may be accomplished under a separate monitoring program for the TCD, but are currently outside thscope of the IWQP. Collaborative work with BOR-Denver is being pursued to evaluate zooplankton distribution patterns and sampling methodology. 4. GF/F filters are not 0.45 uM (p. 72), but rather have a nominal pore size of 1.0 uM. It is likely that a portion of the picoplankton are being missed. These likely contribute 20-40% of chlorophyll in oligotrophic sections of the lake. GF/F filters, with a nominal pore size of 0.6 uM would retain nearly all of the phytoplankton, and would allow enough water to be filtered for the spectrophotometric method employed. **Response:** The information on GF/F filters will be corrected and the recommendation for a smaller pore size adopted, with attention to initial duplication of effort to assess effects of methodology alteration. New filters will be GF/F $0.7~\mu M$, the smallest pore size available. 5. A large portion of the productivity of Lake Powell may occur in the shallower, more productive side canyons. It would be wise to increase the monitoring of these smaller canyons with synoptic sampling twice a year. The *in vivo* monitoring of chlorophyll a with a fluorometer would greatly facilitate the broad-scale measurements of productive potential. **Response:** It is agreed side-bays may have more significant effects on mainstem water quality than previously considered, as the drop in reservoir elevation from the BHBF demonstrated in 1996. The level of sampling suggested lies outside the current scope of the IWQP. It may be addressed as *necessary* research of the current program. 6. One basic limnological parameter that is not being collected is light penetration. Although the Secchi disk provides some information in this regard, it is difficult to use the Secchi data for modeling of light fields, and of the light available for primary production. It is likely that the Hydrolab could be equipped with an inexpensive LiCor PAR sensor. Alternatively, a stand-alone LiCor meter could be used to gather the light data. Presumably, the meteorological station(s) will have continuous monitoring of incident light and this data could be linked with extinction coefficients from the underwater LiCor profiles to help understand the potential for primary production in the reservoir. **Response:** It is agreed that greater collections of light penetration data is desirable. It has been collected sporadically in the past using a LiCor meter and it is intended to be continued at whatever level time and staffing allow, preferably a series of profiles lake-wide in the peak productivity seasons. Two more fundamental issues of the proposal that should be addressed are: 1. Few specific hypotheses were forwarded in the proposal. Although I realize that this work is primarily monitoring, addressing specific hypotheses would likely yield higher rewards/unit investment, than the current outlined program. Response: Hypotheses will be developed as a part of specific research activities put forth in Chapter 2 2. Although the data management of the project seems to be progressing nicely, the proposal did not address how data reporting and/or publications would occur. Relatively few publications of the investigators are cited in the proposal, suggesting that large amounts of data are being collected and archived, but not published.. If hypothesis testing were linked with a more aggressive publication objective, it is likely that there would be more benefits for others interested in the management of Lake Powell, the Grand Canyon, and reservoir-river linkages in general. Response: A list of products is included in the final draft. 3. Curiously, no mention was made of limnological research related to the potential removal of Glen Canyon Dam. Perhaps other groups are addressing this issue, but it would be prudent to begin research in this area. **Response:** Addressing information needs of this proposal lies outside the current scope of this program and the AMWG. #### E. OVERALL RECOMMENDATION: The basic monitoring plan is generally sound and should be funded. As no budget was provided, it is impossible to evaluate the cost/benefit of the work. If a more rigorous hypothesis-based approach were adopted it is likely that the project would yield more rewards. Some of the more innovative parts of the proposal were in the "Black" category, with applications above Glen Canyon Dam. However, much of the work described in the "Black" category would also have important implications for downstream river function. Funding should be sought for this additional work, not only for its intrinsic merit to understand Lake Powell's ecosystem, but because the processes in the lake will influence downstream water uses. **Response:** As scientific knowledge of this system advances, the likelihood of finding further linkages to reservoir processes and downstream water quality increases. It may be important to revisit these categories as additional scientific understanding is developed. REVIEWER 1 (Name, address, phone) (CONFIDENTIAL "TO BE BLANKED ON ANY COPY PROVIDED TO AUTHORS) ### Reviewer 2: # GRAND CANYON MONITORING AND RESEARCH CENTER 2255 N. Gemini Dr., Room 341, Flagstaff, AZ 86001 (520) 556-7094 PROPOSAL EVALUATION FORM PRINCIPAL INVESTIGATOR(S) (Name & Address: last name first show first name and/or initials as shown in manuscript) W.S. Vernieu, S. J. Hueftle PROPOSAL TITLE Grand Canyon Monitoring and Research Center Integrated Water Quality Monitoring Plan ### PROGRAM: A. UTILITY OR RELEVANCE OF THE MONITORING/RESEARCH PROPOSAL - LIKELIHOOD THAT RESEARCH WILL CONTRIBUTE TO PROGRAMMATIC GOAL OR PROVIDE KNOWLEDGE THAT WILL SERVE AS THE BASIS FOR IMPROVED UNDERSTANDING AND MANAGEMENT OF COLORADO RIVER ECOSYSTEM. Continuation of the Lake Powell water quality-monitoring program, begun in 1965, is to be strongly encouraged. Continued monitoring seems critical to providing the basic scientific information needed for the proper management of the river ecosystem. This monitoring program seems to have provided much of the information about trends in water quality in Lake Powell, and to discontinue it now or in the foreseeable future would seem ill-advised. - B. INTRINSIC MERIT OF THE MONITORING/RESEARCH PROPOSAL LIKELIHOOD THAT RESEARCH WILL: - -LEAD TO NEW DISCOVERIES OR FUNDAMENTAL ADVANCES WITH REGARD TO PROGRAMMATIC GOALS; PROMOTE TECHNICAL ADVANCES IN THE SUBJECT AREA; - -PROVIDE RESOURCE MANAGEMENT ALTERNATIVES NOT PRESENTLY AVAILABLE; IMPROVE UNDERSTANDING OF THE LINKAGES BETWEEN RESOURCES; ANTICIPATED PARTNERSHIPS/LINKAGES WITH OTHER FACILITIES. The monitoring program which is proposed here seems well-designed. There is a good mix of the necessary "routine" monitoring and more focused studies aimed at interesting and relevant topics such as the large releases of water that might occur in connection with beach replenishment programs. C. TECHNICAL SOUNDNESS OF THE PROPOSED APPROACH. APPROPRIATENESS OF HYPOTHESES TO BE TESTED; METHODS ARE APPROPRIATE AND SCIENTIFICALLY VALID; PROPOSED SCHEDULE IS REALISTIC. The methodologies proposed for water quality collections and analyses seem straightforward. Data management is important in long-term monitoring programs, and issues related to this topic seem to be under control. ### E. OVERALL RECOMMENDATION: Strong recommendation that long-term Lake Powell water quality monitoring programs described in proposal be continued. Response: No comments or replies necessary. REVIEWER (Name, address, phone) (CONFIDENTIAL ? TO BE BLANKED ON ANY COPY PROVIDED TO AUTHORS) ## Reviewer 3: # GRAND CANYON MONITORING AND RESEARCH CENTER 2255 N. Gemini Dr., Room 341, Flagstaff, AZ 86001 (520) 556-7094 PROPOSAL EVALUATION FORM PRINCIPAL INVESTIGATOR(S) (Name & Address: last name first; Vernieu, William S. & Susan J. Hueftle
show first name and/or initials as shown in manuscript) INSTITUTION Grand Canyon Monitoring and Research Center PROPOSAL TITLE Grand Canyon Monitoring and Research Center Integrated Water Quality Monitoring Plan **PROGRAM** : Colorado River Adaptive Management Program A. UTILITY OR RELEVANCE OF THE MONITORING/RESEARCH PROPOSAL - LIKELIHOOD THAT RESEARCH WILL CONTRIBUTE TO PROGRAMMATIC GOAL OR PROVIDE KNOWLEDGE THAT WILL SERVE AS THE BASIS FOR IMPROVED UNDERSTANDING AND MANAGEMENT OF COLORADO RIVER ECOSYSTEM. This is a very comprehensive proposal for a monitoring program for Lake Powell. The proposed program shows a great likelihood for providing information that will serve as a baseline for further experimental and manipulative research which will further knowledge of reservoir ecosystems. Response: No comments or replies necessary. - B. INTRINSIC MERIT OF THE MONITORING/RESEARCH PROPOSAL LIKELIHOOD THAT RESEARCH WILL: - -LEAD TO NEW DISCOVERIES OR FUNDAMENTAL ADVANCES WITH REGARD TO PROGRAMMATIC GOALS; PROMOTE TECHNICAL ADVANCES IN THE SUBJECT AREA; -PROVIDE RESOURCE MANAGEMENT ALTERNATIVES NOT PRESENTLY AVAILABLE; IMPROVE UNDERSTANDING OF THE LINKAGES BETWEEN RESOURCES; ANTICIPATED PARTNERSHIPS/LINKAGES WITH OTHER FACILITIES. The proposal has very high merit and the research greatly improves understanding of another western reservoir. The research is interdisciplinary and well organized. Partnerships have a great likelihood of succeeding in the attainment of basic information on Lake Powell. **Response:** No comments or replies necessary. C. TECHNICAL SOUNDNESS OF THE PROPOSED APPROACH. APPROPRIATENESS OF HYPOTHESES TO BE TESTED; METHODS ARE APPROPRIATE AND SCIENTIFICALLY VALID; PROPOSED SCHEDULE IS REALISTIC. The proposal is technically sound. The biological aspect of the proposed work is very comprehensive and well organized. Quality assurance and quality control section looks very good (QA/QC are 10% of samples generated). Will any inter-laboratory comparisons of replicates, blanks or spiked samples be carried out? **Response:** Inter-laboratory analysis of samples has been done in the past, both for chemical and biological samples and will continue. QA is an integral part of the chemical sampling plan. Depending on the sampling objectives, detection limits are not yet satisfactory, so new labs are being sought to perform analyses. ### E. OVERALL RECOMMENDATION: Overall recommendation = excellent to very good. Funding recommended. REVIEWER (Name, address, phone) (CONFIDENTIAL TO BE BLANKED ON ANY COPY PROVIDED TO AUTHORS) ### PROPOSAL EVALUATION FORM Note: This review arrived Thursday June 24 1998 and the P.I.s were unable to address these comments. The review is provided as information. Addressing issues raised in this review will be done following the June 25th mailing. Vernieu, William S., and Hueftle, Susan J. Grand Canyon Monitoring and Research Center P.O. Box 22459 Flagstaff, AZ 86002-2459 Grand Canyon Monitoring and Research Center Integrated Water Quality Monitoring Plan Integrated Water Quality Monitoring Program A. Utility or Relevance of the Monitoring/Research Proposal: The focus of the proposed monitoring program is on the effects of dam operations on downstream resources. Although the program design may provide adequate information on this topic, it is unlikely that the program will provide sufficient knowledge and information that will serve as the basis for improved understanding and management of the entire Colorado River ecosystem. In particular, the monitoring program will not meet the informational needs of Glen Canyon National Recreation Area and other agencies engaged in monitoring reservoir water quality in Lake Powell (the so-called "Black" category). This is not to say that the monitoring program is flawed, but it is not designed to answer many of the complex resource questions upstream of Glen Canyon Dam. Therefore, the monitoring program should not claim that spin-off information from monitoring in Lake Powell will automatically benefit upstream users. To date, much information collected by the GCMRC has benefited upstream users because of the lack of agency coordination on monitoring and research in Lake Powell. However, the solution in Lake Powell is to target reservoir studies to upstream information needs, and to recognize that both upstream and downstream components are part of the same ecosystem. **Response:** The portion of the monitoring program related to Lake Powell is designed to focus primarily on those aspects of water quality effected by dam operations that influence resources downstream of Glen Canyon Dam. Addressing information needs in the "Black" category has been determined to lie outside the current scope of the Adaptive Management Program and would require direction and additional funding by agencies in need of this information. It is hoped that the information collected by the IWQP and the methodologies employed would be of benefit to investigators outside the geographical scope of the AMP. If upstream information needs were the primary factor in designing the proposed monitoring and research program, the reservoir components of this program would most likely be more costly and of greater detail. With proper coordination and identification of funding sources outside of the AMP a more comprehensive program could be developed to meet a broader range of information needs. ### B. Intrinsic Merit of the Monitoring/Research Proposal: Recent improvements in the GCMRC monitoring program is one example that the program proposal exhibits merit with regard to scientific advances in the field of monitoring and adjusting programmatic goals to provide answers to new questions and linkages between resources. However, when the program proposal discusses potential collaborations and partnerships, the focus is solely between GCMRC and the Bureau of Reclamation. In addition, all talk of integration and standardization in Appendix B is between GCMRC and BOR. It would be welcome to see a stated objective in the proposal to collaborate with other agencies with interests in the Colorado River ecosystem. Doesn't the Adaptive Management Program wish to involve and engage agencies such as the U.S. Geological Survey, State of Arizona, State of Utah, and the National Park Service in coordination of water quality monitoring? In addition, shouldn't the Lake Powell Interagency Group be consulted in decisions regarding monitoring in Lake Powell? Response: Greater collaboration with other agencies is certainly appropriate. In fact, a certain degree of collaboration already exists. Sample collection is occasionally performed for other agencies such as the State of Utah Department of Environmental Quality. The USGS conducts water quality sampling and measurements at downstream gages. GCMRC worked closely and shared information with Arizona Game and Fish investigators in past years. The National Park Service has been involved with GCMRC activities for the past several years providing logistical and fields assistance. All of the above agencies participate in the Lake Powell Interagency Group and are kept informed of current activities and encouraged to comment and participate. Additional efforts at collaboration with these and other agencies will be made in the future pending approval by the AMWG. ### C. Technical Soundness of the Proposed Approach: The technical soundness of the proposal is intact for the most part. The methodologies and instrumentation employed are of high quality and appropriate scale. Quarterly sampling in Lake Powell represents a minimum frequency of monitoring; however, it is recognized that the GCMRC crew and financial resources are spread very thin. It would be informative to know more about the status of monitoring in the Colorado River and its tributaries. **Response:** With improvements in data management techniques, it is expected that information from recent monitoring efforts can be more easily evaluated to achieve refinements in sampling frequency and location. This will be a focus of research activities during FY 2001. Detailed monitoring of inflows to Lake Powell has not been conducted because it has not been a primary objective of the program and resources have not been available to conduct this level of monitoring. Since it appears that GCMRC does not perform extensive monitoring in the river below the tailwater (except water temperature), how does the GCMRC intend to incorporate data collected by others to assess downstream effects? **Response:** There is currently a large amount of water quality data collected by other entities that is already incorporated into the existing GCMRC data management program. This information is readily linked to data sets containing stream gaging information and dam releases. Currently this data is stored locally at GCMRC. In the future, the formation of dynamic links with other databases in anticipated. Future contracts for monitoring and research will stipulation data management and metadata requirements that must be met for acceptance of deliverables. With respect to data management, what justification exists for GCMRC to develop a comprehensive data management system? Would it be feasible for GCMRC to simply acquire a free copy of the new EPA STORET database software and adapt it for their use? The new STORET program uses Oracle, like the database program proposed by GCMRC, and is not a main-frame archival system. Also, the new structure of STORET is not tied to individual parameter code IDs. In the proposal, GCMRC proposes to develop a Oracle data base, transfer these data into a MS Access database, and eventually transfer these data to the Web and STORET. This seems like a cumbersome process. Response: GCMRC already has in place a workable and very useful data structure. This forms the basis for storage and retrieval of data for analysis and reporting. All existing data transfer protocols and analytical applications
have been customized with this data structure. With further refinements in the existing data management system, such as centralization of files and the formation of relational linkages, all existing data can be viewed on a common platform. This is deemed to be the best way to perform error checking and necessary QA/QC validations. After this occurs these data will be uploaded onto the new STORET system. GCMRC has a copy of EPA's latest version of STORET. This system will be evaluated and the above approach reconsidered before full implementation. Lastly, how will the hydrodynamic model for Lake Powell reduce monitoring in Lake Powell and measure effects of dam operation on downstream resources? Maybe the scope of the AMP should be expanded to encompass this and other topics of interest to other agencies. **Response:** The development and calibration of a hydrodynamic model may reduce some aspects of monitoring in Lake Powell by simulating actual conditions, patterns, and trends in water quality. Sampling for easily predicted parameters could then be reduced to a level that verifies the predicted values. It is not expected to completely replace monitoring efforts. In some cases, the model effort may point to patterns that are poorly understood which may require additional monitoring efforts. It is anticipated that the model would guide further refinement of a long-term monitoring program as well as guide focussed research to answer specific needs. ### D. Overall Recommendation: The GCMRC monitoring proposal is well put together and develops rationale arguments for conducting the planned activities. However, one wonders why the agencies engaged in monitoring and research in the Colorado River ecosystem don't play a more active role in conducting similar monitoring activities. Part of the confusion lies in the roles of AMP, GCMRC, and other involved work groups and advisory boards. If the alternative to the proposal by GCMRC is that no long-term monitoring program will be continued, then the proposal not only should be recommended, but it should be supported at the highest level. Another alternative may be to combine the information and expertise of the ongoing monitoring program with other appropriate entities, information, and expertise to form a true collaborative approach to studying the Colorado River ecosystem. Response: One of the purposes for which the Lake Powell interagency group was established was to communicate what monitoring and research activities were being conducted by various agencies for the purpose of coordination and reduction of redundancy. This group has supported the previous monitoring effort by GCES and GCMRC because of long-term consistency and experience. Another factor has been that the agencies involved have not had the authority or resources necessary to accomplish this work. There is a good deal of collaboration and integration that already exists with the Lake Powell group. Individual agencies conduct studies dealing with native and recreational fisheries, heavy metals contamination, bacteriology, and other resource areas. Efforts are ongoing to facilitate this collaboration by enhancing communication, information exchange, and integration. In reading the document, Chapter 1 contained some confusing IN references, and the section on chemical analyses and QA/QC in Chapter 2 did not reference the appropriate information in Appendix D. Also, it may be useful to incorporate more material from the Appendices into the main proposal to make the proposal more complete and more easily understood. **Response:** Corrections have been made in the final draft.