AA000262-23 LMBB
2005
Desaturation Of Essential Fatty Acids Using Stable Isotope GC/MS

Principal Investigator: Norman Salem, Jr, PhD (NN, NIAAA)
Lab staff: Nahed Mohamed H K Abdalla, PhD (NN, NIAAA)
James A Brown (NN, NIAAA)
Yuhong Lin (NN, NIAAA)
Sharon Majchrzak, BS (NN, NIAAA)
Alla Polozova, PhD (NN, NIAAA)
Weiyin Zhou, BS (NN, NIAAA)
NIH Collaborators: Richard E Carson, PhD (T, CC)
Peter Herscovitch, MD (PETD, CC)
Robert J Pawlosky (LMBB, NIAAA)
Stanley I Rapoport, MD (BPMS, NIA)
John C Umhau, MD (CATE, NIAAA)
Extramural Collaborators: Stephen C Cunnane, PhD (Research center on Aging, Sherbrooke University Geriatric Institute)
Adolfo Llanos, MD (INTA University of Chile)
R Uauy, MD (Pediatrics, INTA University of Chile)
 from October 01, 2004 to September 30, 2005
Human subject research: Human Subjects: Minor under 18 Years Old
Human Subjects
Total Staff Years:2.8
Keywords:neurosciences, essential fatty acid metabolism, docosahexaenoate biosynthesis, arachidonate biosynthesis, essential fatty acid transport
Summary:Prior to the recent application of stable isotope based GC/MS methodology, little was known about in vivo essential fatty acid metabolism in animals or humans.

In this reporting period, a novel multiple-isotope technique that we have termed MultiplE Simultaneous Stable Isotopes, or MESSI, has undergone further development and application. This technique was invented to address the difficult problem of determining the relative efficacy of metabolism of various substrates along a pathway of fatty acid metabolism involving multiple steps. An old and intractable problem has been the direct comparison of metabolism, for example, of linoleate vs. that of gamma-linolenate vs dihommo-gamma-linolenate to form arachidonate. Using the in vivo stable isotope approach and employing NCI GC/MS, one can simultaneously perform the analysis of various isotopomers of arachidonate from multiple precursors providing that suitable isotopes are selected to give a significant mass difference, eg, 5 daltons or more. In the present experiments, rats were given an oral dose of oil containing the following isotopes: 13-C-U-18:2n6, D5-20:3n6, D5-18:3n3, 13-C-U-20:5n3. It was demonstrated that both n-6 fatty acid isotopes were converted to 20:4n6 and that they could be simultaneously measured. In the same animal, the n-3 pathway could also be assessed, both with respect to the 18-carbon and 20-carbon precursor conversions to 22:5n3 and 22:6n3. Thus, the need for four or more separate groups of animals are obviated by this approach with better control since the conditions in separate animals can never be as similar as two comparisons within the same animal at the same time. Our results indicated that, on a per dosage basis, the 20-C PUFAs were more efficiently converted to theor endproducts than were the 18-C precursors. This work also carefully established proper quantification procedures for cpmaring the deuterium and C-13 isotopic peaks. In connection with these studies, it was important to determine whether either of the stable isotopes led to an decreased rate of metabolism relative to the endogenous compounds. No isotope effect could be detected with deuterated or 13-C labeled linoleic or alpha-linolenic acids. This was the first such in vivo study. In separate excperiments, it was shown that much of the alpha-linolenic acid label is degraded by catabolism and recyled into cholesterol and non-essential fatty acids.

Moreover, this approach has now been directly applied to the study of the essential fatty acid metabolism of 18- vs. 20- carbon fatty acids in human infants. Physiologic compartmental models were constructed to compare the biosynthesis of 22:6n3 from 18:3n3 and 20:5n3 in plasma. Term neonates were administrated an oral dose of 20 mg of 2H5-18:3n3 and 2 mg of 13C-20:5n3 per kg of BW. Blood was then sampled at 0, 4, 8, 24, 48, 96, 168 hr after administration. 2H5-18:3n3 and 13C-U-20:5n3 as well as their metabolites were simultaneously detected in plasma. A greater rate constant coefficient for the conversion of 2H5-22:5n3 to 2H5-22:6n3 (0.05 hr-1) than for 13C20-22:5n3 to 13C20-22:6n3 (0.014 hr-1) was determined from the model calculations on seven infants. This resulted in an hourly synthetic rate of 47 nmol for the 18:3n3-derived 22:6n3 compared to 17 nmol for the 20:5n3-derived 22:6n3 (P=0.04)). Compartmental modeling is a useful tool for calculating biosynthetic rate parameters that are needed for determining n-3 fatty acid substrate utilization for 22:6n3 supply.

A second closely related research project concerns the origins of nervous system DHA. Possible sources are from dietary preformed DHA, from metabolism of the precursor, LNA, or from body stores of DHA. A novel technique has been developed that allows for the quantitative assessment of the amount of DHA accreted from LNA metabolism under various dietary conditions. For this study, it is necessary to control the diet from near birth up to a period where significant brain development has occurred. This has been accomplished thru the use of hand feeding techniques that may be combined with our newly developed artificial feeding approach. An artificial rat milk was developed that was nearly devoid of n-3 fatty acids. The n-3 fatty acids are then added as deuterated-LNA and containing varying levels of DHA. In one major experiment, rat pups were fed diets with 0 or 2% DHA between days 8-29 of life. During this period, it could be calculated that 40% of the newly formed brain DHA in the animals fed D5-LNA as their only source of n-3 fatty acids were derived from preformed DHA and not from LNA metabolism. This was surprising as there was no DHA in the diet; thus, all preformed DHA deposited in the brain must have been derived from other organs via the blood stream. When DHA was added to the diet, there was a pronounced decrease in the rate of LNA metabolism to DHA,possibly due to end-product inhibition, and 88% of brain DHA was derived from the preformed dietary DHA. There was also a higher level of brain DHA in the rats given preformed DHA indicating that metabolism could not provide an adequate source of brain DHA.

An attempt was made to determine what the underlying mechanisms for DHA transport into brain and other organs. Lipoproteins were purified and labeled with radiotracers and modified with a tracer levels of phospholipids acylated with DHA, AA or oleic acid (OA). The modified lipoproteins were intravenously injected in mice. The plasma and tissue distribution of the radiotracers were investigated as a function of time and the lipoproteins composition. We found that higher proportion of DHA in LDL results in an enhanced uptake of these lipoproteins by brain and heart. A similar enrichment of LDL in AA or OA did not result in any changes compared to control unaltered LDL. Tissue uptake of HDL did not depend on its fatty acid composition. We next compared the distribution in plasma pools and tissue uptake of 14C-DHA and 3H-(OA) intravenously injected in mice. We found that DHA is rapidly taken up by liver, selectively acylated into triglycerides and released back into the circulation in VLDL. Most of the DHA from VLDL and LDL appeared to be rapidly taken up by extrahepatic organs. This pattern seems to be unique for DHA, because no significant amount of non-essential oleic acid, traced in a similar way, was found in TG and VLDL fractions. In summary, these results point to the important role of VLDL and LDL in transport of DHA to extrahepatic tissues, and to the involvement of liver in the initial selectivity for DHA transport.

A novel application of PET imaging for the study of C11-DHA incorporation into brain has been initiated. Brain and heart images from 21 individuals have now been obtained. Extensive characterization of the fatty acid input function in plasma has been made in real time for the 11-C-DHA. Our intitial findings are that the K* values for male and female healthy volunteers is the same whereas females had higher J(in) values than males. There is a suggestion from initial studies that alcoholics may have lower brain incorporation of DHA than control subjects.
Report with Expanded bibliography (entire project): Request project bibliography in conjunction with this Annual Report's summary
Publications generated by this research:
  1. Cunnane SC, Ryan MA, Lin YH, Lim S, Salem N (2005) suckling rats actively recycle carbon from alpha-linolenic acid into newly synthesized lipids even during extreme dietary deficiency of n-3 polyunsaturated fatty acids. Pediatric Research, in press.
  2. Pawlosky RJ, Salem N (2004) Perspectives on alcohol consumption: liver polyunsaturated fatty acids and essential fatty acid metabolism. Alcohol 34:27-33. PubMed