# STANDARDIZED CATCH RATES BY SEX AND AGE FOR SWORDFISH (Xiphias gladius) FROM THE U.S. LONGLINE FLEET 1981-2001. 

Mauricio Ortiz and Gerald P. Scott ${ }^{1}$


#### Abstract

SUMMARY Swordfish (Xiphias gladius) catch and effort data collected from the US Pelagic longline fleet operating in the western north Atlantic were used to develop indices of abundance for the north Atlantic swordfish stock. Standardized catch rates were estimated using a Generalized Linear Mixed Modeling approach assuming a deltalognormal error distribution. Indices of abundance in units of biomass (dressed weight) were estimated for fish greater than 33 lbs due to U.S. size restrictions implemented in 1991. For comparison, indices of abundance in numbers of fish for ages 3-10+ combined sexes. The age-sex slicing algorithms used were the size at age by sex relationship employed during the 1999 swordfish stock assessment. The explanatory variables considered for standardization included geographical area, seasonal trimesters, fishing target species, and a fixed factor operational procedure (OP) that classifies the US longline fishing fleet according to boat and fishing gear characteristics, and fishing styles. Analyses were also conducted to account for potential effects of recent domestic time-area closures on US swordfish catch rates.


## KEYWORDS

Catch/effort, abundance, long linning, pelagic fisheries, swordfish

## 1. INTRODUCTION

Information on the relative abundance of swordfish is necessary to tune stock assessment models. Data collected from the US longline fleet has been previously used to develop age-specific standardized catch per unit effort (CPUE) indices of abundance for swordfish. This report documents the analytical methods applied to the available US longline fleet data through 2001 and presents SexAge specific, standardized CPUE indices for swordfish. Catch, size and effort data collected from the US longline fleet operating over a wide geographical range of the western North Atlantic Ocean were used to develop the indices of abundance presented herein. Standardized catch rates were estimated using the Generalized Linear Mixed Model (GLMM) approach. Analyses also included preliminary evaluation of recent time-area closures on swordfish catch rates.

## 2. MATERIAL \& METHODS

Hoey and Bertolino (1988) described the available catch and effort data for swordfish from the US longline fishery. Hoey et al. (1989), Scott et al. (1992, 1993), Scott and Bertolino (1997), Cramer and Bertolino (1998), Ortiz et al. (2000), and Ortiz and Cramer (2000) described the methods of analysis employed for indexing age-specific swordfish abundance from those data. The present

[^0]analysis is an application of the GLMM techniques to catch and effort data from the US longline fleet from 1981 through 2001. All fishers that fish for and land swordfish in U.S. are currently required to report catch in numbers of fish from every gear set (Pelagic Longline Logbook data). They are also required to submit weight-out sheets for each trip, which include individual carcass weights for swordfish and other large pelagic species market in the U.S. (Weight-Out data). In addition, in 1992 an observer program was established that closed monitored the fishing activities of the US Pelagic longline Fleet, recording detailed information on fishing operations, gear characteristic, environmental related conditions and biological information from all the longline catch (Lee and Brown 1998).

Implementation of US regulations, in conformity with the ICCAT recommendations, limit the allowable landings of swordfish by US fishermen, resulting in changes in both the type of data obtained and the protocols in which the data are used for analysis. Regulatory norms that affect the present analysis include: first the implementation(s) of the minimum size of 125 cm LJFL with a $15 \%$ tolerance in mid 1991, which was subsequently modified to 119 cm LJFL with a $0 \%$ tolerance in mid 1996; second, implementation of a total annual allowable catch (TAC) since 1995; and third, due to management regulations related to swordfish and or other species, time-area closures that were in effect since late 1999. These time-area restrictions are shown in Figure 1. They included two permanent closures to pelagic longline; the Desoto Canyon in the Gulf of Mexico effective since November 1 2000, and the Florida east coast effective since March 1 2001. There are also three timearea closures for longline in the US Atlantic coast: the Charleston Bump that is closed from February 1 to April 30, effective in 2001, the Bluefin tuna protection area that is closed from June 1 to June 30, effective in 1999, and the Grand Banks that is closed from July 172001 to January 9 2002, as a result of an emergency rule implementation (Cramer 2002).

Sex-Age specific indices of abundance were developed after ageing the swordfish catch at size data. The age slicing method uses the Ehrhardt's (Ehrhardt et al. 1995) size at age growth model for males and females. Since swordfish sex ratios differ in a spatio-temporal scale (Mejuto et al. 1998) estimated sex ratios at size (Ortiz et al. 2000) reflecting these spatial and temporal variations were incorporated into the age slicing procedure.

The swordfish weight-out data set comprises about 32,626 records from 1981 through 2001. Each record represents information of catch by vessel-trip, including date, geographical area of the catch (Fig 1), catch in numbers and weight for swordfish, tunas and other market species, and fishing effort (total number of hooks per set, and number of sets per trip). Prior to 1991, reporting of fish sizes and fishing effort was voluntary and incomplete for many vessels. The US longline pelagic fleet includes at least 1,714 different registered owner-vessels within the 1981-2001 period. This fleet has changed in terms of gear technology and fishery operation procedure, Hoey et al. (1988) characterized the swordfish fleet into nine different groups (i.e. operation procedures OP). As shown later, the OP factor is an important component in explaining overall swordfish catch rates. For this study, and update vessel OP characterization file was used.

The longline fishing grounds for the US fleets extend from the Grand Banks in the North Atlantic to $5-10^{\circ}$ south, off the South American coast, including the Caribbean and the Gulf of Mexico. Eight geographical areas of longline fishing were defined for classification (Fig 1). These include: the Caribbean (CAR, area 1), Gulf of Mexico (GOM, area 2), Florida East coast (FEC, area 3), South Atlantic Bight (SAB, area 4), Mid-Atlantic Bight (MAB, area 5), New England coastal (NEC, area 6), Northeast distant waters (NED, or Grand Banks, area 7) and Southern Offshore (OFS, area 8). Trimesters were used to account for seasonal fishery distribution through the year (Jan-Mar, Apr-Jun, Jul-Sep, and Oct-Dec).

Fishing effort is reported in terms of the total number of hooks per trip and number of set per trip, as number of hooks per set vary, catch rates were calculated as number of swordfish caught per 1000 hooks. However, in the analysis a variable Size-set (Szst) was defined as the mean number of hooks per set, and categorized into 3 levels: 1 for 100 to 300 hooks/set, 3 for 300 to 500 hooks $/$ set, and 4 for
more than 500 hooks/set. Set size was assumed to control for changes in gear deployment hypothesized to affect CPUE.

The US longline fleet not only targets swordfish but also tunas (yellowfin, bigeye, and albacore) and to a lesser extend, other pelagic species including sharks. However, the weight-out data does not typically provide information on targeting while the logbook and pelagic observer program does include specifics on the fishing species targeted by set and trip. The logbook data are self reported and for the target variable is generally not well defined. For the weight out and logbook data the proportion of swordfish catch to other species total catch per trip was used to defined four target ( $\operatorname{targ} 2$ ) categories, corresponding to the quartiles $0-25 \%, 25-50 \%, 50-75 \%$ and $>75 \%$. This target variable was assumed to control for effects on swordfish catch rates associated with the diverse species targeted by the fleet. Longline sets that target swordfish typically used light-sticks, a variable (lightc) was defined for the analysis that relates to the use and number of light-sticks in relation to the number of hooks. This variable includes the levels: 1 for no light-stick, 2 for up to 0.5 light-stick per hook, and 3 for 0.5 or more light-stick per hook.

As indicated above, two sets of swordfish catch rate data were available the weight out data and the logbook data. CPUE standardization was carried out for each data set under the following conditions: A) Weight out data includes catch at size information, thus Catch at age-sex tables were generated using sex-ratios at size and size at age slicing method from the 1999 swordfish stock assessment (Ortiz et al. 2000). Due to size restrictions implemented in 1991, standardized CPUE rates were restricted to 1981 through 1990 for age-classes 0,1 and 2 . For ages 3 and above, the standardized CPUE rates cover from 1981 through 2001. In addition, standardized CPUE rates were estimated for combined sex and ages: Age-0 to age-2 class, and Age-3 to age-10+ classes. B) Logbook data does not include catch at size information nor catch by sex, however it does include information about swordfish discards (swordfish caught but not landed due mainly to size restrictions). Logbook data start in 1987 and were available through 2001. A total of 208,805 longline set observations were reported and used from this data set for estimating CPUE for total catch in numbers of fish (All = landings + discards $)$.

The Weight-out data includes only general geographic areas of the catch, because time-area closure restrictions are smaller that the geographic area definition, it is not possible to properly allocate the swordfish catch at age-size to a non-closure or closure location within the general geographic areas. On the contrary, the Logbook data include specific latitude longitude information for each set. Since 1996, the trip number records from the Weight out data has been linked to the Logbook data set, thus it is possible to at least generate a mean lat-lon position for each trip record (Fig 2). From 1996 to 2001, on average $98 \%$ of the records from the Weight-out data can directly be linked to the individual Logbook set records. An approach to account for the closure/non-closure area effect in the Weight-out catch rate analysis was to compare the estimated standardized CPUE with and without the trip observations that were in time-area closures since 1996, based on the mean lat-lon classification. With the Logbook data, the standardization procedure include a variable (MngArea2) that indicates if a given set was inside or not of the time-area regions for all years.

Relative indices of abundance of swordfish were estimated by Generalized Linear Modeling approach assuming a delta lognormal model distribution. The present study used a delta model with a binomial error distribution for modeling the proportion of positive trips/sets, and a lognormal assumed error distribution for modeling the mean density or catch rate of successful trips/sets. The lognormal frequency distributions by sex and data set of the positive catches are shown in figure 3. Parameterization of the model used the GLM structure, for the proportion of successful trips per stratum is assumed to follow a binomial distribution where the estimated probability is a linear function of fixed factors and interactions. The logit function was used as link between the linear factor component and the binomial error. For successful trips, estimated CPUE rates assumed a lognormal distribution (lnCPUE) of a linear function of fixed factors and random effect interactions when the year term was within the interaction.

A step-wise regression procedure was used to determine the set of systematic factors and interactions that significantly explained the observed variability. The deviance difference between two consecutive models follows a $\chi^{2}$ (Chi-square) distribution; this statistic was used to test for the significance of an additional factor in the model. The number of additional parameters associated with the added factor minus one corresponds to the number of degrees of freedom in the $\chi^{2}$ test (McCullagh and Nelder, 1989). Deviance analysis tables are presented for each data set analysis. Each table includes the deviance for the proportion of positive observations, and the deviance for the positive catch rates. Final selection of explanatory factors was conditional to: a) the relative percent of deviance explained by adding the factor in evaluation, normally factors that explained more than 5 or $10 \%$ were selected. b) The $\chi^{2}$ test significance, and c) the type III test significance within the final specified model. Once a set of fixed factors was specified, possible $1^{\text {st }}$ level interactions were evaluated, in particular random interactions between the year effect and other factors. In some cases, models with interactions did not converge to a satisfactory solution. Analyses were done using Glimmix and Mixed procedures from the SAS® statistical computer software (SAS Institute Inc. 1997, Littell et al. 1996).

Relative indices of abundance were estimated from each of the data set; weight out data by sex/age or age groups, and for logbook data by all catch, discards and landings. Within sex-age analyses, the age component was included as fixed factor in the model. Relative indices were calculated as the product of the year effect least square means (LSMeans) from the binomial and the lognormal model components (Year*Age LSMeans within the sex/age analyses). LSMeans estimates were weighted proportional to observed margins in the input data, and for the lognormal estimates, a log back-transformed bias correction was applied (Lo et al. 1992).

## 3. RESULTS AND DISCUSSION:

## Weight-out swordfish catch data:

The deviance analyses tables for the weight out swordfish CPUE standardization by age-sex results are shown in Tables 1, 3 and 5 for the males, females, and combined sex-age groups, respectively. All the analyses from the weight-out swordfish catch data did exclude those tripobservations that on average were within an area designated as management area (i.e. where a timearea closure applies) from 1996 on. Comparisons of standard catch rate trends; with and without these observations show no significant difference. This result was consistent with the analyses from the Logbook data, where catch rates did not show difference between time-area closure and nonclosure areas. In the weight-out swordfish catch data, the analyses indicated that area, operation procedure (OP) and target were the main explanatory variables of the overall deviance in both model components, the proportion of positive observations as well in the positive trips component. In addition, size set (i.e. mean number of hooks per set) was an important explanatory variable within the positive trips analyses. These results agree with the observed seasonal characteristic of the US longline fleet that normally follows the north south migration of swordfish throughout the year. The OP and target factors reflect the importance of fishing operations of this fleet in terms of swordfish catch rates.

As concluded from previous analyses, including age as a fixed factor improved the model fit overall. Figures 4 and 5 show the nominal and standard CPUE by age for males and females, respectively. Figure 6 shows the nominal and standard CPUE for Combined sex-age groups 0-2 and 3-10+. For the combined sex-age group 0-2 the model fit is particularly poor (Fig 6, top panel), this is as of a result of the different pattern trends observed, when we include the sex-age partition. For males age 0-2 the overall pattern show a higher catch rates in 1986-87, with a declined towards 1990 (Fig 4). Instead females age 0-2 show different patterns, with age 0 class decreasing from 1981-1990, while ages 1 and 2 show a more constant pattern, albeit with large confidence intervals for the early years (Fig 5). For the combined sex-age group 3-10+ the overall pattern shows a decrease from early

1980's to lowest values in the mid 1990's, from 1995 to 2000 the standardized CPUE show some increase, a pattern that is not seen in the nominal CPUE values (Fig 6, lower panel). Within the sexage specific analyses, for swordfish males, the current age-growth relationship (Ehrhardt et al. 1995) applied in the slicing method tends to accumulate a large number of fish in the age 10+ group (Ortiz et al. 2000). As discussed in the latest assessment, the working group adopted an age $5+$ group instead (Anonymous 2000). The catch rate patterns for males age 3 is more constant, with some large variations in early years, while for males age 4 and $5+$ the catch rate patterns show a decreasing trend from the 1980's to lower values in the mid 1990s, and some increase up to year 1999-2000 (Fig 4). For the females swordfish, age classes 5 and older show a decreasing pattern from higher catch rates in the early 1980s to lower catch rates at about 1986-87, followed by a constant low rates until 199596 when the standardized CPUE shows some increase in recent years (Fig 5). Females age 3 and 4 show more a constant pattern, although the annual estimates show larger confidence intervals for the early years in the time series (Fig 5). Diagnostic plots for the positive component of the delta lognormal model fits are shown in figure 9 .

## Logbook swordfish data:

Standardized CPUE analysis for all catch (landings plus discards) from the Logbook swordfish data is shown in table 14. Deviance analysis shows that OP, area, season and the use of light-sticks were the main explanatory variables. As indicated before, each set observation in the Logbook data have lat-lon information, which permits classification of the data between non-closure and time-area closure (MngArea2) categories for all years (1987-2001). At least from 1987 to 1999, there is no significant difference in catch rates among these categories as suggested by the non effect of the variable MngArea2 in the model fit whether for the proportion of positive component or the positive observations (Table 14). Table 15 shows the evaluation of mixed model formulations for the Logbook swordfish data, and Table 16 shows the nominal and standard catch rates. The overall trends repeats the observed patterns from the weight-out data, with decrease trends from 1987 to lower catch rate values in the mid 1990s, 1995-96, with some increase to 1999 and consequently lower catch rates in 2000 and 2001 (Fig 7). Although the analysis indicated that the standardized patterns are relatively insensitive to the formulations developed to test for time-area effects on catch rate patterns, more observations will likely be necessary to detect differences that could be less than the inter-vessel variability within OP categories.

## LITERATURE CITED

Anonymous. 2000. Report of the ICCAT Swordfish Stock Assessment Session (Madrid, Spain, September 27-October 4, 1999). ICCAT - Col. Vol. Sci. Pap., Vol. LI(1):1001-1209.
Cramer, J. 2002. Large Pelagic Logbook Newsletter 2000. NOAA Tech. Mem. NMFS SEFSC 471, 26 p.
Cramer, J. and A. Bertolino. 1998. Standardized catch rates for swordfish (Xiphias gladius) from the U.S. longline fleet through 1997. ICCAT - Col. Vol. Sci. Pap., SCRS/98/114.

Ehrhardt, N.M, R.J. Robbins, and F. Arocha. 1995. Age validation and growth of swordfish, Xiphias gladius, in the Northwest Atlantic. ICCAT - Col. Vol. Sci. Pap., SCRS/95/99. 358-367.
Hoey, J.J. and A. Bertolino. 1988. Review of the U.S. fishery for swordfish, 1978 to 1986. ICCAT Col. Vol. Sci. Pap., Vol. XXVII:256-266.
Hoey, J.J. ,R. Conser, and E. Duffie. 1989. Catch per unit effort information from the U.S. swordfish fishery. ICCAT - Col. Vol. Sci. Pap., Vol. XXXIX:195-249.
Lee, D.W. and C.J. Brown. 1998. SEFSC Pelagic Observer Program Data Summary for 1992-1996. NOAA Technical memorandum NMFS-SEFSC-408:21 p.
Littell, R.C., G.A. Milliken, W.W. Stroup, and R.D Wolfinger. 1996. SAS® System for Mixed Models, Cary NC:SAS Institute Inc., 1996. 663 pp.

Lo, N.C., L.D. Jacobson, and J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49: 2515-2526.
MCCullagh, P. and J.A. Nelder. 1989. Generalized Linear Models $2^{\text {nd }}$ edition. Chapman \& Hall.
Mejuto, J., J.M. de la Serna, and B. Garcia. 1998. Some considerations on the spatial and temporal variability in the sex ratio at size of the swordfish (Xiphias gladius). ICCAT Col. Vol. Sci. Pap. 48(1):205-215.
Ortiz, M., V.R. Restrepo, and S.C. Turner. 2000. North Atlantic swordfish sex-ratios at size keys: Analysis and development. ICCAT Col. Vol. Sci. Pap., Vol.LI(1):1480-1509.
Ortiz, M, and J. Cramer. 2000. Standardized catch rates by sex and age for swordfish (Xiphias gladius) from the U.S. longline fleet 1981-1998. ICCAT Col. Vol. Sci. Pap., Vol.LI(1):15591620.

SAS Institute Inc. 1997, SAS/STAT® Software: Changes and Enhancements through Release 6.12. Cary, NC:Sas Institute Inc., 1997. 1167 pp.
SCOTT, G.P. and A. Bertolino. 1997. Standardized catch rates for swordfish (Xiphias gladius) from the U.S. longline fleet through 1996. ICCAT - Col. Vol. Sci. Pap., Vol.XLVIII(1):223-231.
Scott, G.P., V.R. Restrepo, and A.R. Bertolino. 1992. Standardized catch rates for swordfish (Xiphias gladius) from the US longline fleet through 1990. ICCAT - Coll. Vol. Sci. Pap., Vol. XXXIX(2):554-571.
Scott, G.P., V.R. Restrepo, and A.R. Bertolino. 1993. Standardized catch rates for swordfish (Xiphias gladius) from the US longline fleet through 1991. ICCAT - Coll. Vol. Sci. Pap., Vol. XL(1):458-467.

Table 1. Deviance analysis table of explanatory variables in the delta lognormal model for swordfish catch rates by Age and sex (number of fish per thousand hooks) from the US Pelagic Longline fishery. Percent of total deviance refers to the deviance explained by the full model; p value refers to the Chi-square probability between consecutive models (alpha $=0.05$ ).

Swordfish Males by Age (0-5+ 1981-1990 / 3-5+ 1991-2001)

| Model factors positive catch rates values | d.f. | Residual deviance | Change in deviance | \% of total deviance | $p$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | 41159.6644 |  |  |  |
| Year | 20 | 37562.7467 | 3596.92 | 18.9\% | < 0.001 |
| Year Age | 5 | 35859.9526 | 1702.79 | 9.0\% | < 0.001 |
| Year Age Op | 6 | 28077.0378 | 7782.91 | 41.0\% | < 0.001 |
| Year Age Op Area | 6 | 27299.8033 | 777.23 | 4.1\% | < 0.001 |
| Year Age Op Area Qtr | 3 | 27051.5472 | 248.26 | 1.3\% | < 0.001 |
| Year Age Op Area Qtr Szst | 2 | 24971.0487 | 2080.50 | 11.0\% | < 0.001 |
| Year Age Op Area Qtr Szst Targ | 3 | 22892.4143 | 2078.63 | 10.9\% | < 0.001 |
| Year Age Op Area Qtr Szst Targ Year*Age | 67 | 22675.8907 | 216.52 | 1.1\% | < 0.001 |
| Year Age Op Area Qtr Szst Targ Year*Age Op*Qtr | 18 | 22614.9609 | 60.93 | 0.3\% | < 0.001 |
| Year Age Op Area Qtr Szst Targ Year*Age Year*Targ | 56 | 22548.556 | 127.33 | 0.7\% | < 0.001 |
| Year Age Op Area Qtr Szst Targ Year*Age Op*Area | 30 | 22542.0324 | 133.86 | 0.7\% | < 0.001 |
| Year Age Op Area Qtr Szst Targ Year*Age Area*Targ | 18 | 22520.5206 | 155.37 | 0.8\% | < 0.001 |
| Year Age Op Area Qtr Szst Targ Year*Age Year*Szst | 37 | 22341.6399 | 334.25 | 1.8\% | < 0.001 |
| Year Age Op Area Qtr Szst Targ Year*Age Year*Op | 106 | 22261.7996 | 414.09 | 2.2\% | < 0.001 |
| Year Age Op Area Qtr Szst Targ Year*Age Year*Qtr | 59 | 22227.8217 | 448.07 | 2.4\% | < 0.001 |
| Year Age Op Area Qtr Szst Targ Year*Age Year*Area | 111 | 22166.4994 | 509.39 | 2.7\% | < 0.001 |

$\left.\begin{array}{lcrrrr}\hline & \text { Model factors proportion positives } & \begin{array}{c}\text { Residual } \\ \text { deviance }\end{array} & \begin{array}{c}\text { Change in } \\ \text { deviance }\end{array} & \begin{array}{c}\text { \% of total } \\ \text { deviance }\end{array} \\ \hline & \boldsymbol{p}\end{array}\right]$

Table 2. Analysis of mixed model formulations for swordfish catch rates by age-sex from the US Pelagic Longline fishery. Likelihood ratio tests the difference of -2 REM loglikelihood between two nested models. *indicates the final delta mixed model.

| Swordfish Males by Age [0-5+ 1981-1990 / 3-5+ 19912-2001] GLMixed Model | Num obs | -2 REM Log likelihood | Akaike's Information Criterion | Schwartz's Bayesian Criterion | Likelihood Ratio Test |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Proportion Positives |  |  |  |  |  |  |
| Year Age Year*Age Area OP | 19812 | 76196.3 | 76198.3 | 76206.2 |  |  |
| Year Age Year*Age Area OP Year*Area | 19812 | 76087.8 | 76091.8 | 76097.6 | 108.5 | 0.0000 |
| Year Age Year*Age Area OP Year*Area Year*OP | 19812 | 76115.1 | 76121.1 | 76129.9 | -27.3 | \#NUM! |
|  | Num obs | $\begin{gathered} \hline-2 \text { REM } \\ \text { Log } \\ \text { likelihood } \end{gathered}$ | Akaike's Information Criterion | Schwartz's Bayesian Criterion | Likelihood Ratio Test |  |
| Positives catch rates |  |  |  |  |  |  |
| Year Age Year*Age OP Area Szst Targ | 28986 | 75751.2 | 75753.2 | 75761.5 |  |  |
| Year Age Year*Age OP Area Szst Targ Year*Area | 28986 | 75400.2 | 75404.2 | 75410.8 | 351 | 0.0000 |
| Year Age Year*Age OP Area Szst Targ Year*Area Year*quarter | 28986 | 74925.5 | 74931 | 74939.8 | 474.7 | 0.0000 |

Table 3. Deviance analysis table of explanatory variables in the delta lognormal model for swordfish catch rates by Age and sex (number of fish per thousand hooks) from the US Pelagic Longline fishery. Percent of total deviance refers to the deviance explained by the full model; p value refers to the Chi-square probability between consecutive models (alpha $=0.05$ )

Swordfish Females by Age ( 0-10+ 1981-1990 / 3-10+ 1991-2001)
$\left.\begin{array}{llrrr}\hline & \text { Model factors positive catch rates values } & \text { d.f. } & \begin{array}{c}\text { Residual } \\ \text { deviance }\end{array} & \begin{array}{c}\text { Change in } \\ \text { deviance }\end{array} \\ \hline & \begin{array}{l}\text { \% of total } \\ \text { deviance }\end{array} \\ \hline \boldsymbol{p}\end{array}\right]$
$\left.\begin{array}{lrrrr}\hline & \text { Model factors proportion positives } & \begin{array}{c}\text { Residual } \\ \text { deviance }\end{array} & \begin{array}{c}\text { Change in } \\ \text { deviance }\end{array} & \begin{array}{c}\text { \% of total } \\ \text { deviance }\end{array} \\ \hline & \boldsymbol{p}\end{array}\right]$

Table 4. Analysis of mixed model formulations for swordfish catch rates by age-sex from the US Pelagic Longline fishery. Likelihood ratio tests the difference of -2 REM loglikelihood between two nested models. *indicates the final delta mixed model.

| Swordfish Females by Age [0-10+1981-1990 / 3-10+ 199122001] GLMixed Model | Num obs | $\begin{gathered} \hline-2 \text { REM } \\ \text { Log } \end{gathered}$ <br> likelihood | Akaike's Information Criterion | Schwartz's Bayesian Criterion | Likelihood Ratio Test |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Proportion Positives |  |  |  |  |  |  |
| Year Age Year*Age Area OP Target | 46087 | 188308.3 | 188310.3 | 188319 |  |  |
| Year Age Year*Age Area OP Target Year*OP | 46087 | 188167.6 | 188171.6 | 188177.4 | 140.7 | 0.0000 |
| Year Age Year*Age Area OP Target Year*OP Year*Area | 46087 | 188297.8 | 188303.8 | 188312.5 | -130.2 | \#NUM! |
|  | Num obs | $\begin{gathered} \hline-2 \text { REM } \\ \text { Log } \\ \text { likelihood } \\ \hline \end{gathered}$ | Akaike's Information Criterion | Schwartz's Bayesian Criterion | Likelihood Ratio Test |  |
| Positives catch rates |  |  |  |  |  |  |
| Year Age Year*Age OP Area Szst Target | 60948 | 147594.7 | 147596.7 | 147605.7 |  |  |
| Year Age Year*Age OP Area Szst Target Year*Area | 60948 | 146084.4 | 146088.4 | 146094.2 | 1510.3 | 0.0000 |
| Year Age Year*Age OP Area Szst Target Year*Area Year*Szst | 60948 | 145412.7 | 145418.7 | 145427.5 | 671.7 | 0.0000 |

Table 5. Deviance analysis table of explanatory variables in the delta lognormal model for swordfish catch rates combined sex and Age groups (number of fish per thousand hooks) from the US Pelagic Longline fishery. Percent of total deviance refers to the deviance explained by the full model; $p$ value refers to the Chi-square probability between consecutive models (alpha = 0.05).

Swordfish Combined Age 0-2

| Model factors positive catch rates values | d.f. | Residual <br> deviance | Change in <br> deviance | $\%$ of total <br> deviance | p |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |
| 1 | 1 | 4618.83249 |  |  |  |
| Year | 9 | 4491.28899 | 127.54 | $4.4 \%$ | $<0.001$ |
| Year Area | 6 | 3569.35494 | 921.93 | $32.2 \%$ | $<0.001$ |
| Year Area Op | 6 | 2881.43607 | 687.92 | $24.0 \%$ | $<0.001$ |
| Year Area Op Qtr | 3 | 2547.43275 | 334.00 | $11.6 \%$ | $<0.001$ |
| Year Area Op Qtr Szst | 2 | 2414.65842 | 132.77 | $4.6 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ | 3 | 1834.53707 | 580.12 | $20.2 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ Year*Szst | 15 | 1805.79075 | 28.75 | $1.0 \%$ | 0.017 |
| Year Area Op Qtr Szst Targ Year*Targ | 27 | 1790.5961 | 43.94 | $1.5 \%$ | 0.021 |
| Year Area Op Qtr Szst Targ Year*Qtr | 26 | 1790.41225 | 44.12 | $1.5 \%$ | 0.015 |
| Year Area Op Qtr Szst Targ Year*Op | 41 | 1776.19151 | 58.35 | $2.0 \%$ | 0.038 |
| Year Area Op Qtr Szst Targ Year*Area | 46 | 1751.55045 | 82.99 | $2.9 \%$ | $<0.001$ |


| Model factors proportion positives | d.f. | Residual <br> deviance | Change in <br> deviance | \% of total <br> deviance | $\boldsymbol{p}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  | - |  |  |  |  |
| 1 |  | 636.684 |  |  |  |
| Year | 9 | 615.723 | 20.96 | $4 \%$ | 0.013 |
| Year Qtr | 3 | 585.341 | 30.38 | $6 \%$ | $<0.001$ |
| Year Qtr Targ | 3 | 159.446 | 425.89 | $88 \%$ | $<0.001$ |
| Year Qtr Targ Szst | 2 | 150.090 | 9.36 | $2 \%$ | 0.009 |

Swordfish Combined Age 3-10+

| Model factors positive catch rates values | d.f. | Residual <br> deviance | Change in <br> deviance | $\%$ of total <br> deviance | $\boldsymbol{p}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 25954.0447 |  |  |  |
| Year | 20 | 23427.097 | 2526.95 | $15.8 \%$ | $<0.001$ |
| Year Area | 6 | 16110.9889 | 7316.11 | $45.7 \%$ | $<0.001$ |
| Year Area Op | 6 | 14645.3876 | 1465.60 | $9.2 \%$ | $<0.001$ |
| Year Area Op Qtr | 3 | 14018.7504 | 626.64 | $3.9 \%$ | $<0.001$ |
| Year Area Op Qtr Szst | 2 | 12898.6477 | 1120.10 | $7.0 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ | 3 | 1029.1635 | 2606.48 | $16.3 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ Year*Targ | 58 | 10184.1949 | 107.97 | $0.7 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ Year*Qtr | 59 | 10168.8208 | 123.34 | $0.8 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ Year*Szst | 37 | 10047.8042 | 244.36 | $1.5 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ Year*Area | 112 | 9954.74259 | 337.42 | $2.1 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ Year*Op | 107 | 9954.73039 | 337.43 | $2.1 \%$ | $<0.001$ |


| Model factors proportion positives | d.f. | Residual <br> deviance | Change in <br> deviance | of total <br> deviance | $\boldsymbol{p}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 9840.033 |  |  |  |
| Year | 20 | 9409.429 | 430.60 | $8 \%$ | $<0.001$ |
| Year Area | 6 | 7268.969 | 2140.46 | $40 \%$ | $<0.001$ |
| Year Area Op | 6 | 6930.526 | 338.44 | $6 \%$ | $<0.001$ |
| Year Area Op Qtr | 3 | 6644.468 | 286.06 | $5 \%$ | $<0.001$ |
| Year Area Op Qtr Szst | 2 | 6574.615 | 69.85 | $1 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ | 3 | 4775.691 | 1798.92 | $34 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ Year*Szst | 37 | 4699.791 | 75.90 | $1 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ Year*Targ | 60 | 4671.746 | 103.94 | $2 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ Year*Qtr | 59 | 4608.675 | 167.02 | $3 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ Year*Op | 107 | 4536.625 | 239.07 | $4 \%$ | $<0.001$ |
| Year Area Op Qtr Szst Targ Year*Area | 112 | 4512.506 | 263.18 | $5 \%$ | $<0.001$ |

Table 6. Analysis of mixed model formulations for swordfish catch rates combined-sex and age groups from the US Pelagic Longline fishery. Likelihood ratio tests the difference of -2 REM log likelihood between two nested models. *indicates the final delta mixed model

| Swordfish Combined Age3-10+ GLMixed Model | Num obs | -2 REM <br> Log <br> likelihood | Akaike's <br> Information <br> Criterion | Schwartz's <br> Bayesian <br> Criterion | Likelihood Ratio Test |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Proportion Positives |  |  |  |  |  |  |
| Year Area OP Qtr Target | 4965 | 24385.7 | 24387.7 | 24394.2 |  |  |
| Year Area OP Qtr Target Year*Area | 4965 | 24314.8 | 24318.8 | 24324.6 | 70.9 | 0.0000 |
| Year Area OP Qtr Target Year*Area Year*OP | 4965 | 24232.4 | 24238.4 | 24247.2 | 82.4 | 0.0000 |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Table 7. Deviance analysis table of explanatory variables in the delta lognormal model for swordfish biomass ( Ibs dressed weight/ thousand hooks) from the US Pelagic Longline fishery.

Swordfish ( > 33 lbs dressed weigth) biomass CPUE Index
$\left.\begin{array}{llrrr}\hline & \text { Model factors positive catch rates values } & \begin{array}{c}\text { Residual } \\ \text { deviance }\end{array} & \begin{array}{c}\text { Change in } \\ \text { deviance }\end{array} & \begin{array}{c}\text { \% of total } \\ \text { deviance }\end{array} \\ \hline & \boldsymbol{p}\end{array}\right]$

| Model factors proportion positives | d.f. | Residual deviance | Change in deviance | \% of total deviance | $p$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | 8955.401 |  |  |  |
| Year | 19 | 8452.066 | 503.34 | 7\% | < 0.001 |
| Year Area | 7 | 5593.707 | 2858.36 | 38\% | < 0.001 |
| Year Area Qtr | 3 | 5373.397 | 220.31 | 3\% | < 0.001 |
| Year Area Qtr Op | 6 | 5134.089 | 239.31 | 3\% | < 0.001 |
| Year Area Qtr Op Targ | 3 | 1738.788 | 3395.30 | 45\% | < 0.001 |
| Year Area Qtr Op Targ Area*Op | 34 | 1689.565 | 49.22 | 1\% | 0.044 |
| Year Area Qtr Op Targ Year*Targ | 57 | 1627.055 | 111.73 | 1\% | < 0.001 |
| Year Area Qtr Op Targ Year*Qtr | 57 | 1600.339 | 138.45 | 2\% | < 0.001 |
| Year Area Qtr Op Targ Area*Qtr | 21 | 1452.983 | 285.80 | 4\% | < 0.001 |
| Year Area Qtr Op Targ Year*Area | 116 | 1451.956 | 286.83 | 4\% | < 0.001 |
| Year Area Qtr Op Targ Year*Op | 106 | 1428.139 | 310.65 | 4\% | < 0.001 |

Table 8. Analysis of mixed model formulations for biomass swordfish catch rates (> 33 lbs dressed wgt/ thousand hooks) from the US Pelagic Longline fishery. Likelihood ratio tests the difference of -2 REM log likelihood between two nested models. *indicates the final delta mixed model.

| Swordfish (> 33 Ibs dressed wgt) GLMixed Model | Num obs | $\begin{gathered} \hline-2 \text { REM } \\ \text { Log } \\ \text { likelihood } \end{gathered}$ | Akaike's Information Criterion | Schwartz's <br> Bayesian Criterion | Likelihood Ratio Test |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Proportion Positives |  |  |  |  |  |  |
| Year Target OP Qtr | 3795 | 31661.9 | 31663.9 | 31670.2 |  |  |
| Year Target OP Qtr Year*Area | 3795 | 30168.5 | 30172.5 | 30178.4 | 1493.4 | 0.0000 |
| Year Target OP Qtr Year*Area Year*OP | 3795 | 30254.5 | 30260.5 | 30269.4 | -86 | \#NUM! |
| Year Target OP Qtr Year*Area Year*OP Area*Qtr | 3795 | 30867.5 | 30875.5 | 30887.4 | -613 | \#NUM! |
|  | Num obs | $\begin{gathered} \hline-2 \text { REM } \\ \text { Log } \\ \text { likelihood } \\ \hline \end{gathered}$ | Akaike's Information Criterion | Schwartz's Bayesian Criterion | Likelihood Ratio Test |  |
| Positives catch rates |  |  |  |  |  |  |
| Year OP Area Target Qtr | 23956 | 57875.4 | 57877.4 | 57885.5 |  |  |
| Year OP Area Target Qtr Year*Area | 23956 | 57381.3 | 57385.3 | 57391.3 | 494.1 | 0.0000 |
| Year OP Area Target Qtr Year*Area Year*OP | 23956 | 57242.8 | 57248.8 | 57257.7 | 138.5 | 0.0000 |
| Year OP Area Target Qtr Year*Area Year*OP Year*Qtr | 23956 | 57096.5 | 57104.5 | 57116.3 | 146.3 | 0.0000 |

Table 9. Nominal and standard swordfish CPUE by age-sex (males) from the weight-out data (fish/1000 hooks).

| Age | Year | N obs | NominaL CPUE | Stdard | Low | Upp | coeff var | std error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1981 | 36 | 0.730 | 0.952 | 0.458 | 1.982 | 37.9\% | 0.531 |
| 0 | 1982 | 89 | 1.423 | 1.262 | 0.732 | 2.175 | 27.7\% | 0.515 |
| 0 | 1983 | 128 | 0.937 | 0.873 | 0.484 | 1.574 | 30.1\% | 0.387 |
| 0 | 1984 | 162 | 0.537 | 0.519 | 0.295 | 0.913 | 28.8\% | 0.220 |
| 0 | 1985 | 168 | 1.049 | 0.840 | 0.544 | 1.300 | 22.1\% | 0.273 |
| 0 | 1986 | 320 | 1.464 | 1.557 | 1.133 | 2.140 | 16.0\% | 0.366 |
| 0 | 1987 | 729 | 1.135 | 1.155 | 0.852 | 1.565 | 15.3\% | 0.260 |
| 0 | 1988 | 930 | 1.056 | 1.034 | 0.771 | 1.388 | 14.8\% | 0.225 |
| 0 | 1989 | 728 | 0.842 | 1.086 | 0.821 | 1.437 | 14.1\% | 0.225 |
| 0 | 1990 | 793 | 0.828 | 0.721 | 0.524 | 0.991 | 16.0\% | 0.170 |
| 1 | 1981 | 36 | 0.979 | 1.086 | 0.514 | 2.294 | 38.7\% | 0.832 |
| 1 | 1982 | 89 | 1.112 | 0.950 | 0.541 | 1.667 | 28.7\% | 0.538 |
| 1 | 1983 | 128 | 0.853 | 0.638 | 0.368 | 1.106 | 28.0\% | 0.353 |
| 1 | 1984 | 162 | 0.803 | 0.696 | 0.451 | 1.073 | 21.9\% | 0.302 |
| 1 | 1985 | 168 | 0.743 | 0.713 | 0.493 | 1.030 | 18.6\% | 0.262 |
| 1 | 1986 | 320 | 1.068 | 1.137 | 0.827 | 1.563 | 16.0\% | 0.360 |
| 1 | 1987 | 729 | 1.066 | 1.016 | 0.772 | 1.336 | 13.8\% | 0.277 |
| 1 | 1988 | 930 | 1.285 | 1.386 | 1.071 | 1.793 | 12.9\% | 0.354 |
| 1 | 1989 | 728 | 1.194 | 1.410 | 1.093 | 1.820 | 12.8\% | 0.357 |
| 1 | 1990 | 793 | 0.896 | 0.969 | 0.734 | 1.279 | 14.0\% | 0.268 |
| 2 | 1981 | 36 | 1.466 | 1.376 | 0.653 | 2.903 | 38.6\% | 0.740 |
| 2 | 1982 | 89 | 0.944 | 0.899 | 0.498 | 1.622 | 30.2\% | 0.377 |
| 2 | 1983 | 128 | 0.794 | 0.667 | 0.392 | 1.136 | 27.1\% | 0.252 |
| 2 | 1984 | 162 | 0.791 | 0.724 | 0.457 | 1.147 | 23.3\% | 0.235 |
| 2 | 1985 | 168 | 0.895 | 0.832 | 0.574 | 1.206 | 18.7\% | 0.217 |
| 2 | 1986 | 320 | 0.993 | 0.991 | 0.709 | 1.384 | 16.8\% | 0.232 |
| 2 | 1987 | 729 | 1.028 | 1.095 | 0.822 | 1.459 | 14.4\% | 0.220 |
| 2 | 1988 | 930 | 1.247 | 1.269 | 0.968 | 1.663 | 13.6\% | 0.240 |
| 2 | 1989 | 728 | 0.950 | 1.171 | 0.887 | 1.545 | 14.0\% | 0.227 |
| 2 | 1990 | 793 | 0.893 | 0.976 | 0.730 | 1.305 | 14.6\% | 0.198 |
| 3 | 1981 | 36 | 1.568 | 1.293 | 0.517 | 3.237 | 48.4\% | 0.502 |
| 3 | 1982 | 89 | 1.565 | 1.255 | 0.662 | 2.381 | 32.8\% | 0.331 |
| 3 | 1983 | 128 | 0.531 | 0.384 | 0.167 | 0.884 | 43.6\% | 0.134 |
| 3 | 1984 | 162 | 1.078 | 0.831 | 0.510 | 1.354 | 24.8\% | 0.165 |
| 3 | 1985 | 168 | 1.445 | 0.980 | 0.636 | 1.509 | 21.9\% | 0.172 |
| 3 | 1986 | 320 | 1.138 | 0.925 | 0.605 | 1.416 | 21.5\% | 0.160 |
| 3 | 1987 | 729 | 1.078 | 0.968 | 0.684 | 1.371 | 17.5\% | 0.136 |
| 3 | 1988 | 930 | 1.061 | 0.839 | 0.589 | 1.195 | 17.8\% | 0.120 |
| 3 | 1989 | 728 | 1.042 | 0.965 | 0.680 | 1.369 | 17.6\% | 0.137 |
| 3 | 1990 | 793 | 0.993 | 0.877 | 0.615 | 1.252 | 17.9\% | 0.126 |


| 3 | 1991 | 1219 | 0.921 | 1.086 | 0.780 | 1.512 | 16.7\% | 0.145 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1992 | 1760 | 0.688 | 0.786 | 0.559 | 1.107 | 17.2\% | 0.109 |
| 3 | 1993 | 2006 | 0.694 | 0.867 | 0.625 | 1.203 | 16.5\% | 0.115 |
| 3 | 1994 | 2117 | 0.738 | 0.795 | 0.565 | 1.118 | 17.2\% | 0.109 |
| 3 | 1995 | 2195 | 0.789 | 0.890 | 0.638 | 1.241 | 16.8\% | 0.120 |
| 3 | 1996 | 2362 | 0.953 | 0.936 | 0.677 | 1.295 | 16.3\% | 0.123 |
| 3 | 1997 | 2492 | 1.008 | 1.115 | 0.816 | 1.523 | 15.7\% | 0.140 |
| 3 | 1998 | 2200 | 1.121 | 1.208 | 0.895 | 1.632 | 15.1\% | 0.147 |
| 3 | 1999 | 2024 | 1.066 | 1.458 | 1.082 | 1.964 | 15.0\% | 0.175 |
| 3 | 2000 | 2055 | 0.858 | 1.405 | 1.047 | 1.886 | 14.8\% | 0.167 |
| 3 | 2001 | 1387 | 0.667 | 1.136 | 0.834 | 1.548 | 15.6\% | 0.142 |
| 4 | 1981 | 36 | 2.719 | 2.103 | 0.843 | 5.244 | 48.2\% | 0.528 |
| 4 | 1982 | 89 | 2.042 | 1.510 | 0.812 | 2.807 | 31.8\% | 0.250 |
| 4 | 1983 | 128 | 0.577 | 0.476 | 0.198 | 1.145 | 46.1\% | 0.114 |
| 4 | 1984 | 162 | 1.175 | 0.970 | 0.558 | 1.686 | 28.2\% | 0.142 |
| 4 | 1985 | 168 | 1.580 | 1.213 | 0.753 | 1.951 | 24.1\% | 0.152 |
| 4 | 1986 | 320 | 1.141 | 0.977 | 0.608 | 1.571 | 24.1\% | 0.123 |
| 4 | 1987 | 729 | 0.984 | 0.889 | 0.596 | 1.325 | 20.2\% | 0.093 |
| 4 | 1988 | 930 | 1.001 | 0.854 | 0.575 | 1.268 | 19.9\% | 0.089 |
| 4 | 1989 | 728 | 0.905 | 0.929 | 0.621 | 1.389 | 20.3\% | 0.098 |
| 4 | 1990 | 793 | 0.732 | 0.683 | 0.444 | 1.052 | 21.8\% | 0.078 |
| 4 | 1991 | 1219 | 0.833 | 0.981 | 0.668 | 1.439 | 19.4\% | 0.099 |
| 4 | 1992 | 1760 | 0.619 | 0.738 | 0.496 | 1.098 | 20.1\% | 0.077 |
| 4 | 1993 | 2006 | 0.635 | 0.822 | 0.568 | 1.191 | 18.7\% | 0.080 |
| 4 | 1994 | 2117 | 0.685 | 0.734 | 0.498 | 1.083 | 19.6\% | 0.075 |
| 4 | 1995 | 2195 | 0.629 | 0.771 | 0.523 | 1.138 | 19.6\% | 0.079 |
| 4 | 1996 | 2362 | 0.796 | 0.762 | 0.520 | 1.116 | 19.3\% | 0.076 |
| 4 | 1997 | 2492 | 0.904 | 0.986 | 0.690 | 1.409 | 18.0\% | 0.092 |
| 4 | 1998 | 2200 | 0.916 | 1.064 | 0.756 | 1.498 | 17.2\% | 0.096 |
| 4 | 1999 | 2024 | 0.829 | 1.218 | 0.864 | 1.717 | 17.3\% | 0.110 |
| 4 | 2000 | 2055 | 0.701 | 1.222 | 0.873 | 1.710 | 16.9\% | 0.108 |
| 4 | 2001 | 1387 | 0.598 | 1.099 | 0.773 | 1.563 | 17.7\% | 0.102 |
| 5 | 1981 | 36 | 3.671 | 2.537 | 1.267 | 5.079 | 35.8\% | 1.275 |
| 5 | 1982 | 89 | 3.093 | 2.465 | 1.456 | 4.173 | 26.8\% | 0.927 |
| 5 | 1983 | 128 | 1.054 | 0.855 | 0.480 | 1.523 | 29.4\% | 0.354 |
| 5 | 1984 | 162 | 1.249 | 0.978 | 0.629 | 1.520 | 22.3\% | 0.307 |
| 5 | 1985 | 168 | 1.769 | 1.455 | 0.980 | 2.161 | 20.0\% | 0.408 |
| 5 | 1986 | 320 | 1.136 | 0.998 | 0.670 | 1.486 | 20.1\% | 0.282 |
| 5 | 1987 | 729 | 0.832 | 0.778 | 0.559 | 1.082 | 16.6\% | 0.182 |
| 5 | 1988 | 930 | 0.762 | 0.650 | 0.465 | 0.908 | 16.9\% | 0.154 |
| 5 | 1989 | 728 | 0.903 | 0.882 | 0.639 | 1.218 | 16.2\% | 0.201 |
| 5 | 1990 | 793 | 0.670 | 0.678 | 0.482 | 0.954 | 17.2\% | 0.164 |
| 5 | 1991 | 1219 | 0.678 | 0.905 | 0.659 | 1.242 | 15.9\% | 0.203 |
| 5 | 1992 | 1760 | 0.503 | 0.717 | 0.523 | 0.981 | 15.8\% | 0.159 |
| 5 | 1993 | 2006 | 0.520 | 0.725 | 0.533 | 0.985 | 15.4\% | 0.157 |
| 5 | 1994 | 2117 | 0.459 | 0.602 | 0.437 | 0.830 | 16.2\% | 0.137 |
| 5 | 1995 | 2195 | 0.439 | 0.647 | 0.469 | 0.892 | 16.2\% | 0.147 |
| 5 | 1996 | 2362 | 0.535 | 0.573 | 0.415 | 0.791 | 16.2\% | 0.131 |


| 5 | 1997 | 2492 | 0.604 | 0.748 | 0.553 | 1.011 | $15.2 \%$ | 0.160 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 1998 | 2200 | 0.545 | 0.806 | 0.600 | 1.083 | $14.9 \%$ | 0.168 |
| 5 | 1999 | 2024 | 0.602 | 1.024 | 0.769 | 1.363 | $14.4 \%$ | 0.207 |
| 5 | 2000 | 2055 | 0.505 | 1.042 | 0.785 | 1.384 | $14.3 \%$ | 0.209 |
| 5 | 2001 | 1387 | 0.472 | 0.937 | 0.696 | 1.260 | $14.9 \%$ | 0.196 |

Table 10. Nominal and standard swordfish CPUE by age-sex (Females) from the weightout data (fish/1000 hooks).

| Age | Year | N obs ${ }^{\text {N }}$ | Nominal CPUE | Stdard | Low | Upp | coeff var | $\begin{aligned} & \text { std } \\ & \text { error } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1981 | 36 | 1.522 | 1.740 | 0.880 | 3.439 | 35.1\% | 1.038 |
| 0 | 1982 | 89 | 1.793 | 1.501 | 0.890 | 2.533 | 26.6\% | 0.679 |
| 0 | 1983 | 128 | 1.339 | 1.173 | 0.786 | 1.752 | 20.2\% | 0.404 |
| 0 | 1984 | 162 | 0.794 | 0.756 | 0.485 | 1.181 | 22.5\% | 0.290 |
| 0 | 1985 | 168 | 0.706 | 0.715 | 0.475 | 1.076 | 20.7\% | 0.251 |
| 0 | 1986 | 320 | 1.151 | 1.284 | 0.946 | 1.744 | 15.4\% | 0.336 |
| 0 | 1987 | 729 | 0.715 | 0.816 | 0.599 | 1.113 | 15.6\% | 0.216 |
| 0 | 1988 | 930 | 0.731 | 0.693 | 0.503 | 0.955 | 16.1\% | 0.190 |
| 0 | 1989 | 728 | 0.553 | 0.599 | 0.434 | 0.829 | 16.3\% | 0.166 |
| 0 | 1990 | 793 | 0.696 | 0.722 | 0.523 | 0.996 | 16.2\% | 0.199 |
| 1 | 1981 | 36 | 1.380 | 1.135 | 0.651 | 1.976 | 28.3\% | 1.086 |
| 1 | 1982 | 89 | 1.185 | 0.877 | 0.559 | 1.376 | 22.8\% | 0.677 |
| 1 | 1983 | 128 | 1.241 | 0.996 | 0.714 | 1.390 | 16.8\% | 0.565 |
| 1 | 1984 | 162 | 0.919 | 0.904 | 0.657 | 1.246 | 16.1\% | 0.493 |
| 1 | 1985 | 168 | 0.644 | 0.668 | 0.478 | 0.934 | 16.9\% | 0.381 |
| 1 | 1986 | 320 | 1.015 | 1.256 | 0.952 | 1.657 | 13.9\% | 0.591 |
| 1 | 1987 | 729 | 0.969 | 1.102 | 0.855 | 1.422 | 12.8\% | 0.476 |
| 1 | 1988 | 930 | 0.977 | 1.085 | 0.845 | 1.393 | 12.6\% | 0.461 |
| 1 | 1989 | 728 | 0.914 | 1.013 | 0.783 | 1.311 | 12.9\% | 0.443 |
| 1 | 1990 | 793 | 0.755 | 0.964 | 0.746 | 1.245 | 12.9\% | 0.420 |
| 2 | 1981 | 36 | 1.984 | 1.435 | 0.774 | 2.663 | 31.6\% | 1.362 |
| 2 | 1982 | 89 | 1.077 | 0.763 | 0.497 | 1.173 | 21.7\% | 0.497 |
| 2 | 1983 | 128 | 1.019 | 0.859 | 0.612 | 1.204 | 17.0\% | 0.438 |
| 2 | 1984 | 162 | 0.833 | 0.917 | 0.664 | 1.267 | 16.3\% | 0.447 |
| 2 | 1985 | 168 | 0.945 | 0.949 | 0.703 | 1.282 | 15.1\% | 0.430 |
| 2 | 1986 | 320 | 0.827 | 1.030 | 0.782 | 1.358 | 13.9\% | 0.428 |
| 2 | 1987 | 729 | 0.836 | 1.032 | 0.799 | 1.333 | 12.8\% | 0.398 |
| 2 | 1988 | 930 | 0.992 | 1.114 | 0.867 | 1.432 | 12.6\% | 0.420 |
| 2 | 1989 | 728 | 0.736 | 0.910 | 0.702 | 1.180 | 13.1\% | 0.356 |
| 2 | 1990 | 793 | 0.750 | 0.989 | 0.765 | 1.278 | 12.9\% | 0.382 |
| 3 | 1981 | 36 | 2.979 | 1.758 | 0.980 | 3.151 | 29.8\% | 0.913 |
| 3 | 1982 | 89 | 1.893 | 1.045 | 0.664 | 1.644 | 23.0\% | 0.418 |
| 3 | 1983 | 128 | 1.290 | 0.853 | 0.583 | 1.248 | 19.2\% | 0.285 |
| 3 | 1984 | 162 | 1.272 | 1.020 | 0.722 | 1.442 | 17.4\% | 0.310 |
| 3 | 1985 | 168 | 1.598 | 1.192 | 0.863 | 1.647 | 16.3\% | 0.338 |
| 3 | 1986 | 320 | 1.215 | 1.078 | 0.797 | 1.459 | 15.2\% | 0.286 |
| 3 | 1987 | 729 | 1.030 | 1.026 | 0.782 | 1.345 | 13.6\% | 0.243 |
| 3 | 1988 | 930 | 1.262 | 1.160 | 0.891 | 1.511 | 13.3\% | 0.268 |
| 3 | 1989 | 728 | 0.956 | 0.983 | 0.748 | 1.292 | 13.7\% | 0.235 |
| 3 | 1990 | 793 | 0.785 | 0.831 | 0.625 | 1.106 | 14.4\% | 0.208 |
| 3 | 1991 | 1219 | 0.756 | 0.986 | 0.753 | 1.291 | 13.5\% | 0.232 |
| 3 | 1992 | 1760 | 0.587 | 0.861 | 0.662 | 1.119 | 13.2\% | 0.197 |
| 3 | 1993 | 2006 | 0.496 | 0.752 | 0.576 | 0.980 | 13.3\% | 0.175 |
| 3 | 1994 | 2117 | 0.521 | 0.749 | 0.573 | 0.980 | 13.5\% | 0.176 |
| 3 | 1995 | 2195 | 0.493 | 0.824 | 0.633 | 1.073 | 13.3\% | 0.190 |
| 3 | 1996 | 2362 | 0.592 | 0.857 | 0.659 | 1.115 | 13.2\% | 0.197 |
| 3 | 1997 | 2492 | 0.661 | 0.968 | 0.745 | 1.258 | 13.1\% | 0.222 |
| 3 | 1998 | 2200 | 0.718 | 0.917 | 0.704 | 1.194 | 13.3\% | 0.212 |
| 3 | 1999 | 2024 | 0.745 | 1.120 | 0.865 | 1.450 | 13.0\% | 0.253 |
| 3 | 2000 | 2055 | 0.721 | 1.005 | 0.776 | 1.302 | 13.0\% | 0.227 |
| 3 | 2001 | 1387 | 0.429 | 1.016 | 0.781 | 1.321 | 13.2\% | 0.234 |
| 4 | 1981 | 36 | 2.297 | 1.546 | 0.757 | 3.158 | 36.9\% | 0.558 |
| 4 | 1982 | 89 | 2.782 | 1.586 | 0.985 | 2.554 | 24.2\% | 0.375 |
| 4 | 1983 | 128 | 1.340 | 0.920 | 0.590 | 1.436 | 22.5\% | 0.203 |
| 4 | 1984 | 162 | 1.480 | 1.153 | 0.772 | 1.722 | 20.3\% | 0.228 |
| 4 | 1985 | 168 | 1.809 | 1.325 | 0.929 | 1.891 | 17.9\% | 0.232 |
| 4 | 1986 | 320 | 1.473 | 1.167 | 0.840 | 1.621 | 16.6\% | 0.189 |
| 4 | 1987 | 729 | 0.976 | 0.959 | 0.702 | 1.310 | 15.7\% | 0.147 |
| 4 | 1988 | 930 | 1.115 | 1.008 | 0.752 | 1.350 | 14.7\% | 0.145 |
| 4 | 1989 | 728 | 0.912 | 0.887 | 0.650 | 1.212 | 15.7\% | 0.136 |
| 4 | 1990 | 793 | 0.764 | 0.809 | 0.586 | 1.116 | 16.2\% | 0.128 |
| 4 | 1991 | 1219 | 0.651 | 0.898 | 0.663 | 1.218 | 15.3\% | 0.135 |
| 4 | 1992 | 1760 | 0.562 | 0.858 | 0.642 | 1.146 | 14.6\% | 0.122 |
| 4 | 1993 | 2006 | 0.488 | 0.769 | 0.573 | 1.033 | 14.8\% | 0.111 |
| 4 | 1994 | 2117 | 0.450 | 0.723 | 0.532 | 0.981 | 15.4\% | 0.109 |
| 4 | 1995 | 2195 | 0.425 | 0.764 | 0.567 | 1.028 | 15.0\% | 0.112 |
| 4 | 1996 | 2362 | 0.466 | 0.744 | 0.551 | 1.005 | 15.1\% | 0.110 |
| 4 | 1997 | 2492 | 0.649 | 0.942 | 0.705 | 1.257 | 14.5\% | 0.134 |
| 4 | 1998 | 2200 | 0.606 | 0.862 | 0.641 | 1.158 | 14.9\% | 0.125 |


| 4 | 1999 | 2024 | 0.706 | 1.061 | 0.800 | 1.407 | 14.2\% | 0.147 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 2000 | 2055 | 0.593 | 0.945 | 0.709 | 1.259 | 14.4\% | 0.13 |
| 4 | 2001 | 1387 | 0.455 | 1.075 | 0.809 | 1.427 | 14.3\% | 0.150 |
| 5 | 1981 | 36 | 3.199 | 2.264 | 1.129 | 4.542 | 35.9\% | 0.52 |
| 5 | 1982 | 89 | 3.618 | 2.194 | 1.364 | 3.530 | 24.1\% | 0.342 |
| 5 | 1983 | 128 | 1.513 | 1.060 | 0.653 | 1.720 | 24.6\% | 16 |
| 5 | 1984 | 162 | 1.329 | 1.114 | 0.709 | 1.750 | 22.9\% | 0.16 |
| 5 | 1985 | 168 | 1.805 | 1.320 | 0.866 | 2.010 | 21.3\% | 0.182 |
| 5 | 1986 | 320 | 1.154 | 1.029 | 0.695 | 1.525 | 19.8\% | 0.132 |
| 5 | 1987 | 729 | 0.828 | 0.834 | 0.582 | 1.196 | 18.2\% | 0.09 |
| 5 | 1988 | 930 | 0.881 | 0.782 | 0.554 | 1.105 | 17.4\% | 0.088 |
| 5 | 1989 | 728 | 0.794 | 0.745 | 0.517 | 1.074 | 18.4\% | 0.089 |
| 5 | 1990 | 793 | 0.633 | 0.702 | 0.480 | 1.027 | 19.2\% | 0.087 |
| 5 | 1991 | 1219 | 0.674 | 0.978 | 0.701 | 1.365 | 16.8\% | 0.10 |
| 5 | 1992 | 1760 | 0.476 | 0.807 | 0.578 | 1.127 | 16.8\% | 0.088 |
| 5 | 1993 | 2006 | 0.449 | 0.732 | 0.521 | 1.028 | 17.1\% | 0.0 |
| 5 | 1994 | 2117 | 0.377 | 0.635 | 0.444 | 0.909 | 18.1\% | 0.074 |
| 5 | 1995 | 2195 | 0.338 | 0.663 | 0.465 | 0.946 | 17.9\% | 0.07 |
| 5 | 1996 | 2362 | 0.410 | 0.595 | 0.412 | 0.858 | 18.5\% | 0.071 |
| 5 | 1997 | 2492 | 0.487 | 0.801 | 0.570 | 1.125 | 17.1\% | 0.089 |
| 5 | 1998 | 2200 | 0.466 | 0.756 | 0.535 | 1.069 | 17.4\% | 0.08 |
| 5 | 1999 | 2024 | 0.602 | 0.985 | 0.717 | 1.353 | 16.0\% | 0.102 |
| 5 | 2000 | 2055 | 0.576 | 0.981 | 0.716 | 1.344 | 15.8\% | 0.101 |
| 5 | 2001 | 1387 | 0.390 | 1.022 | 0.742 | 1.409 | 16.1\% | 0.107 |
| 6 | 1981 | 36 | 3.511 | 2.512 | 1.078 | 5.852 | 44.3\% | 0.479 |
| 6 | 1982 | 89 | 2.918 | 1.875 | 1.032 | 3.408 | 30.5\% | 0.247 |
| 6 | 1983 | 128 | 1.960 | 1.347 | 0.788 | 2.304 | 27.3\% | . 159 |
| 6 | 1984 | 162 | 1.689 | 1.404 | 0.879 | 2.244 | 23.8\% | 0.144 |
| 6 | 1985 | 168 | 1.603 | 1.216 | 0.760 | 1.945 | 23.8\% | 0.125 |
| 6 | 1986 | 320 | 0.966 | 0.925 | 0.573 | 1.495 | 24.3\% | 0.097 |
| 6 | 1987 | 729 | 0.897 | 0.893 | 0.596 | 1.338 | 20.4\% | 0.079 |
| 6 | 1988 | 930 | 0.881 | 0.729 | 0.481 | 1.107 | 21.1\% | 0.066 |
| 6 | 1989 | 728 | 0.791 | 0.758 | 0.497 | 1.155 | 21.3\% | 0.069 |
| 6 | 1990 | 793 | 0.711 | 0.751 | 0.490 | 1.150 | 21.5\% | 0.070 |
| 6 | 1991 | 1219 | 0.608 | 0.874 | 0.589 | 1.296 | 19.9\% | 0.075 |
| 6 | 1992 | 1760 | 0.464 | 0.823 | 0.565 | 1.200 | 19.0\% | 0.067 |
| 6 | 1993 | 2006 | 0.432 | 0.695 | 0.464 | 1.042 | 20.4\% | 0.061 |
| 6 | 1994 | 2117 | 0.327 | 0.610 | 0.399 | 0.933 | 21.4\% | . 056 |
| 6 | 1995 | 2195 | 0.353 | 0.643 | 0.425 | 0.975 | 21.0\% | 0.058 |
| 6 | 1996 | 2362 | 0.356 | 0.549 | 0.351 | 0.859 | 22.7\% | 0.054 |
| 6 | 1997 | 2492 | 0.429 | 0.712 | 0.474 | 1.072 | 20.6\% | 0.063 |
| 6 | 1998 | 2200 | 0.416 | 0.644 | 0.420 | 0.987 | 21.6\% | 0.060 |
| 6 | 1999 | 2024 | 0.724 | 1.061 | 0.746 | 1.509 | 17.7\% | 0.081 |
| 6 | 2000 | 2055 | 0.637 | 1.043 | 0.733 | 1.483 | 17.7\% | 0.080 |
| 6 | 2001 | 1387 | 0.326 | 0.934 | 0.642 | 1.361 | 19.0\% | 0.076 |
| 7 | 1981 | 36 | 3.666 | 2.813 | 1.151 | 6.873 | 47.0\% | 0.342 |
| 7 | 1982 | 89 | 3.280 | 2.283 | 1.153 | 4.522 | 35.2\% | 20 |
| 7 | 1983 | 128 | 2.579 | 1.783 | 1.005 | 3.165 | 29.3\% | 0.135 |
| 7 | 1984 | 162 | 1.592 | 1.369 | 0.772 | 2.429 | 29.2\% | 0.104 |
| 7 | 1985 | 168 | 1.638 | 1.283 | 0.724 | 2.274 | 29.2\% | 0.097 |
| 7 | 1986 | 320 | 0.763 | 0.696 | 0.356 | 1.358 | 34.4\% | 0.062 |
| 7 | 1987 | 729 | 0.783 | 0.795 | 0.467 | 1.353 | 27.1\% | 0.056 |
| 7 | 1988 | 930 | 0.733 | 0.649 | 0.375 | 1.122 | 27.9\% | 0.047 |
| 7 | 1989 | 728 | 0.780 | 0.722 | 0.423 | 1.234 | 27.3\% | 0.051 |
| 7 | 1990 | 793 | 0.596 | 0.630 | 0.353 | 1.125 | 29.6\% | 0.048 |
| 7 | 1991 | 1219 | 0.475 | 0.683 | 0.398 | 1.171 | 27.5\% | 0.048 |
| 7 | 1992 | 1760 | 0.415 | 0.721 | 0.435 | 1.197 | 25.7\% | 0.048 |
| 7 | 1993 | 2006 | 0.427 | 0.623 | 0.367 | 1.058 | 27.0\% | 0.043 |
| 7 | 1994 | 2117 | 0.337 | 0.641 | 0.381 | 1.080 | 26.5\% | 0.044 |
| 7 | 1995 | 2195 | 0.390 | 0.743 | 0.454 | 1.215 | 25.0\% | 0.048 |
| 7 | 1996 | 2362 | 0.365 | 0.480 | 0.263 | 0.877 | 30.8\% | 0.038 |
| 7 | 1997 | 2492 | 0.364 | 0.609 | 0.353 | 1.053 | 27.9\% | 0.044 |
| 7 | 1998 | 2200 | 0.400 | 0.547 | 0.306 | 0.979 | 29.7\% | 0.042 |
| 7 | 1999 | 2024 | 0.598 | 1.053 | 0.684 | 1.621 | 21.8\% | 0.059 |
| 7 | 2000 | 2055 | 0.503 | 0.936 | 0.595 | 1.474 | 23.0\% | 0.056 |
| 7 | 2001 | 1387 | 0.317 | 0.940 | 0.584 | 1.511 | 24.1\% | 0.059 |
| 8 | 1981 | 36 | 3.804 | 3.149 | 1.075 | 9.224 | 57.9\% | 0.286 |
| 8 | 1982 | 89 | 4.299 | 2.920 | 1.339 | 6.369 | 40.5\% | 0.186 |
| 8 | 1983 | 128 | 2.308 | 1.642 | 0.740 | 3.644 | 41.5\% | 0.107 |
| 8 | 1984 | 162 | 1.580 | 1.343 | 0.637 | 2.832 | 38.6\% | 0.081 |
| 8 | 1985 | 168 | 1.529 | 1.156 | 0.532 | 2.511 | 40.3\% | 0.073 |
| 8 | 1986 | 320 | 0.853 | 0.942 | 0.451 | 1.964 | 38.0\% | 0.056 |
| 8 | 1987 | 729 | 0.660 | 0.689 | 0.330 | 1.440 | 38.2\% | 0.041 |
| 8 | 1988 | 930 | 0.776 | 0.621 | 0.301 | 1.281 | 37.4\% | 0.036 |
| 8 | 1989 | 728 | 0.648 | 0.606 | 0.287 | 1.280 | 38.7\% | 0.037 |
| 8 | 1990 | 793 | 0.501 | 0.526 | 0.231 | 1.195 | 42.8\% | 0.035 |
| 8 | 1991 | 1219 | 0.475 | 0.686 | 0.344 | 1.368 | 35.6\% | 0.038 |
| 8 | 1992 | 1760 | 0.358 | 0.709 | 0.370 | 1.357 | 33.4\% | 0.037 |
| 8 | 1993 | 2006 | 0.333 | 0.550 | 0.268 | 1.126 | 37.1\% | 0.032 |
| 8 | 1994 | 2117 | 0.311 | 0.590 | 0.293 | 1.187 | 36.1\% | 0.033 |
| 8 | 1995 | 2195 | 0.367 | 0.660 | 0.339 | 1.284 | 34.2\% | 0.035 |
| 8 | 1996 | 2362 | 0.333 | 0.444 | 0.199 | 0.993 | 41.8\% | 0.029 |
| 8 | 1997 | 2492 | 0.340 | 0.545 | 0.259 | 1.144 | 38.4\% | 0.03 |


| 8 | 1998 | 2200 | 0.284 | 0.476 | 0.215 | 1.056 | $41.4 \%$ | 0.031 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 8 | 1999 | 2024 | 0.496 | 0.967 | 0.544 | 1.717 | $29.3 \%$ | 0.044 |
| 8 | 2000 | 2055 | 0.492 | 0.888 | 0.496 | 1.591 | $29.8 \%$ | 0.041 |
| 8 | 2001 | 1387 | 0.251 | 0.891 | 0.480 | 1.654 | $31.7 \%$ | 0.044 |
| 9 | 1981 | 36 | 4.993 | 4.400 | 1.233 | 15.694 | $70.6 \%$ | 0.318 |
| 9 | 1982 | 89 | 3.306 | 2.625 | 0.994 | 6.931 | $51.6 \%$ | 0.139 |
| 9 | 1983 | 128 | 2.893 | 2.186 | 0.934 | 5.117 | $44.5 \%$ | 0.100 |
| 9 | 1984 | 162 | 1.588 | 1.403 | 0.555 | 3.548 | $49.0 \%$ | 0.070 |
| 9 | 1985 | 168 | 1.138 | 0.832 | 0.258 | 2.685 | $64.0 \%$ | 0.054 |
| 9 | 1986 | 320 | 0.671 | 0.674 | 0.224 | 2.025 | $59.4 \%$ | 0.041 |
| 9 | 1987 | 729 | 0.713 | 0.708 | 0.286 | 1.749 | $47.7 \%$ | 0.035 |
| 9 | 1988 | 930 | 0.772 | 0.664 | 0.279 | 1.581 | $45.5 \%$ | 0.031 |
| 9 | 1989 | 728 | 0.671 | 0.580 | 0.221 | 1.525 | $51.3 \%$ | 0.030 |
| 9 | 1990 | 793 | 0.450 | 0.451 | 0.150 | 1.357 | $59.5 \%$ | 0.027 |
| 9 | 1991 | 1219 | 0.437 | 0.589 | 0.233 | 1.487 | $48.9 \%$ | 0.029 |
| 9 | 1992 | 1760 | 0.466 | 0.634 | 0.267 | 1.507 | $45.4 \%$ | 0.029 |
| 9 | 1993 | 2006 | 0.281 | 0.427 | 0.152 | 1.199 | $55.3 \%$ | 0.024 |
| 9 | 1994 | 2117 | 0.239 | 0.546 | 0.219 | 1.364 | $48.3 \%$ | 0.027 |
| 9 | 1995 | 2195 | 0.286 | 0.535 | 0.209 | 1.365 | $49.5 \%$ | 0.027 |
| 9 | 1996 | 2362 | 0.288 | 0.419 | 0.148 | 1.183 | $55.6 \%$ | 0.024 |
| 9 | 1997 | 2492 | 0.346 | 0.478 | 0.177 | 1.294 | $53.0 \%$ | 0.026 |
| 9 | 1998 | 2200 | 0.249 | 0.364 | 0.116 | 1.142 | $62.2 \%$ | 0.023 |
| 9 | 1999 | 2024 | 0.394 | 0.802 | 0.365 | 1.765 | $41.0 \%$ | 0.034 |
| 9 | 2000 | 2055 | 0.545 | 0.903 | 0.434 | 1.877 | $37.8 \%$ | 0.035 |
| 9 | 2001 | 1387 | 0.275 | 0.781 | 0.338 | 1.803 | $43.7 \%$ | 0.035 |
| 10 | 1981 | 36 | 5.424 | 4.549 | 1.886 | 10.973 | $46.3 \%$ | 0.370 |
| 10 | 1982 | 89 | 3.322 | 2.871 | 1.347 | 6.116 | $39.2 \%$ | 0.198 |
| 10 | 1983 | 128 | 2.865 | 1.955 | 0.970 | 3.938 | $36.1 \%$ | 0.124 |
| 10 | 1984 | 162 | 1.390 | 1.239 | 0.591 | 2.597 | $38.3 \%$ | 0.083 |
| 10 | 1985 | 168 | 1.473 | 1.185 | 0.557 | 2.521 | $39.1 \%$ | 0.081 |
| 10 | 1986 | 320 | 0.776 | 0.819 | 0.383 | 1.747 | $39.3 \%$ | 0.057 |
| 10 | 1987 | 729 | 0.707 | 0.749 | 0.384 | 1.462 | $34.4 \%$ | 0.045 |
| 10 | 1988 | 930 | 0.735 | 0.690 | 0.358 | 1.331 | $33.7 \%$ | 0.041 |
| 10 | 1989 | 728 | 0.714 | 0.636 | 0.315 | 1.285 | $36.3 \%$ | 0.041 |
| 10 | 1990 | 793 | 0.567 | 0.597 | 0.287 | 1.240 | $37.8 \%$ | 0.040 |
| 10 | 1991 | 1219 | 0.470 | 0.677 | 0.346 | 1.324 | $34.5 \%$ | 0.041 |
| 10 | 1992 | 1760 | 0.315 | 0.568 | 0.282 | 1.142 | $36.0 \%$ | 0.036 |
| 10 | 1993 | 2006 | 0.261 | 0.470 | 0.225 | 0.981 | $38.0 \%$ | 0.031 |
| 10 | 1994 | 2117 | 0.257 | 0.518 | 0.252 | 1.067 | $37.3 \%$ | 0.034 |
| 10 | 1995 | 2195 | 0.233 | 0.555 | 0.278 | 1.108 | $35.6 \%$ | 0.035 |
| 10 | 1996 | 2362 | 0.244 | 0.375 | 0.163 | 0.862 | $43.5 \%$ | 0.029 |
| 10 | 1997 | 2492 | 0.240 | 0.363 | 0.152 | 0.865 | $45.5 \%$ | 0.029 |
| 10 | 1998 | 2200 | 0.225 | 0.322 | 0.128 | 0.812 | $48.8 \%$ | 0.028 |
| 10 | 1999 | 2024 | 0.298 | 0.630 | 0.321 | 1.234 | $34.6 \%$ | 0.038 |
| 10 | 2000 | 2055 | 0.312 | 0.692 | 0.366 | 1.307 | $32.7 \%$ | 0.040 |
| 10 | 2001 | 1387 | 0.171 | 0.541 | 0.253 | 1.159 | $39.5 \%$ | 0.038 |
|  |  |  |  |  |  |  |  |  |

Table 11. Nominal and standard swordfish CPUE combined sex and age groups (Age0-2) from the weight-out data (fish/1000 hooks).

| Year | Numb <br> obs | Nominal <br> CPUE | Standard <br> CPUE | Low CI <br> 95\% | Upp CI <br> 95\% | Coeff <br> Var | Std <br> Error |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1981 | 36 | 30.11 | 17.37 | 11.74 | 25.68 | $19.8 \%$ | 3.431 |
| 1982 | 89 | 27.21 | 10.03 | 7.01 | 14.37 | $18.1 \%$ | 1.817 |
| 1983 | 128 | 23.16 | 12.46 | 9.45 | 16.43 | $13.9 \%$ | 1.731 |
| 1984 | 162 | 17.24 | 13.23 | 10.26 | 17.07 | $12.8 \%$ | 1.691 |
| 1985 | 168 | 17.35 | 14.48 | 11.46 | 18.29 | $11.7 \%$ | 1.698 |
| 1986 | 320 | 22.82 | 18.57 | 14.94 | 23.09 | $10.9 \%$ | 2.028 |
| 1987 | 729 | 20.14 | 16.40 | 13.31 | 20.21 | $10.5 \%$ | 1.719 |
| 1988 | 930 | 21.80 | 18.14 | 14.71 | 22.36 | $10.5 \%$ | 1.904 |
| 1989 | 728 | 18.18 | 16.68 | 13.54 | 20.56 | $10.5 \%$ | 1.748 |
| 1990 | 793 | 16.86 | 13.71 | 11.15 | 16.86 | $10.4 \%$ | 1.423 |

Table 12. Nominal and standard swordfish CPUE combined sex and age groups (Age3$10+$ ) from the weight-out data (fish/1000 hooks).

| Year | Numb <br> obs | Nominal <br> CPUE | Standard <br> CPUE | Low CI <br> 95\% | Upp CI <br> 95\% | Coeff <br> Var | Std <br> Error |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1981 | 36 | 19.26 | 10.19 | 6.85 | 15.15 | 0.201 | 2.043 |
| 1982 | 89 | 17.68 | 8.76 | 6.40 | 11.98 | 0.157 | 1.379 |
| 1983 | 128 | 8.60 | 4.35 | 3.32 | 5.70 | 0.136 | 0.592 |
| 1984 | 162 | 8.04 | 4.07 | 3.16 | 5.25 | 0.128 | 0.520 |


| 1985 | 168 | 9.83 | 4.26 | 3.37 | 5.39 | 0.118 | 0.503 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 1986 | 320 | 6.54 | 3.02 | 2.43 | 3.76 | 0.110 | 0.332 |
| 1987 | 729 | 4.99 | 2.93 | 2.40 | 3.58 | 0.100 | 0.294 |
| 1988 | 930 | 5.12 | 2.85 | 2.34 | 3.47 | 0.099 | 0.281 |
| 1989 | 728 | 4.90 | 2.73 | 2.24 | 3.33 | 0.099 | 0.271 |
| 1990 | 793 | 3.89 | 2.67 | 2.19 | 3.26 | 0.100 | 0.266 |
| 1991 | 1219 | 3.73 | 3.28 | 2.71 | 3.97 | 0.096 | 0.316 |
| 1992 | 1760 | 2.88 | 2.78 | 2.31 | 3.34 | 0.092 | 0.257 |
| 1993 | 2006 | 2.75 | 2.63 | 2.19 | 3.16 | 0.092 | 0.243 |
| 1994 | 2117 | 2.47 | 2.30 | 1.91 | 2.78 | 0.093 | 0.215 |
| 1995 | 2195 | 2.39 | 2.40 | 1.99 | 2.88 | 0.093 | 0.222 |
| 1996 | 1632 | 2.47 | 2.10 | 1.74 | 2.54 | 0.094 | 0.199 |
| 1997 | 1732 | 2.81 | 2.65 | 2.20 | 3.20 | 0.093 | 0.248 |
| 1998 | 1452 | 2.53 | 2.66 | 2.20 | 3.21 | 0.095 | 0.251 |
| 1999 | 1317 | 2.90 | 3.31 | 2.74 | 3.99 | 0.095 | 0.313 |
| 2000 | 1470 | 2.53 | 3.50 | 2.90 | 4.23 | 0.095 | 0.333 |

Table 13. Nominal and standard swordfish biomass CPUE (lbs dressed wgt/ thousand hooks) from the weight-out data (fish/1000 hooks).

| Year N ObsNominal <br> CPUE | Standard | Low | Upp | Coeff <br> var | std <br> error |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1982 | 106 | 3525.8 | 1622.3 | 1207.5 | 2179.5 | $14.8 \%$ | 240.8 |
| 1983 | 153 | 2167.3 | 1203.2 | 917.8 | 1577.5 | $13.6 \%$ | 163.7 |
| 1984 | 176 | 1901.3 | 1099.0 | 842.1 | 1434.2 | $13.4 \%$ | 146.9 |
| 1985 | 178 | 2249.6 | 1234.9 | 959.4 | 1589.5 | $12.7 \%$ | 156.5 |
| 1986 | 324 | 1560.3 | 1013.0 | 799.3 | 1283.9 | $11.9 \%$ | 120.4 |
| 1987 | 740 | 1298.0 | 820.7 | 655.3 | 1027.8 | $11.3 \%$ | 92.6 |
| 1988 | 944 | 1380.4 | 816.8 | 653.4 | 1021.0 | $11.2 \%$ | 91.4 |
| 1989 | 745 | 1197.8 | 748.5 | 598.7 | 935.9 | $11.2 \%$ | 83.9 |
| 1990 | 805 | 1066.1 | 730.5 | 584.8 | 912.6 | $11.2 \%$ | 81.5 |
| 1991 | 1223 | 897.6 | 716.1 | 575.0 | 891.7 | $11.0 \%$ | 78.8 |
| 1992 | 1768 | 719.9 | 661.9 | 533.5 | 821.3 | $10.8 \%$ | 71.6 |
| 1993 | 2014 | 669.8 | 575.0 | 463.8 | 712.9 | $10.8 \%$ | 62.0 |
| 1994 | 2126 | 637.6 | 546.6 | 440.6 | 678.0 | $10.8 \%$ | 59.0 |
| 1995 | 2252 | 612.1 | 564.9 | 455.5 | 700.6 | $10.8 \%$ | 61.0 |
| 1996 | 286 | 630.9 | 508.0 | 402.3 | 641.5 | $11.7 \%$ | 59.4 |
| 1997 | 325 | 775.7 | 545.7 | 432.8 | 688.2 | $11.6 \%$ | 63.5 |
| 1998 | 182 | 753.4 | 573.0 | 445.2 | 737.5 | $12.7 \%$ | 72.6 |
| 1999 | 210 | 1074.3 | 801.9 | 629.7 | 1021.2 | $12.1 \%$ | 97.3 |
| 2000 | 173 | 775.1 | 611.6 | 472.9 | 791.0 | $12.9 \%$ | 79.0 |
| 2001 | 141 | 533.3 | 540.9 | 417.7 | 700.6 | $13.0 \%$ | 70.3 |

Table 14. Deviance analysis table of explanatory variables in the delta lognormal model for catch (landings and discards) of swordfish (fish/ thousand hooks) from the Pelagic Logbooks fishery.

Swordfish Logbook Catch (Numbers of fish)
$\left.\begin{array}{llrrr}\hline & \text { Model factors positive catch rates values } & \begin{array}{c}\text { Residual } \\ \text { deviance }\end{array} & \begin{array}{c}\text { Change in } \\ \text { deviance }\end{array} & \begin{array}{c}\text { \% of total } \\ \text { deviance }\end{array} \\ \hline & \boldsymbol{p}\end{array}\right]$

| Model factors proportion positives | d.f. | Residual deviance | Change in deviance | \% of total deviance | $p$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 85180.689 |  |  |  |
| Year | 14 | 79196.577 | 5984.11 | 9\% | < 0.001 |
| Year Area | 8 | 45597.167 | 33599.41 | 48\% | $<0.001$ |
| Year Area Season | 3 | 42824.359 | 2772.81 | 4\% | < 0.001 |
| Year Area Season Op | 6 | 38332.812 | 4491.55 | 6\% | < 0.001 |
| Year Area Season Op Lghtc | 3 | 16039.365 | 22293.45 | 32\% | < 0.001 |
| Year Area Season Op Lghtc Mngarea2 | 1 | 15976.598 | 62.77 | 0\% | < 0.001 |
| Year Area Season Op Lghtc Mngarea2 Year*Mngarea2 | 14 | 15932.115 | 44.48 | 0\% | < 0.001 |
| Year Area Season Op Lghtc Mngarea2 Year*Season | 42 | 15646.871 | 329.73 | 0\% | $<0.001$ |
| Year Area Season Op Lghtc Mngarea2 Year*Lghtc | 42 | 15246.011 | 730.59 | 1\% | $<0.001$ |
| Year Area Season Op Lghtc Mngarea2 Year*Op | 84 | 15164.205 | 812.39 | 1\% | < 0.001 |
| Year Area Season Op Lghtc Mngarea2 Year*Area | 112 | 15140.711 | 835.89 | 1\% | < 0.001 |

Table 15. Analysis of mixed model formulations for swordfish catch rates (Logbook all catch) from the US Pelagic Longline fishery. Likelihood ratio tests the difference of -2 REM log likelihood between two nested models. * indicates the final delta mixed model.

| Swordfish (> 33 lbs dressed wgt) GLMixed Model | Num obs | -2 REM Log likelihood | Akaike's Information Criterion | Schwartz's <br> Bayesian Criterion | Likelihood Ratio Test |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Proportion Positives |  |  |  |  |  |  |
| Year Area OP Lgthc Season | 6552 | 30351.8 | 30353.8 | 30360.6 |  |  |
| Year Area OP Lgthc Season Year*Area | 6552 | 30267.6 | 30271.6 | 30277.4 | 84.2 | 0.0000 |
| Year Area OP Lgthc Season Year*Area Year*OP | 6552 | 30073.4 | 30079.4 | 30088.1 | 194.2 | 0.0000 |
| Year Area OP Lgthc Season Year*Area Year*OP Year*Lghtc | 6552 | 29937.1 | 29945.1 | 29956.7 | 136.3 | 0.0000 |
|  | Num obs | $\qquad$ | Akaike's Information Criterion | Schwartz's <br> Bayesian <br> Criterion | Likelihood Ratio Test |  |
| Positives catch rates |  |  |  |  |  |  |
| Year Area OP Lghtc | 156208 | 381107.5 | 381109.5 | 381119.4 |  |  |
| Year Area OP Lghtc Year*Area | 156208 | 377278.8 | 377282.8 | 377288.6 | 3828.7 | 0.0000 |
| Year Area OP Lghtc Year*Area Year*OP | 156208 | 376361.7 | 376367.7 | 376376.5 | 917.1 | 0.0000 |
| Year Area OP Lghtc Year*Area Year*OP Year*Lghtc | 156208 | 375510.4 | 375518.4 | 375530 | 851.3 | 0.0000 |

Table 16. Nominal and standard swordfish CPUE index from the Logbook data (fish/1000 hooks).

| Year | Nominal CPUE | Standard CPUE | Coeff Var | Std Error | Numb obs | Index | $\begin{aligned} & \text { Upp CI } \\ & 95 \% \end{aligned}$ | $\begin{aligned} & \text { OW CI } \\ & 95 \% \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1987 | 24.72 | 21.86 | 0.129 | 2.811 | 10835 | 1.33 | 1.20 | 0.72 |
| 1988 | 30.38 | 23.58 | 0.128 | 3.011 | 10437 | 1.43 | 1.29 | 0.78 |
| 1989 | 28.27 | 22.76 | 0.127 | 2.880 | 14078 | 1.38 | 1.24 | 0.75 |
| 1990 | 24.39 | 19.80 | 0.127 | 2.511 | 13940 | 1.20 | 1.08 | 0.65 |
| 1991 | 20.20 | 18.71 | 0.127 | 2.373 | 13599 | 1.14 | 1.02 | 0.62 |
| 1992 | 16.19 | 14.57 | 0.127 | 1.846 | 13757 | 0.89 | 0.80 | 0.48 |
| 1993 | 16.21 | 13.25 | 0.127 | 1.683 | 13550 | 0.80 | 0.72 | 0.44 |
| 1994 | 17.30 | 13.13 | 0.127 | 1.673 | 13982 | 0.80 | 0.72 | 0.43 |
| 1995 | 13.92 | 12.44 | 0.127 | 1.579 | 14866 | 0.76 | 0.68 | 0.41 |
| 1996 | 12.83 | 11.37 | 0.128 | 1.451 | 15346 | 0.69 | 0.62 | 0.37 |
| 1997 | 12.04 | 13.16 | 0.127 | 1.676 | 14321 | 0.80 | 0.72 | 0.43 |
| 1998 | 15.67 | 16.97 | 0.126 | 2.142 | 11593 | 1.03 | 0.93 | 0.56 |
| 1999 | 14.89 | 18.39 | 0.127 | 2.331 | 11242 | 1.12 | 1.00 | 0.61 |
| 2000 | 12.41 | 13.61 | 0.128 | 1.744 | 11195 | 0.83 | 0.75 | 0.45 |
| 2001 | 9.45 | 13.33 | 0.129 | 1.719 | 10333 | 0.81 | 0.73 | 0.44 |



Figure 1. Geographic area classification for the US Pelagic longline fishery: CAR Caribbean, GOM Gulf of Mexico, FEC Florida east coast, SAB south Atlantic bight, MAB mid Atlantic bight, NEC north east coastal, NED north east distant waters, SNA Sargasso area, and OFS offshore waters. Shaded areas represent the current time-area closures affecting the pelagic longline fisheries. Permanent closures: the DeSoto area in the Gulf of Mexico, and the Florida east coast area. Time-area closures: the Charleston Bump in the SAB area closed Feb-Apr, the Bluefin tuna protected area in the MAB and NEC areas closed Jun, and the Grand Banks in the NED area closed from Oct 10/00 to Apr 9/01.


Figure 2 Geographic distribution of fishing effort (total number of hooks) [shade areas], and mean catch rates (numbers of fish/1000 hooks) [start symbols] of swordfish by $1^{\circ}$ squared degree from the Weight-out data for the periods of 1996-1999 (left) and 2000-2001 (right). The plotted data represents mean lat-lon for trips for which latitude longitude information was available at the set level on the Pelagic Logbook data.


Figure 3 Swordfish frequency distributions of positive catch trips ( $\lg$ CPUE) by sex and age (top row), combined sex and ages biomass for fish $>=33 \mathrm{lbs}$ (middle left), and combined sex age $3-10+$ group (middle right) from the weight out data. Bottom row show the frequency distribution of positive sets all catch (landings and discards) from the Logbook data for swordfish.







Figure 4 Nominal (circles) and standard CPUE for swordfish by age-sex (males) from the US Pelagic longline fishery 19812001. Bars represent upper and lower estimated $95 \%$ confidence intervals for the scaled CPUE value.











Swordfish Females Age 5


Figure 5 Nominal (circles) and standard CPUE for swordfish by age-sex (Females) from the US Pelagic longline fishery 1981-2001. Bars represent upper and lower estimated $95 \%$ confidence intervals for the scaled CPUE value.


Figure 6 Nominal and standard swordfish CPUE for combined sex and age groups (0-2 top panel, 3-10+ bottom panel) from the US Pelagic Longline fishery.


Figure 7 Nominal and standard biomass CPUE for swordfish (greater than 33 lbs) from the US Pelagic Longline fishery. Bars represent upper and lower 95\% confidence intervals


Figure 8 .Nominal and standard CPUE for all catch swordfish (fish/thousand hooks) from the Logbook Pelagic longline fishery 1987-2001. Bars represent upper and lower $95 \%$ confidence intervals for the scaled CPUE.


Figure 9 Diagnostic plots: Cumulative normalized residual plots (qq-plot) for the positive observations delta lognormal model fit to swordfish weight-out data by sex and age (top row), fit to the biomass index (fish >= 33 lbs ) (middle left), fit to the combined sex-age 3-10+ group (middle right), and fit to the swordfish all catch (landings and discards) from the pelagic Logbook data.


[^0]:    ${ }^{1}$ U.S. Department of Commerce National Marine Fisheries Service, Southeast Fisheries Science Center Sustainable Fisheries Division 75 Virginia Beach Drive. Miami, Florida 33149 U.S.A. Contribution SFD-02/03-176. email: Mauricio.ortiz@noaa.gov.

