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Nomenclature 
 

 
α  = Angle of Forward Strap of After Pontoon w.r.t. the Horizontal 
β = Angle of Backward Strap of After Pontoon w.r.t. the Vertical  
γ = Angle of Inclination of the Ramp Boom w.r.t. the Horizontal 
θ = Angle Associated with Depth of Submersion of After Pontoon 
ρ = Density 
b = Depth of Submersion of After Pontoon 
c  = Distance Associated with Depth of Submersion of After Pontoon 
r  = Radius of Pontoons 
t  = Projected Distance of Center of Gravity of Foam Blocks 
u  = Hypotenuse of the Triangular Foam Blocks 
v  = Projected Distance of Center of Gravity of Ramp Boom Sheet 
x  = Projected Distance of Center of Gravity of Ballast Weight  
y  = Projected Distance of Center of Gravity of Aluminum Stiffeners 
z  = Overall Length of Ramp Boom Sheet 
CL = Lift Coefficient 
FBlock = Buoyancy of Syntactic Foam Blocks 
F1   = Buoyant Force of Forward Pontoon 
F2   = Averaged Buoyancy of Syntactic Foam Blocks 
Fb   = Buoyant Force of After Pontoon 
Fc = Lift Force due to Water Current 
Fch  = Horizontal Lift Component due to Water Current 
Fcv  = Vertical Lift Component due to Water Current 
Fpb  = In-water Weight of Ballast Material  
Fpl  = Weight of Ramp Boom Sheet 
Fs  = In-water Weight of Aluminum Stiffener 
L1  = Tensile Force Required to Restrain the Boom 
T1 = Tensile Force Induced on the Forward Strap of After Pontoon 
T2 = Tensile Force Induced on the Backward Strap of After Pontoon 
V = Velocity of Water Current 
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Force Analysis on the Ramp Boom Surface 
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Assumptions, Design Highlights 
 
 

1. The Ramp Boom will be treated as a rigid plate in the fore and aft 
dimensions due to the reinforcement provided by the 66” long aluminum 
angle stiffeners and the triangular shaped syntactic foam fwd.  flotation 
wedges. 

 
2. The forward and aft pontoons are to be inflated during deployment and 

deflated upon recovery. Their weight is insignificant with respect to the 
other Ramp Boom components. 

 
3. The syntactic foam fwd. floatation wedge is to be installed in 30” wide 

sections with a 12” wide wedge-shaped gap between each section. A 
free-flooding covered space is to be contained in the 12” wide gap 
between the 30” wide syntactic foam wedges. This will permit the Ramp 
Boom to be folded for storage. The free flooding covered-spaces will not 
be open at the forward edge of the Ramp Boom so that no oil can pass 
through the fwd. pontoon.   

 
4. The Ramp Boom surface will be fabricated from Poly-fabric reinforced 

Polyurethane sheet with a density of 36 oz/yd2 = 0.25 #/ft2 . 
 
5. The lift coefficient, CL , is calculated for 20o ramp boom inclination angle 

by using computational fluid dynamics methods. Since this angle 
corresponds to the midpoint of the range of inclination angles of interest 
and since the range is narrow ( 20o ± 5o ), the lift coefficient found for 20o 
will be taken to be constant over the interval. That is, the dependency of 
CL on the ramp angle is neglected.  

 
6. The aluminum reinforcing angles used to stiffen the Polyurethane sheet 
used for the construction of the Ramp Boom are to be placed on the top of 
the sheet and will be held in place with rivets. The angle size chosen for this 
design is 1”x1”x1/4”. The alloy with the best strength and corrosion 
resistance for this application is 6061-T6. The length of each stiffener is 66” 
and they are spaced 6” apart. To further aid in stiffening the Ramp Boom in 
the fore and aft directions, these reinforcing angles will be placed starting at 
the aft-most end and running 66” forward. This will place them under the 
syntactic foam block, which will reinforce the area of the Ramp Boom just 
aft of the block. 
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Force Analysis of Plate A-H(*) 
 
F1 = 0     since the equilibrium position of the forward pontoon under 3 knots 
of current is desired to be non-submerged. 
 
Calculation of F2 

 
First the buoyancy force of the syntactic foam block will be calculated in an 
assumed condition of total submersion in sea water for a unit                                    
width of 1 ft. (ρsea water = 64#/ft3  , ρfoam block = 30#/ft3 ) 
 
FBlock = (Volume of Block) – (Volume of Seawater Displaced) 
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Averaging this buoyant force over a 42” overall width to account for a 30” 
wide block section and a 12” wide free-flooded section. 
 

 
 
 
 
 
(*) for application points of the forces, refer to figure 1. 
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Calculation of Fcv and Fch 

 

The equation for the normal lift on a fixed inclined plate submerged in a 
fluid, moving with a velocity of 3 knots is : 
 
Fc = (1/2).ρ. V2 . CL . A       where  ρ = (64#/ft3) / (32.2ft/sec2) = 1.99 slugs/ft 
            

     V = 3 kts = 5 ft/sec 
           

     CL = 0.7  for a 200 angle 
           

     A = 1′ x 6′ = 6 ft2 
 
Fc = (1/2)[(64#/ft3)/(32.2ft/sec2)](5ft/sec)2(0.7)(6ft2) 
 
Fc = 104.35#                 Normal to the plane of the Ramp Boom  
 
Breaking this normal force into its vertical and horizontal components for a 
unit Ramp Boom width of 1 ft yields :  
 
Fcv = 104.35# (cosγ)  Vertical lift component 
 
Fch = 104.35# (sinγ)  Horizontal lift component 
 
Summing the horizontal forces from the Ramp Boom free-body diagram; 
 
L1 = Tensile force required to restrain the boom / unit length 
 
L1 = Fch = 104.35# (sinγ) 
 
Calculation of Fpl 

 

The density of the Polyurethane sheet to be used is 36 oz/yd2 . 
 
= (36 oz)(0.0625#/oz) / (yd2)(9ft2/yd2) = 0.25#/ft2 
 
Fpl = (0.25#/ft2)(6ft2) = 1.5# per unit width in air. 
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Note : It will be assumed that the in-water weight will be equal to the in-air 
weight for the Polyurethane sheet. 
 
Calculation of Fs 
 
Fs′ = The in-air weight of the pair of stiffeners used in each unit (12”) width 
of the Ramp Boom 
Fs′ = (2)(0.51#/linear ft)[(66”)/(12”/ft)] = 5.6# 
 
The volume of the 2 aluminum stiffeners ; 
= (5.6#) / (0.0966#/in3)(1728in3/ft3) = 0.034 ft3 
 
The volume of the saltwater displaced by the aluminum stiffeners ; 
= (64#/ft3)(0.034ft3) = 2.2# 
 
Fs = The actual in-water weight of the aluminum stiffeners,  and; 
Fs = Fs′ -2.2# = 5.6# - 2.2# = 3.4# 
Note : This weight is for a pair of aluminum stiffeners. 
 
Calculation of Fb 

θ

α

β

 
              Figure 2 
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From geometry, refer to figure 2, 
 

 
Calculation of Fpb 

 
Combining the necessary equations obtained so far (refer to figure 1), the 
vertical force equilibrium of the ramp boom gives, 
 
48.57sinγcosγ + T1sinα + T2cosβ + 104.35cosγ - Fpb – 1.5 – 3.4 = 0 
 
Taking the moment of the forces about point A, with some simplification  
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Problem Definition 
 

By use of the equations obtained so far, the minimization problem can now 
be defined as follows: 
 
 
 

 
 
 
 
Note : All quantities that are specified in the assumptions section and some 
dimensions of the system as given in figure 1 are taken as pre-assigned 
parameters of the minimization problem. The problem is defined 
accordingly.  
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In the problem definition as stated above, the last two equality constraints 
and the inequality constraints require further explanation. 
 
The first of the last two equality constraints is a geometric constraint. It is 
derived such that starting from a reference line (water surface is chosen for 
that purpose), the same elevation should be reached by following two 
different paths along the ramp boom system to arrive a final point (center of 
aft pontoon is chosen for that purpose). A careful investigation of the 
equation yields to the conclusion that, it implies nothing but treatment of the 
system as a rigid body. That is the distance between any two points on a 
rigid body is fixed.  
 
The second of the last two equality constraints arise from the static 
equilibrium of the ramp boom system. In the static case the lift force due to 
the water current no longer exists. This will cause an unbalanced moment in 
the clockwise direction. Hence, it is evident by intuition that the system will 
come to a new equilibrium position where β=0 (see figure 1). Also both of 
the pontoon will be submerged in order to satisfy the vertical force 
equilibrium. The ramp inclination angle (γ) is required to be in the range 
15o-25o. This range of  γ is known to correspond to the maximum amount of 
oil collected by this ramp boom system. For further information refer to 
(Fang, 2000). Therefore with this constraint the upper limit of γ is set to 25o 
which is achieved at the static case where β=0. (see Appendix 2) 
 
The first inequality constraint sets the upper limit of the depth of submersion 
of the after pontoon (b) as 9 inches, which is equal to the radius of the 
pontoon. This is a necessity arising from the need of reserve buoyancy that 
should be kept on after pontoon considering the static position. 
 
The second inequality constraint, in conjunction with the last equality 
constraint sets the lower limit of γ as 15o. The third inequality constraint 
makes sure that the center line of the after pontoon always remain on top of 
the ramp boom plate. The fourth inequality constraint ensures that the center 
of gravity of the ballast weight remains between the centers of the two 
pontoons. This is required as far as the moment stability of the system is 
concerned.  
 
The last inequality constraint is the non-negativity condition imposed on the 
design variables which is evident from the physics of the problem. 
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Classification of the Problem 
 
The problem just stated above belongs to the following categories: 
It is a constrained optimization problem. 
It is a parameter optimization problem. 
It is a non-optimal control problem. 
It is a nonlinear optimization problem. 
It is a real-valued optimization problem. 
It is a deterministic optimization problem. 
It is a non-separable optimization problem. 
It is a single objective optimization problem. 
 

Solution 
 
This problem can be solved by use of any of the well-known nonlinear 
constrained optimization techniques.  The “solver” algorithm which is built 
in Microsoft Excel is used for that purpose. The algorithm uses generalized 
reduced gradient (GRG2) method to optimize constrained nonlinear 
problems.   
The design variables are each assigned a cell in the Excel worksheet. The 
constraints are separated into two parts such that the right-hand sides and 
left-hand sides of each inequality (or equality) are assigned to a different 
cell. Finally the objective function is assigned to the last cell. Then the 
problem is defined to “solver” by means of relating the cells accordingly to 
express the constraints. The target cell is chosen as the one containing the 
objective function. The cells that contained design variables are chosen to be 
the ones to be changed to minimize the target cell. The “solver” has been run 
several times for different starting points and the objective function is 
minimized. The results are summarized below. (see App 3) 
 

design variables alpha beta gamma x T1 T2 b 
valid starting point 25 15 40 100 15 60 10 
valid starting point 30 5 20 100 2.5 25 8 
valid starting point 45 25 30 25 50 2 0 
valid starting point 5 5 3 50 0.5 100 15 
valid starting point 1E-07 1E-07 1E-07 25 1E-07 1E-07 1E-07 

        
optimum point 37.331 10 15 35.887 1 4.579 1.6362 

optimum weight 113.15       
Table 1 
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As it can be seen from table 1, there is a wide spectrum of starting points 
which in turn leads to the same optimum solution. The solution has 
converged to a finite value of 113.15#/ft of additional ballast weight to be 
added to the ramp boom system in order to keep the system in equilibrium 
under 3 knots of water current. This result is satisfactory and consistent with 
the expectations.  
 
For starting points that are far away from the optimum solution, the “solver” 
failed to find a solution. Such points are indicated below. 
 

design variables alpha beta gamma x T1 T2 b 
invalid starting point 100000 100000 100000 100000 100000 100000 100000 
invalid starting point 50 100 100 100 100 100 100000 

 
Table 2 

 
Also for starting points that included a value of “x” that is smaller than 24”, 
a feasible solution could not be found by the “solver”. Due to the 
characteristic of the problem, when “x” is assigned a value that is smaller 
than 24”, the algorithm searched through the direction of decreasing “x”, 
which in turn resulted in failure to find a feasible solution. As it can be seen 
from table 1, the optimum value of “x” is 35.887” from the tip of the ramp 
boom.  
 
The effect of pre-assigned parameters on the solution is also observed. The 
objective function and the constraints are modified such that they are 
expressed as functions of design variables and pre-assigned variables. The 
“solver” has been run in the same manner as explained above but changing 
one pre-assigned parameter at a time. Every pre-assigned parameter is 
changed to ±5% of its original value. The results are tabulated in Appendix 
1. It can be seen from the table that none of the pre-assigned parameters has 
a significant effect on the optimum value when it is subject to perturbations. 
Physically this conclusion implies that if any of the dimensions or weights 
that is taken as a pre-assigned parameter appears to be different than its 
original value due to manufacturing faults, it will not contribute to a 
significant change in the system’s behavior. For example if the radius of the 
after pontoon happens to be 8.55” (5% smaller than the original value), it 
corresponds to only a 3” shift in the position of the ballast weight, with the 
ballast weight itself remaining approximately constant. (App. 1) Such small 
deviations can be tolerated in this system, so that it is not sensitive. 
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Conclusion 
 

In this study, a mathematical programming technique is used to optimize a 
practical engineering problem. The minimum weight that should be added to 
a ramp oil boom system is found by using a nonlinear constrained 
optimization technique, namely, generalized reduced gradient method.  
 
The problem is first formulated by means of force analysis on the ramp 
boom system and the constraints are set due to geometric dependencies. 
Behavior as well as side constraints are set at this stage. Finally, the “solver” 
algorithm which was available as an Excel application has been run to solve 
the problem.  
 
As a result, the minimum ballast weight that should be added to the ramp 
boom system was found out to be 113.15#/ft and this result agreed well with 
the expectations. The corresponding values of the design variables also 
appeared to be reasonable. Physically it is possible to build such a system. 
The effect of pre-assigned parameters has also been investigated. Some 
specific dimensions on the ramp boom, the center of gravity of various 
components and the weight of some of the components were set as pre-
assigned parameters at the beginning of the study. These, if they had 
difference between their assigned and the actual values, could have effected 
the system performance and hence the optimum solution. For that purpose, 
the pre-assigned parameters are changed by 5% of their original values, one 
at a time and the corresponding optimum solution is found for each case. At 
the end, it is found that none of the pre-assigned parameters significantly 
effected the system’s performance and hence the optimum value when they 
are subject to changes. This proved the stability and insensitivity of the 
system against manufacturing defects and faults.  
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Appendix 1 
 

 
alpha beta gamma x T1 T2 b weight t u v y z r Fpl Fs 

37.3313 10 15 35.8872 1 4.579041 1.63616 113.153 16.71 24 36 39 72 9 1.5 3.4 
37.3313 10 15 35.9769 1 4.579041 1.63616 113.153 17.545 24 36 39 72 9 1.5 3.4 
37.3313 10 15 35.7975 1 4.579041 1.63616 113.153 15.874 24 36 39 72 9 1.5 3.4 
38.9902 10 15 34.3788 1 4.476022 1.61901 114.319 16.71 25.2 36 39 72 9 1.5 3.4 
35.7557 10 15 37.3892 1 4.673331 1.65152 112.04 16.71 22.8 36 39 72 9 1.5 3.4 
37.3313 10 15 37.5819 1 4.579041 1.63616 113.151 16.71 24 37.

8 
39 72 9 1.5 3.4 

37.3313 10 15 34.1925 1 4.579041 1.63616 113.153 16.71 24 34.
2 

39 72 9 1.5 3.4 

37.3313 10 15 35.8286 1 4.579041 1.63616 113.153 16.71 24 36 40.9
5 

72 9 1.5 3.4 

37.3313 10 15 35.9458 1 4.579041 1.63616 113.153 16.71 24 36 37.0
5 

72 9 1.5 3.4 

34.1864 10 15 36.0882 1 4.763735 1.66591 113.290 16.71 24 36 39 75.6 9 1.5 3.4 
41.0726 10 15 35.6820 1 4.341405 1.59606 112.969 16.71 24 36 39 68.4 9 1.5 3.4 
39.3201 10 15 35.8478 1 4.455083 1.58748 113.058 16.71 24 36 39 72 9.4 1.5 3.4 
35.3736 10 15 35.9244 1 4.69567 1.68604 113.240 16.71 24 36 39 72 8.5 1.5 3.4 
37.3313 10 15 35.8871 1 4.579041 1.66168 113.078 16.71 24 36 39 72 9 1.6 3.4 
37.3313 10 15 35.8873 1 4.579041 1.63616 113.228 16.71 24 36 39 72 9 1.4 3.4 
37.3313 10 15 35.8825 1 4.579041 1.63616 112.983 16.71 24 36 39 72 9 1.5 3.57 
37.3313 10 15 35.8919 1 4.579041 1.63616 113.323 16.71 24 36 39 72 9 1.5 3.23 
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Appendix 2 
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Appendix 3 
 

 
Answer Report 

 
Target Cell (Min)     

 Cell Name Original Value Final Value   
 $M$2 weight 79.43835299 113.1531155   
       
       

Adjustable Cells     
 Cell Name Original Value Final Value   
 $A$2 alpha 40 37.33131556   
 $B$2 beta 10 10   
 $C$2 gamma 50 15   
 $D$2 x 100 35.88725067   
 $E$2 T1 50 1   
 $F$2 T2 100 4.57904121   
 $G$2 b 9 1.636167939   
       
       

Constraints     
 Cell Name Cell Value Formula Status Slack 
 $D$2 x 35.88725067 $D$2<=$N$2 Not Binding 19.93627884 
 $H$2 T1cosa-T2sinbe -8.37674E-09 $H$2=0 Binding 0 
 $I$2 T1sina+T2cosb

e 
5.115898369 $I$2=$J$2 Not Binding 0 

 $K$2 gamma+beta 25 $K$2=25 Binding 0 
 $L$2 4-left 2.25769E-08 $L$2=0 Binding 0 
 $M$2 weight 113.1531155 $M$2=$O$2 Binding 0 
 $N$2 aftpont position 55.82352952 $N$2<=72*COS($C$2*PI()/180)-

9 
Not Binding 4.723129974 

 $B$2 beta 10 $B$2<=10 Binding 0 
 $A$2 alpha 37.33131556 $A$2>=0 Not Binding 37.33131556 
 $B$2 beta 10 $B$2>=0 Not Binding 10 
 $C$2 gamma 15 $C$2>=0 Not Binding 15 
 $D$2 x 35.88725067 $D$2>=0 Not Binding 35.88725067 
 $E$2 T1 1 $E$2>=0 Not Binding 1 
 $F$2 T2 4.57904121 $F$2>=0 Not Binding 4.57904121 
 $G$2 b 1.636167939 $G$2>=0 Not Binding 1.636167939 
 $E$2 T1 1 $E$2>=1 Binding 0 
 $F$2 T2 4.57904121 $F$2>=1 Not Binding 3.57904121 
 $G$2 b 1.636167939 $G$2<=9 Not Binding 7.363832061 
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Appendix 3 (contd.) 
 
Sensitivity Report 
 

Adjustable Cells   
   Final Reduced 
 Cell Name Value Gradient 
 $A$2 alpha 37.33131556 0 
 $B$2 beta 10 -0.707944809 
 $C$2 gamma 15 0 
 $D$2 x 35.88725067 0 
 $E$2 T1 1 5.194694837 
 $F$2 T2 4.57904121 0 
 $G$2 b 1.636167939 0 
     

Constraints   
   Final Lagrange 
 Cell Name Value Multiplier 
 $D$2 x 35.88725067 0 
 $H$2 T1cosa-T2sinbe -8.37674E-09 -5.758632363 
 $I$2 T1sina+T2cosb

e 
5.115898369 -0.015402287 

 $K$2 gamma+beta 25 0.216997662 
 $L$2 4-left 2.25769E-08 0.047623824 
 $M$2 weight 113.1531155 1 
 $N$2 aftpont position 55.82352952 0 

 
 
Limits Report 
 

 Target        
Cell Name Value       

$M$2 weight 113.1531155       
         
         
 Adjustable   Lower Target  Upper Target 

Cell Name Value  Limit Result  Limit Result 
$A$2 alpha 37.33131556  37.33131556 113.1531155  37.33131556 113.1531155 
$B$2 beta 10  10 113.1531155  10 113.1531155 
$C$2 gamma 15  15 113.1531155  15 113.1531155 
$D$2 x 35.88725067  35.88725067 113.1531155  35.88725067 113.1531155 
$E$2 T1 1  1 113.1531155  1 113.1531155 
$F$2 T2 4.57904121  4.57904121 113.1531155  4.57904121 113.1531155 
$G$2 b 1.636167939  1.636167939 113.1531155  1.636167939 113.1531155 

 
 


