APPENDIX A. ATSDR MINIMAL RISK LEVELS AND WORKSHEETS

MINIMAL RISK LEVEL (MRL) WORKSHEET

Chemical Name:	Propylene glycol
CAS Numbers:	57-55-6
Date:	December 1995
Profile Status:	Third Draft Post Public Comment
Route:	[X] Inhalation [] Oral
Duration:	[] Acute [X] Intermediate [] Chronic
Graph Key:	1
Species:	Rat

Minimal Risk Level: 0.009 [] mg/kg/day [X] ppm

Reference: Suber et al. 1989

Experimental design: Young, healthy adult Sprague-Dawley rats were divided into 4 groups of 19 males and 19 females each. Three groups were exposed for 5 days per week, 6 hours per day for 13 weeks by nose-only inhalation to mean target aerosol concentrations of 51, 321, or 707 ppm propylene glycol. The fourth, the control group, was exposed to humidified, filtered room air. Nasal hemorrhaging occurred in all exposed groups of male and female rats indicating that propylene glycol can act as a dehydrogenating agent. From week 2-14, the average of nasal hemorrhaging in male rats was <1%, 64%, 74%, and 75% in controls, low-exposure, medium-exposure, and high-exposure groups, respectively. In females, the average indices were < 1% in controls, 14% in the low-exposure group, and 71% in the medium and highexposure groups. Animals recovered during non-exposure weekend periods. Similar trends were observed for ocular discharge, with females having generally less ocular discharge than males. A significant reduction in body weight of 5-7% starting on day 50 and continuing until the end of the study was observed in female rats receiving the highest dose of 707 ppm propylene glycol. Similar observation was made in the group receiving 321 ppm of propylene glycol but later in the study starting on day 64. This body weight reduction was correlated with a significant reduction in food consumption beginning on study day 43 and 50 for the high- and medium-exposure females, respectively. Female rats exposed to 321 ppm propylene glycol had a significant decrease in white blood cell count and lymphocyte numbers. Female rats exposed to 707 ppm propylene glycol had a significant decrease in hemoglobin concentration, white blood cell count and lymphocyte numbers. Male rats in the medium (321 ppm) and high (707 ppm) groups had a significant decrease in serum sorbitol dehydrogenase and gamma-glutamyl transferase. A significant decrease in total serum protein was observed in male rats treated with high (707 ppm) dose of propylene glycol while females treated with a medium (321 ppm) dose of propylene glycol had an increase in total serum protein. These changes were considered as being sporadic. Kidney weight was decreased at 321 ppm in both sexes. Although there were no treatment-related gross pathology changes, light microscopy revealed thickening of respiratory epithelium with increase in the number of goblet cells and their mucin content in both female and male animals receiving medium and high propylene glycol dose. Minute volume, tidal volume, and respiratory rates were not significantly altered in rats exposed to 51, 321, or 707 ppm propylene glycol for 13 weeks, suggesting that animals adapted to the exposure concentrations.

Effects noted in study and corresponding doses: Nasal hemorrhaging was observed in all PG-treated groups:

51 ppm PG = low dose (64% in males, 14% in females; less serious LOAEL)

321 ppm PG = mid dose (74% in males, 71% in females)

707 ppm PG = high dose (75% in males, 71% in females)

Dose and end point used for MRL derivation:

[] NOAEL [X] LOAEL

Uncertainty Factors used in MRL derivation:

- [] 1 [] 3 [X] 10 (for use of a LOAEL)
- [] 1 [] 3 [X] 10 (for extrapolation from animals to humans)

[] 1 [] 3 [X] (10 for human variability)

Was a conversion factor used from ppm in food or water to a mg/body weight dose? If so, explain: No conversion was used.

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Doses were converted from mg/L to ppm:

 $0.16 \text{ mg/L x } 1,000 = 160 \text{ mg/m}^3 \text{ x } 24.45/76.09 \text{ (MW PG)} = 51.4 \text{ ppm}$

1.0 mg/L = 321.3 ppm

2.2 mg/L = 706.9 ppm

Was a conversion used from intermittent to continuous exposure?

If so, explain: Animals were exposed for 6 hours per day, 5 days per week. Since the effect (nasal hemorrhaging) subsided when exposure was discontinued during the weekend periods, it seemed relevant to adjust the exposure period not only to a continuous 24 hour, but also to a 7-day exposure. Therefore conversion factors of 6/24 and 5/7 were used: 51 ppm x 6/24 x 5/7 = 9 ppm

<u>Other additional studies or pertinent information that lend support to this MRL</u>: This was the only suitable intermediate-duration inhalation exposure study available

Agency Contacts (Chemical Managers): Ed Murray

APPENDIX B. USER'S GUIDE

Chapter 1

Public Health Statement

This chapter of the profile is a health effects summary written in non-technical language. Its intended audience is the general public, especially people living in the vicinity of a hazardous waste site or chemical release. If the Public Health Statement were removed from the rest of the document, it would still communicate to the lay public essential information about the chemical.

The major headings in the Public Health Statement are useful to find specific topics of concern. The topics are written in a question and answer format. The answer to each question includes a sentence that will direct the reader to chapters in the profile that will provide more information on the given topic.

Chapter 2

Relevance to Public Health

This chapter provides a health effects summary based on evaluations of existing toxicologic, epidemiologic, and toxicokinetic information. This summary is designed to present interpretive, weight-of-evidence discussions for human health end points by addressing the following questions:

- 1. What effects are known to occur in humans?
- 2. What effects observed in animals are likely to be of concern to humans?
- 3. What exposure conditions are likely to be of concern to humans, especially around hazardous waste sites?

The chapter covers end points in the same order that they appear within the Discussion of Health Effects by Route of Exposure section, by route (inhalation, oral, and dermal) and within route by effect. Human data are presented first, then animal data. Both are organized by duration (acute, intermediate, chronic). *In vitro* data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also considered in this chapter.

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using existing toxicokinetic, genotoxic, and carcinogenic data. ATSDR does not currently assess cancer potency or perform cancer risk assessments. Minimal Risk Levels (MRLs) for noncancer end points (if derived) and the end points from which they were derived are indicated and discussed.

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public health are identified in the Chapter 3 Data Needs section.

Interpretation of Minimal Risk Levels

Where sufficient toxicologic information is available, ATSDR has derived MRLs for inhalation and oral routes of entry at each duration of exposure (acute, intermediate, and chronic). These MRLs are not meant to support regulatory action, but to acquaint health professionals with exposure levels at which adverse health effects are not expected to occur in humans.

MRLs should help physicians and public health officials determine the safety of a community living near a chemical emission, given the concentration of a contaminant in air or the estimated daily dose in water. MRLs are based largely on toxicological studies in animals and on reports of human occupational exposure.

MRL users should be familiar with the toxicologic information on which the number is based. Chapter 2, "Relevance to Public Health," contains basic information known about the substance. Other sections such as Chapter 3 Section 3.9, "Interactions with Other Substances," and Section 3.10, "Populations that are Unusually Susceptible" provide important supplemental information.

MRL users should also understand the MRL derivation methodology. MRLs are derived using a modified version of the risk assessment methodology that the Environmental Protection Agency (EPA) provides (Barnes and Dourson 1988) to determine reference doses (RfDs) for lifetime exposure.

To derive an MRL, ATSDR generally selects the most sensitive end point which, in its best judgement, represents the most sensitive human health effect for a given exposure route and duration. ATSDR cannot make this judgement or derive an MRL unless information (quantitative or qualitative) is available for all potential systemic, neurological, and developmental effects. If this information and reliable quantitative data on the chosen end point are available, ATSDR derives an MRL using the most sensitive species (when information from multiple species is available) with the highest no-observed-adverse-effect level (NOAEL) that does not exceed any adverse effect levels. When a NOAEL is not available, a lowest-observed-adverse-effect level (LOAEL) can be used to derive an MRL, and an uncertainty factor (UF) of 10 must be employed. Additional uncertainty factors of 10 must be used both for human variability to protect sensitive subpopulations (people who are most susceptible to the health effects caused by the substance) and for interspecies variability (extrapolation from animals to humans). In deriving an MRL, these individual uncertainty factors are multiplied together. The product is then divided into the inhalation concentration or oral dosage selected from the study. Uncertainty factors used in developing a substance-specific MRL are provided in the footnotes of the levels of significant exposure (LSE) tables.

Chapter 3

Health Effects

Tables and Figures for Levels of Significant Exposure (LSE)

Tables and figures are used to summarize health effects and illustrate graphically levels of exposure associated with those effects. These levels cover health effects observed at increasing dose concentrations and durations, differences in response by species, MRLs to humans for noncancer end points, and EPA's estimated range associated with an upper- bound individual lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. Use the LSE tables and figures for a quick review of the health effects and to locate data for a specific exposure scenario. The LSE tables and figures should always be used in conjunction with the text. All entries in these tables and figures represent studies that provide reliable, quantitative estimates of NOAELs, LOAELs, or Cancer Effect Levels (CELs).

The legends presented below demonstrate the application of these tables and figures. Representative examples of LSE Table 3-1 and Figure 3-1 are shown. The numbers in the left column of the legends correspond to the numbers in the example table and figure.

LEGEND

See Sample LSE Table 3-1 (page B-6)

- (1) <u>Route of Exposure</u>. One of the first considerations when reviewing the toxicity of a substance using these tables and figures should be the relevant and appropriate route of exposure. Typically when sufficient data exist, three LSE tables and two LSE figures are presented in the document. The three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, and dermal (LSE Tables 3-1, 3-2, and 3-3, respectively). LSE figures are limited to the inhalation (LSE Figure 3-1) and oral (LSE Figure 3-2) routes. Not all substances will have data on each route of exposure and will not, therefore, have all five of the tables and figures.
- (2) <u>Exposure Period</u>. Three exposure periods—acute (less than 15 days), intermediate (15–364 days), and chronic (365 days or more)—are presented within each relevant route of exposure. In this example, an inhalation study of intermediate exposure duration is reported. For quick reference to health effects occurring from a known length of exposure, locate the applicable exposure period within the LSE table and figure.
- (3) <u>Health Effect</u>. The major categories of health effects included in LSE tables and figures are death, systemic, immunological, neurological, developmental, reproductive, and cancer. NOAELs and LOAELs can be reported in the tables and figures for all effects but cancer. Systemic effects are further defined in the "System" column of the LSE table (see key number 18).
- (4) <u>Key to Figure</u>. Each key number in the LSE table links study information to one or more data points using the same key number in the corresponding LSE figure. In this example, the study represented by key number 18 has been used to derive a NOAEL and a Less Serious LOAEL (also see the two "18r" data points in sample Figure 3-1).
- (5) <u>Species</u>. The test species, whether animal or human, are identified in this column. Chapter 2, "Relevance to Public Health," covers the relevance of animal data to human toxicity and Section 3.4, "Toxicokinetics," contains any available information on comparative toxicokinetics. Although NOAELs and LOAELs are species specific, the levels are extrapolated to equivalent human doses to derive an MRL.
- (6) <u>Exposure Frequency/Duration</u>. The duration of the study and the weekly and daily exposure regimens are provided in this column. This permits comparison of NOAELs and LOAELs from different studies. In this case (key number 18), rats were exposed to "Chemical x" via inhalation for 6 hours/day, 5 days/week, for 13 weeks. For a more complete review of the dosing regimen, refer to the appropriate sections of the text or the original reference paper (i.e., Nitschke et al. 1981).
- (7) <u>System</u>. This column further defines the systemic effects. These systems include respiratory, cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and dermal/ocular. "Other" refers to any systemic effect (e.g., a decrease in body weight) not covered in these systems. In the example of key number 18, one systemic effect (respiratory) was investigated.
- (8) <u>NOAEL</u>. A NOAEL is the highest exposure level at which no harmful effects were seen in the organ system studied. Key number 18 reports a NOAEL of 3 ppm for the respiratory system, which was used to derive an intermediate exposure, inhalation MRL of 0.005 ppm (see footnote "b").

- (9) LOAEL. A LOAEL is the lowest dose used in the study that caused a harmful health effect. LOAELs have been classified into "Less Serious" and "Serious" effects. These distinctions help readers identify the levels of exposure at which adverse health effects first appear and the gradation of effects with increasing dose. A brief description of the specific end point used to quantify the adverse effect accompanies the LOAEL. The respiratory effect reported in key number 18 (hyperplasia) is a Less Serious LOAEL of 10 ppm. MRLs are not derived from Serious LOAELs.
- (10) <u>Reference</u>. The complete reference citation is given in Chapter 9 of the profile.
- (11) <u>CEL</u>. A CEL is the lowest exposure level associated with the onset of carcinogenesis in experimental or epidemiologic studies. CELs are always considered serious effects. The LSE tables and figures do not contain NOAELs for cancer, but the text may report doses not causing measurable cancer increases.
- (12) <u>Footnotes</u>. Explanations of abbreviations or reference notes for data in the LSE tables are found in the footnotes. Footnote "b" indicates that the NOAEL of 3 ppm in key number 18 was used to derive an MRL of 0.005 ppm.

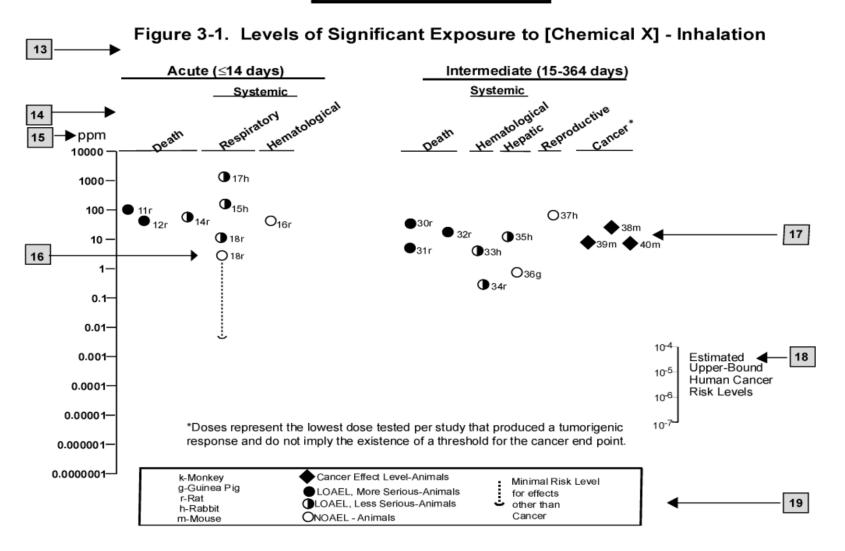
LEGEND

See Sample Figure 3-1 (page B-7)

LSE figures graphically illustrate the data presented in the corresponding LSE tables. Figures help the reader quickly compare health effects according to exposure concentrations for particular exposure periods.

- (13) <u>Exposure Period</u>. The same exposure periods appear as in the LSE table. In this example, health effects observed within the acute and intermediate exposure periods are illustrated.
- (14) <u>Health Effect</u>. These are the categories of health effects for which reliable quantitative data exists. The same health effects appear in the LSE table.
- (15) <u>Levels of Exposure</u>. Concentrations or doses for each health effect in the LSE tables are graphically displayed in the LSE figures. Exposure concentration or dose is measured on the log scale "y" axis. Inhalation exposure is reported in mg/m³ or ppm and oral exposure is reported in mg/kg/day.
- (16) <u>NOAEL</u>. In this example, the open circle designated 18r identifies a NOAEL critical end point in the rat upon which an intermediate inhalation exposure MRL is based. The key number 18 corresponds to the entry in the LSE table. The dashed descending arrow indicates the extrapolation from the exposure level of 3 ppm (see entry 18 in the table) to the MRL of 0.005 ppm (see footnote "b" in the LSE table).
- (17) <u>CEL</u>. Key number 38m is one of three studies for which CELs were derived. The diamond symbol refers to a CEL for the test species-mouse. The number 38 corresponds to the entry in the LSE table.

- (18) <u>Estimated Upper-Bound Human Cancer Risk Levels</u>. This is the range associated with the upperbound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. These risk levels are derived from the EPA's Human Health Assessment Group's upper-bound estimates of the slope of the cancer dose response curve at low dose levels (q_1^*) .
- (19) <u>Key to LSE Figure</u>. The Key explains the abbreviations and symbols used in the figure.


1 →	\rightarrow Table 3-1. Levels of Significant Exposure to [Chemical x] – Inhalation								
			Exposure	System		LOAEL (effect)			
	Key to figure ^a	Species	frequency/ duration		NOAEL (ppm)	Less serio (ppm)	us	Serious (ppm)	Reference
2 →	INTERMEDI	ATE EXPO	DSURE						
		5	6	7	8	9			10
3 →	Systemic	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow			\downarrow
4 →	18	Rat	13 wk 5 d/wk 6 hr/d	Resp	3 ^b	10 (hyperpl	asia)		Nitschke et al. 1981
	CHRONIC EXPOSURE								
	Cancer						11		
							\downarrow		
	38	Rat	18 mo 5 d/wk 7 hr/d				20	(CEL, multiple organs)	Wong et al. 1982
	39	Rat	89–104 wk 5 d/wk 6 hr/d				10	(CEL, lung tumors, nasal tumors)	NTP 1982
	40	Mouse	79–103 wk 5 d/wk 6 hr/d				10	(CEL, lung tumors, hemangiosarcomas)	NTP 1982

SAMPLE

12 →

^a The number corresponds to entries in Figure 3-1. ^b Used to derive an intermediate inhalation Minimal Risk Level (MRL) of 5x10⁻³ ppm; dose adjusted for intermittent exposure and divided by an uncertainty factor of 100 (10 for extrapolation from animal to humans, 10 for human variability).

SAMPLE

This page is intentionally blank.

APPENDIX C. ACRONYMS, ABBREVIATIONS, AND SYMBOLS

ACGIH	American Conference of Governmental Industrial Hygienists
ACOEM	American College of Occupational and Environmental Medicine
ADI	acceptable daily intake
ADME	absorption, distribution, metabolism, and excretion
AED	atomic emission detection
AFID	alkali flame ionization detector
AFOSH	Air Force Office of Safety and Health
ALT	alanine aminotransferase
AML	acute myeloid leukemia
AOAC	Association of Official Analytical Chemists
AOEC	Association of Occupational and Environmental Clinics
AP	alkaline phosphatase
APHA	American Public Health Association
AST	aspartate aminotransferase
	atmosphere
atm ATSDR	
	Agency for Toxic Substances and Disease Registry
AWQC	Ambient Water Quality Criteria
BAT	best available technology
BCF	bioconcentration factor
BEI	Biological Exposure Index
BMD/C	benchmark dose or benchmark concentration
BMD_X	dose that produces a X% change in response rate of an adverse effect
$BMDL_X$	95% lower confidence limit on the BMD_X
BMDS	Benchmark Dose Software
BMR	benchmark response
BSC	Board of Scientific Counselors
С	centigrade
CAA	Clean Air Act
CAG	Cancer Assessment Group of the U.S. Environmental Protection Agency
CAS	Chemical Abstract Services
CDC	Centers for Disease Control and Prevention
CEL	cancer effect level
CELDS	Computer-Environmental Legislative Data System
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
Ci	curie
CI	confidence interval
CL	ceiling limit value
CLP	
	Contract Laboratory Program centimeter
cm CML	
	chronic myeloid leukemia
CPSC	Consumer Products Safety Commission
CWA	Clean Water Act
DHEW	Department of Health, Education, and Welfare
DHHS	Department of Health and Human Services
DNA	deoxyribonucleic acid
DOD	Department of Defense
DOE	Department of Energy
DOL	Department of Labor

DOT	
DOT	Department of Transportation
DOT/UN/	Department of Transportation/United Nations/
NA/IMDG	North America/Intergovernmental Maritime Dangerous Goods Code
DWEL	drinking water exposure level
ECD	electron capture detection
ECG/EKG	electrocardiogram
EEG	electroencephalogram
EEGL	Emergency Exposure Guidance Level
EPA	Environmental Protection Agency
F	Fahrenheit
\mathbf{F}_1	first-filial generation
FAO	Food and Agricultural Organization of the United Nations
FDA	Food and Drug Administration
FEMA	Federal Emergency Management Agency
FIFRA	Federal Insecticide, Fungicide, and Rodenticide Act
FPD	flame photometric detection
fpm	feet per minute
FR	Federal Register
FSH	follicle stimulating hormone
	-
g GC	gram gas chromatography
gd CL C	gestational day
GLC	gas liquid chromatography
GPC	gel permeation chromatography
HPLC	high-performance liquid chromatography
HRGC	high resolution gas chromatography
HSDB	Hazardous Substance Data Bank
IARC	International Agency for Research on Cancer
IDLH	immediately dangerous to life and health
ILO	International Labor Organization
IRIS	Integrated Risk Information System
Kd	adsorption ratio
kg	kilogram
kkg	metric ton
K _{oc}	organic carbon partition coefficient
$ m K_{ow}$	octanol-water partition coefficient
L	liter
LC	liquid chromatography
LC_{50}	lethal concentration, 50% kill
LC_{Lo}	lethal concentration, low
LD_{50}	lethal dose, 50% kill
LD_{Lo}	lethal dose, low
LDH	lactic dehydrogenase
LH	luteinizing hormone
LOAEL	lowest-observed-adverse-effect level
LSE	Levels of Significant Exposure
LT_{50}	lethal time, 50% kill
m	meter
MA	trans, trans-muconic acid
MAL	maximum allowable level
mCi	millicurie

MCL	maximum contaminant level
MCLG	
	maximum contaminant level goal
MF	modifying factor
MFO	mixed function oxidase
mg	milligram
mL	milliliter
mm	millimeter
mmHg	millimeters of mercury
mmol	millimole
mppcf	millions of particles per cubic foot
MRL	Minimal Risk Level
MS	mass spectrometry
NAAQS	National Ambient Air Quality Standard
NAS	National Academy of Science
NATICH	National Air Toxics Information Clearinghouse
NATO	North Atlantic Treaty Organization
NCE	normochromatic erythrocytes
NCEH	National Center for Environmental Health
NCI	National Cancer Institute
ND	not detected
NFPA	National Fire Protection Association
ng	nanogram
NHANES	National Health and Nutrition Examination Survey
NIEHS	National Institute of Environmental Health Sciences
NIOSH	National Institute for Occupational Safety and Health
NIOSHTIC	NIOSH's Computerized Information Retrieval System
NLM	National Library of Medicine
nm	nanometer
nmol	nanomole
NOAEL	no-observed-adverse-effect level
NOES	National Occupational Exposure Survey
NOHS	National Occupational Hazard Survey
NPD	nitrogen phosphorus detection
NPDES	National Pollutant Discharge Elimination System
NPL	National Priorities List
NR	not reported National Research Council
NRC	
NS NSPS	not specified New Source Performance Standards
	National Technical Information Service
NTIS	
NTP	National Toxicology Program Office of Drinking Water, EPA
ODW	e
OERR	Office of Emergency and Remedial Response, EPA
OHM/TADS	Oil and Hazardous Materials/Technical Assistance Data System
OPP	Office of Pesticide Programs, EPA
OPPT	Office of Pollution Prevention and Toxics, EPA
OPPTS OP	Office of Prevention, Pesticides and Toxic Substances, EPA
OR	odds ratio
OSHA OSW	Occupational Safety and Health Administration
OSW	Office of Solid Waste, EPA Office of Toxic Substances
OTS	Office of TOXIC Substances

OW	Office of Water
OWRS	Office of Water Regulations and Standards, EPA
РАН	polycyclic aromatic hydrocarbon
PBPD	physiologically based pharmacodynamic
PBPK	physiologically based pharmacokinetic
PCE	polychromatic erythrocytes
PEL	permissible exposure limit
pg	picogram
PHS	Public Health Service
PID	photo ionization detector
pmol	picomole
PMR	proportionate mortality ratio
ppb	parts per billion
ppm	parts per million
ppt	parts per trillion
PSNS	pretreatment standards for new sources
RBC	red blood cell
REL	recommended exposure level/limit
RfC	reference concentration
RfD	reference dose
RNA	ribonucleic acid
RQ	reportable quantity
RTECS	Registry of Toxic Effects of Chemical Substances
SARA	Superfund Amendments and Reauthorization Act
SCE	sister chromatid exchange
SGOT	serum glutamic oxaloacetic transaminase
SGPT	serum glutamic pyruvic transaminase
SIC	standard industrial classification
SIM	selected ion monitoring
SMCL	secondary maximum contaminant level
SMR	standardized mortality ratio
SNARL	suggested no adverse response level
SPEGL	Short-Term Public Emergency Guidance Level
STEL	short term exposure limit
STORET	Storage and Retrieval
TD_{50}	toxic dose, 50% specific toxic effect
TLV	threshold limit value
TOC	total organic carbon
TPQ	threshold planning quantity
TRI	Toxics Release Inventory
TSCA	Toxic Substances Control Act
TWA	time-weighted average
UF	uncertainty factor
U.S.	United States
USDA	United States Department of Agriculture
USGS	United States Geological Survey
VOC	volatile organic compound
WBC	white blood cell
WHO	World Health Organization
	. one nouter organization

greater than
greater than or equal to
equal to
less than
less than or equal to
percent
alpha
beta
gamma
delta
micrometer
microgram
cancer slope factor
negative
positive
weakly positive result
weakly negative result