Section VII

Occupational Health and Immunoprophylaxis

The goal of medical support services in a biomedical research setting is to promote a safe and healthy workplace. This is accomplished by limiting opportunities for exposure, promptly detecting and treating exposures, and using information gained from work injuries to further enhance safety precautions. Occupational health and safety in biomedical research settings is a responsibility shared by healthcare providers, safety specialists, principal investigators, employers, and workplace personnel. Optimal worker protection depends on effective, ongoing collaboration among these groups. Supervisors, working with personnel representatives, should describe workers' proposed tasks and responsibilities. First line supervisors and safety professionals should identify the potential worksite health hazards. Principal investigators may serve as subject matter experts. The health provider should design medical support services in consultation with representatives from the institutional environmental health and safety program and the principal investigators. Workers should be fully informed of the available medical support services and encouraged to utilize them. Requisite occupational medical services are described below and expanded discussions of the principles of effective medical support services are available in authoritative texts.^{1,2}

Services offered by the medical support team should be designed to be in compliance with United States Department of Labor (DOL), OSHA regulations, patient confidentiality laws, and the Americans with Disabilities Act of 1990. Hedical support services should be based upon detailed risk assessments and tailored to meet the organization's needs. Risk assessments should define potential hazards and exposures by job responsibility. They should be provided for all personnel regardless of employment status. Contracted workers, students, and visitors should be provided occupational medical care by their employer or sponsor equivalent to that provided by the host institution for exposures, injuries, or other emergencies experienced at the worksite.

Occupational medical services may be provided through a variety of arrangements (e.g., in-house or community based) as long as the service is readily available and allows timely, appropriate evaluation and treatment. The interaction between worker, healthcare provider and employer may be complex, such as a contract worker who uses his own medical provider or uses contract medical services. Thus, plans for providing medical support for workers should be completed before work actually begins. The medical provider must be knowledgeable about the nature of potential health risks in the work environment and have access to expert consultation.

Prevention is the most effective approach to managing biohazards. Prospective workers should be educated about the biohazards to which they may be occupationally exposed, the types of exposures that place their health at risk, the nature and significance of such risks, as well as the appropriate first aid and follow up for potential exposures. That

information should be reinforced annually, at the time of any significant change in job responsibility, and following recognized and suspected exposures. ⁹⁻¹¹

Medical support services for biomedical research facilities should be evaluated annually. Joint annual review of occupational injury and illness reports by healthcare providers and environmental health and safety representatives can assist revision of exposure prevention strategies to minimize occupational health hazards that cannot be eliminated.

OCCUPATIONAL HEALTH SUPPORT SERVICE ELEMENTS

Preplacement Medical Evaluations

Workers who may be exposed to human pathogens should receive a preplacement medical evaluation. Healthcare providers should be cognizant of potential hazards encountered by the worker. A description of the requirements for the position and an understanding of the potential health hazards present in the work environment, provided by the worker's supervisor, should guide the evaluation. The healthcare provider should review the worker's previous and ongoing medical problems, current medications, allergies to medicines, animals, and other environmental proteins, and prior immunizations. With that information, the healthcare provider determines what medical services are indicated to permit the individual to safely assume the duties of the position. Occasionally, it may be useful to review pre-existing medical records to address specific concerns regarding an individual's medical fitness to perform the duties of a specific position. If pre-existing medical records are unavailable or are inadequate, the healthcare provider may need to perform a targeted medical exam. Comprehensive physical examinations are rarely indicated. During the visit, the healthcare provider should inform the worker of potential health hazards in the work area and review steps that should be taken in the event of an accidental exposure. This visit also establishes a link with the medical support services provider.

When occupational exposure to human pathogens is a risk, employers should consider collecting and storing a serum specimen prior to the initiation of work with the agent. It can be used to establish baseline sero-reactivity, should additional blood samples be collected for serological testing subsequent to a recognized or suspected exposure.

Occasionally, it is desirable to determine an individual's vulnerability to infection with specific agents prior to assigning work responsibilities. Some occupational exposures present substantially more hazard to identifiable sub-populations of workers. Immunodeficient workers or non-immune pregnant female workers may experience devastating consequences from exposures that pose a chance of risk to pregnant women with prior immunity and other immunocompetent workers (e.g., cytomegalovirus or toxoplasmosis). Serologic testing should be used to document baseline vulnerability to specific infections to which the worker might be exposed, and non-immune workers should be adequately informed about risks. In specific settings, serologic documentation that individual workers have pre-existing immunity to specific infections also may be required for the protection of research animals.¹⁰

VACCINES

Commercial vaccines should be made available to workers to provide protection against infectious agents to which they may be occupationally exposed. ¹²⁻¹⁶ The Advisory Committee on Immunization Practices (ACIP) provides expert advice to the Secretary of the DHHS, the Assistant Secretary for Health, and the CDC on the most effective means to prevent vaccine-preventable diseases and to increase the safe usage of vaccines and related biological products. The ACIP develops recommendations for the routine administration of vaccines to pediatric and adult populations, and schedules regarding the appropriate periodicity, dosage, and contraindications. The ACIP is the only entity in the federal government that makes such recommendations. They are available on the CDC website (www.cdc.gov).

If the potential consequences of infection are substantial and the protective benefit from immunization is proven, acceptance of such immunization may be a condition for employment. Current, applicable vaccine information statements must be provided whenever a vaccine is administered. Each worker's immunization history should be evaluated for completeness and currency at the time of employment and re-evaluated when the individual is assigned job responsibilities with a new biohazard.

When occupational exposure to highly pathogenic agents is possible and no commercial vaccine is available, it may be appropriate to immunize workers using vaccines or immune serum preparations that are investigational, or for which the specific indication constitutes an off-label use. Use of investigational products, or of licensed products for off-label indications must be accompanied by adequate informed consent outlining the limited availability of information on safety and efficacy. Use of investigational products should occur through Investigational New Drug (IND) protocols providing safety oversight by both the Food and Drug Administration (FDA) and appropriate Institutional Human Subjects Research Protection Committees. ^{17,18} Recommendation of investigational products as well as of commercial vaccines that are less efficacious, associated with high rates of local or systemic reactions, or that produce increasingly severe reactions with repeated use should be considered carefully. Receipt of such vaccines is rarely justified as a job requirement.

Investigational vaccines for eastern equine encephalomyelitis (EEE) virus, Venezuelan equine encephalitis (VEE) virus, western equine encephalomyelitis (WEE) virus, and Rift Valley fever viruses (RVFV), may be available in limited quantities and administered onsite at the Special Immunization Program, United States Army Medical Research Institute of Infectious Diseases (USAMRIID).

Periodic Medical Evaluations

Routine, periodic medical evaluations generally are not recommended; however, limited periodic medical evaluations or medical clearances targeted to job requirements may

occasionally be warranted (e.g., respirator usage).³ In special circumstances, it may be appropriate to offer periodic laboratory testing to workers with substantial risk of exposure to infectious agents to detect pre-clinical or sub-clinical evidence for an occupationally acquired infection. Before asymptomatic workers without specific exposures are tested for seroreactivity, the benefit of such testing should be justified, plans for further investigation of indeterminate test results should be delineated, and clearly defined criteria for interpretation of results should be developed.

Medical Support For Occupational Illnesses And Injuries

Workers should be encouraged to seek medical evaluation for symptoms that they suspect may be related to infectious agents in their work area, without fear of reprisal. A high index of suspicion for potential occupational exposures should be maintained during any unexplained illness among workers or visitors to worksites containing biohazards. Modes of transmission, as well as the clinical presentation of infections acquired through occupational exposures, may differ markedly from naturally acquired infections. Fatal occupational infections have resulted from apparently trivial exposures. The healthcare provider should have a working understanding of the biohazards present in the workplace and remain alert for subtle evidence of infection and atypical presentations. A close working relationship with the research or clinical program in which the affected employee works is absolutely essential. In the event of injury, consultation between healthcare provider, employee, and the employee's supervisor is required for proper medical management and recordkeeping.

All occupational injuries, including exposures to human pathogens, should be reported to the medical support services provider. Strategies for responding to biohazard exposures should be formulated in advance. Proper post-exposure response is facilitated by exposure-specific protocols that define appropriate first aid, potential post-exposure prophylaxis options, recommended diagnostic tests, and sources of expert medical evaluation. These protocols should address how exposures that occur outside of regular work hours are handled and these protocols should be distributed to potential healthcare providers (e.g., local hospital emergency departments). In exceptional cases, the protocols should be reviewed with state and community public health departments. Emergency medical support training should be provided on a regular basis for both employees and healthcare providers.

The adequacy and timeliness of wound cleansing or other response after an exposure occurs may be the most critical determinant in preventing infection. First aid should be defined, widely promulgated, and immediately available to an injured worker. Barriers to subsequent medical evaluation and treatment should be identified and minimized to facilitate prompt, appropriate care. Laboratory SOPs should include a printed summary of the recommended medical response to specific exposures that can guide immediate response in the work place and that the injured worker can provide to the treating facility. The medical provider's description of the injury should include:

• The potential infectious agent.

- The mechanism and route of exposure (percutaneous, splash to mucous membranes or skin, aerosol, etc.).
- Time and place of the incident.
- Personal protective equipment used at the time of the injury.
- Prior first aid provided (e.g., nature and duration of cleaning and other aid, time that lapsed from exposure to treatment).
- Aspects of the worker's personal medical history relevant to risk of infection or complications of treatment.

First aid should be repeated if the initial adequacy is in question. Healthcare providers must use appropriate barrier precautions to avoid exposure to infectious agents and toxins.

In some instances, it may be possible to prevent or ameliorate illness through post-exposure prophylaxis. Protocols should be developed in advance that clearly identify the situations in which post-exposure prophylaxis are to be considered, the appropriate treatment, and the source of products and expert consultation. Accurate quantification of risk associated with all exposures is not possible, and the decision to administer post-exposure prophylaxis may have to be made quickly and in the absence of confirmatory laboratory testing. Post-exposure regimens may involve off-label use of licensed products (e.g., use of smallpox vaccine for workers exposed to monkeypox) in settings where there is insufficient experience to provide exact guidance on the safety or likely protective efficacy of the prophylactic regimen. Thus, protocols should exist that delineate the circumstances under which it would be appropriate to consider use of each product following exposure, as well as the limits of our understanding of the value of some post-exposure interventions. In these cases, consultations with subject matter experts are especially useful.

Estimating the significance of an exposure may be difficult, despite having established protocols. The clinician may need to make a "best-estimate" based upon knowledge of similar agents, exposure circumstances, and advice received from knowledgeable experts. Appropriate post-exposure prophylactic response is always pathogen- and exposure-dependent, may be host-factor dependent, and may also be influenced by immediate post-exposure management. Before prophylactic treatment is undertaken, confirm the likelihood that an exposure occurred, that prophylaxis is indicated and is not contraindicated by past medical history. Conveying this information to the injured worker requires clear, honest communication. The clinical risk assessment and treatment decision process should be carefully explained, the worker's questions addressed with relevant, preprinted educational materials provided. Prompt treatment should be provided, with a mutually agreed plan to follow the individual's clinical course.

The applicable workers' compensation claim form should be provided with appropriate explanations for its completion.¹⁹ The supervisor must receive a description of the accident or incident, confirm the circumstances of the injury or exposure and provide relevant advice. The report also should be distributed to all other relevant parties, such as the safety professional. Each incident should receive prompt reconsideration of the initial risk assessment and reevaluation of current strategies to reduce the possibility of future exposures.

Post-exposure serologic testing may be useful, but it is important to determine how information obtained from serologic testing will be interpreted. It is also essential to collect serum specimens at the appropriate interval for a given situation. Assessment of sero-reactivity in exposed workers is most helpful when the results of specimens collected over time can be compared. Ideally specimens collected prior to, at the time of and several weeks following exposure should be tested simultaneously and results compared to assess changes in the pattern of sero-reactivity. Serum collected too early after exposure may fail to react even when infection has occurred, because antibodies have not yet been produced in detectable quantities. When immediate institution of post-exposure prophylaxis may delay seroconversion, or when the agent to which the worker was exposed results in seroconversion completed over months (e.g., retroviruses), testing of specimens collected late after exposure is particularly important.

Testing of a single serum specimen is generally discouraged and can result in misinterpretation of nonspecific sero-reactivity. Evidence of sero-conversion or a significant (≥ 4 fold) increase in titer associated with a compatible clinical syndrome is highly suggestive of acute infection. However, the significance of and appropriate response to sero-conversion in the absence of illness is not always clear. If sero-reactivity is evident in the earliest specimen, it is important to re-test that specimen in tandem with serum specimens archived prior to occupational exposure and/or collected serially over time to investigate whether a change in titer suggestive of new infection can be identified.

In some exposure situations, it may be appropriate to store serially collected serum samples, and to send them for testing as evidence of seroconversion only if symptoms develop that suggest an infection may have occurred (e.g., monkey B virus exposures). Serum collected at the time of employment, and any other specimens not immediately tested should be stored frozen at a temperature of -20° C or lower in a freezer that does not experience freeze-thaw cycles. An inventory system should be established to ensure the accurate and timely retrieval of samples, while protecting patient privacy.

When investigational or other non-commercial assays are utilized, the importance of appropriate controls and the ability to compare serially collected specimens for quantification/characterization of reactivity is increased. The availability of aliquoted samples that allow additional testing may be essential to assist interpretation of ambiguous results. Caution should be taken to avoid placing more confidence in testing outcomes than can be justified by the nature of the assays.

OCCUPATIONAL HEALTH IN THE BSL-4 SETTING

Work with BSL-4 agents involves special challenges for occupational health. Infections of laboratory staff by such agents may be expected to result in serious or lethal disease for which limited treatment options exist. In addition, BSL-4 agents are frequently geographically exotic to the areas in which high containment labs are located but produce immediate public health concern if infections occur in laboratory staff. Potential (if unlikely) transmission from infected staff into the human or animal populations in the areas surrounding the laboratories may raise such concerns to higher levels. Thus, SOPs for BSL-4 settings require special attention to management of unexplained worker absence, including protocols for monitoring, medical evaluation, work-up, and follow-up of workers with unexplained nonspecific illness. Advance planning for the provision of medical care to workers potentially infected with BSL-4 agents is a fundamental component of an occupational health program for a BSL-4 facility.

REFERENCES

- 1. Menckel E, Westerholm P, editors. Evaluation in occupational health practice. Oxford: Butterworth-Heinemann; 1999.
- 2. Levy B, Wegman DH, editors. Occupational health: recognizing and preventing work-related disease and injury, 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2000.
- 3. Occupational Safety and Health Administration [http://www.osha.gov]. Washington, DC: The Administration. Applicable OSHA Laws, Regulations and Interpretations; [about 2 screens]. Available from: http://www.osha.gov/complinks.html
- 4. American Medical Association [http://www.ama-assn.org/]. Chicago: The Association; c1995-2006 [updated 2005 Mar 7]. Patient Confidentiality; [about 6 screens]. Available from: http://www.ama-assn.org/ama/pub/category/4610.html
- 5. United States Department of Justice [http://www.usdoj.gov/]. Washington, DC: The Department; [updated 2006 July 28]. American Disabilities Act; [about 7 screens] Available from: http://www.usdoj.gov/crt/ada/adahom1.htm
- 6. Occupational Safety and Health Act of 1970, Pub. L. No. 91-596, 84 Stat. 1590 (December 29, 1970).
- 7. Non-mandatory Compliance Guidelines for Hazard Assessment and Personal Protective Equipment Selection, 29 C.F.R. Part 1910 Subpart I App B (1994).
- 8. Multi-Employer Citation Policy, C.P.L. 02-00-124 (1999).
- 9. National Research Council (US), Committee on Occupational Safety and Health in Research Animal Facilities, Institute of Laboratory Animal Resources, Commission on Life Sciences. Occupational health and safety in the care and use of research animals. Washington, DC: The National Academies Press; 1997.
- 10. National Research Council (US), Committee on Occupational Health and Safety in the Care and Use of Nonhuman Primates, Institute for Laboratory Animal Research, Division on Earth and Life Studies. Occupational health and safety in the care and use of nonhuman primates. Washington, DC: National Academy Press; 2003.

- 11. Cohen JI, Davenport DS, Stewart JA, et al. Recommendations for prevention of and therapy for exposure to B virus (cercopithecine herpesvirus 1). Clin Infect Dis 2002;35:1191-203.
- 12. Atkinson WL, Pickering LK, Schwartz B, et al. General recommendations on immunization. Recommendations of the Advisory Committee on Immunization Practices (ACIP) and the American Academy of Family Physicians (AAFP). MMWR Recomm Rep. 2002;51:1-35.
- 13. Centers for Disease Control and Prevention. Update on adult immunization. Recommendations of the immunization practices advisory committee (ACIP). MMWR Recomm Rep. 1991;40:1-94.
- 14. Centers for Disease Control and Prevention. Immunization of health-care workers: recommendations of the Advisory Committee on Immunization Practices (ACIP) and the Hospital Infection Control Practices Advisory Committee (HICPAC). MMWR Morb Mortal Wkly Rep. 1997;46:1-42.
- 15. Centers for Disease Control and Prevention. Use of vaccines and immune globulins in persons with altered immunocompetence. Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep. 1993 Apr 9;42(RR-04):1-18.
- 16. Centers for Disease Control and Prevention. Update: vaccine side effects, adverse reactions, contraindications, and precautions. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 1996 Sep 6; 45(RR-12):1-35. Erratum in: MMWR Morb Mortal Wkly Rep. 1997;46:227.
- 17. United States Department of Health and Human Services [www.dhhs.gov]. Washington, DC: The Department; [updated 2006 Mar 6]. Office of Human Research Protections Guidance; [about two screens]. Available from: http://www.hhs.gov/ohrp/
- 18. United States Food and Drug Administration [www.fda.gov]. Rockville, MD; The Administration; [updated 2005 June 13]. Information on Submitting an Investigational New Drug Application for a Biological Product [about3 screens]. Available from: http://www.fda.gov/cber/ind/ind.htm
- 19. Social Security Administration [www.ssa.gov]. Baltimore: The Administration; [updated on 2006 Jul 24]. Reports and Studies. Committee on Economic Security (CES); [about 22 screens]. Available from: http://www.ssa.gov/history/reports/ces/ces6kjaer.html