
Inverse Modeling and Animation of Growing Single-stemmed
Trees at Interactive Rates

Steffen Rudnick∗ Lars Linsen† E. Gregory McPherson‡

∗ Department of Mathematics and Computer Science
Ernst-Moritz-Arndt-Universiẗat Greifswald, Germany

† School of Engineering and Science
International University Bremen§, Germany

‡ USDA Forest Service, Pacific Southwest Research Station
Center for Urban Forest Research, Davis, California

ABSTRACT

For city planning purposes, animations of growing trees of several species can be used to deduce which species
may best fit a particular environment. The models used for the animation must conform to real measured data. We
present an approach for inverse modeling to fit global growth parameters. The model comprises local production
rules, which are iteratively and simultaneously applied to build a fractal branching structure, and incorporates the
propensity of trees to grow towards light. The parameters of the local production rules are derived from global
functions that describe the measured tree growth data over time. The production rules are influenced by the global
light distribution, which is represented by the amount of light available at each position within the tree’s crown.
Since we want to allow the user to explore the tree’s appearance interactively at any time during the animation,
all modeling computations must be within a time frame that allows for interactive rendering rates. To this end,
we developed a fast approximate algorithm for computing the light distribution. The rendering itself must also be
fast; therefore, we sought a well-balanced compromise between photo-realism and performance. Because shadow
computations play a key role for photo-realism, we developed a fast approximate shadow computation algorithm
including soft shadows and self-shadowing. We applied our methods in order to model and animate the growth of
seven single-stemmed tree species in an interactive setting.

Keywords
Tree Growth Modeling, Animation, Real Time Rendering.

1 Introduction

Trees produce benefits that enhance quality of life for
city residents. Benefits include energy savings, air pol-
lutant uptake, CO2 sequestration, storm-water runoff
reduction, increased property values and increased vi-
tality in commercial areas. As trees grow larger, ben-
efits increase as leaf surface area increases. How-
ever, the benefits can be offset when tree branches, and
leaves conflict with other urban infrastructure, such as
buildings, awnings, signs, traffic signals, and lighting.
In dense urban environments limited space is a major

∗srudnick@uni-greifswald.de
†l.linsen@iu-bremen.de
‡egmcpherson@ucdavis.edu
§Jacobs University Bremen as of Spring 2007

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers or to re-
distribute to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency - Science Press, Plzen, Czech Republic.

constraint to tree planting. One goal of urban green-
ing is to maximize functional benefits and minimize
conflicts between trees and other infrastructure. To
achieve this goal it is important to know (1) the mature
size of different tree species, since both functionality
and conflicts depend on tree size relative to the space
that is available, and (2) the rate of growth for differ-
ent trees, because this influences the length of time be-
fore conflicts occur, as well as how soon functional
benefits are realized. Currently, landscape architects,
city planners, and urban foresters lack tools that help
them visualize how trees will grow over time, so that
they can compare different species and select ones best
suited to the site and their design objectives. Because
trees are expensive to plant and can live to be hundreds
of years old, computer-animated tree-growth modeling
can help users make judicious choices that will pay
large dividends over the long-term.

In computer graphics, several methods exist to de-
scribe and model computer-generated trees. The goal
of these methods is to generate photo-realistic images
of trees of selected species. The trees should appear as
natural as possible and vary in appearance as they do

kvargas
Typewritten Text
Rudnick, S.; Linsen, L.; McPherson, E.G. 2007. Inverse modeling and animation of growing single-stemmed trees at interactive rates. In: Rossignac, J.; Skala, V. eds. Proc 15th Intl Conf Centr Eur Comp Graphics Visualiz Comp Vis.Plzen, Czech Republic: UNION Agency, Science Press, pp 217-224.

in nature. Typically, the quality of the images, i.e. how
natural the appearance of the trees is, is not quantita-
tively evaluated but just estimated by the human eye.
Real measured data such as tree dimensions are not
used to compare the models with nature.

For animations of trees growing over time, the com-
plex growing process under the influence of many bio-
logical phenomena has to be considered. Some elabo-
rate approaches exist. Our approach differs from most
of these in two main ways:

1) Our tree growth is based on measured data.

2) Our entire tree growth modeling process is done
on-the-fly, i.e. while users watch and interact with
the animation. We achieve interactive rates for
modeling and rendering.

The properties of our model allow users to interac-
tively compare the growth of different tree species side
by side. Because our model is based on real data the
users confidence in the approach is increased. For a
case study, we used global functions for seven single-
stemmed tree species. Our growth model described in
Section 3 is based on basic biological background on
tree growth so that a realistic branching structure can
be generated. We also used measured data for fitting
the global shape properties of the respective species.
Typically, a computer model for trees consists of a
branching structure with position, length and orienta-
tion information for every branch. Local production
rules are applied to each branch iteratively to generate
the complex branching structure. We derive local pro-
duction rules for our model based on the global func-
tions given. Moreover tree growth cannot be deter-
mined by local rules only, but global phenomena like
light seeking or shadow avoidance also have to be in-
cluded. Thus our production rules also consider avail-
able light and its distribution.

For tree rendering, several photo-realistic approaches
exist including sophisticated techniques such as the
creation of soft shadows by multiple subsurface scat-
tering. However, these approaches do not meet
real-time requirements especially when dealing with
steadily changing geometry. Thus we had to find
a compromise between photo-realistic rendering and
fast rendering. We observed that shadows are of high
importance in this context. We developed a simple and
fast method to approximate and render soft shadows.
In addition, the effect of self-shadowing is included
by drawing leaves with a luminance depending on the
light distribution. Details of our rendering methods are
described in Section 4.

2 Related Work

The modeling, simulation, and rendering of trees and
plants is a well-studied topic in computer graphics.
The formal description of trees is usually based on
local production rules. Starting with a trunk and it-
eratively applying local production rules generates a
complex branching structure.

The Lindenmayer systems (L-systems), introduced by
the theoretical biologist Aristid Lindenmayer [Lin68],
are the most common approach for a formal descrip-
tion of plants. In their bookThe Algorithmic Beauty
of Plants[PL90], Prusinkiewicz and Lindenmayer de-
scribes the general concept of L-systems and their ap-
plication to modeling different plants with different
structures. They also introduced the concept of para-
metric L-systems in which the local production rules
depend on parameters that are locally stored and up-
dated. This concept has been used and extended in
several algorithms [AK85, Blo85, LD99]. A survey of
existing L-system approaches is given in [PHMH95].

Natural phenomena such as growth, death, repro-
duction, and information flow in growing plants
can be modeled via L-systems. Prusinkiewicz et
al. [PHHM97] explained how the L-system model ap-
plies to nature. The influence of the environment on
the growth of plants is also considered.

For computer graphics applications, the main objec-
tive of modeling plants is to generate a highly re-
alistic scene. Therefore stochastic tree models have
been introduced to simulate the variety within one
species. The individual, realistic-looking plants dif-
fer from each other and can be organized to render
forests or fields [CSHD03] and even entire ecosystems
[DCSD02]. The goal of the previous modeling sys-
tems differs from ours in that they weren’t limited to
interactive frame rates.

Approaches using inverse modeling of trees have
been developed by Galbraith et al. [GMW04] and
Prusinkiewicz et al. [PMKL01]. They used relative
positions inside the crown to describe the local prop-
erties of the plant organs to generate trees that fit a
given shape. Inverse modeling in this sense means, for
example, that the relative position of a branch along
the trunk (height of the starting point of the branch di-
vided by the crown height) and the knowledge of the
crown shape and dimension determine the length of
the branch. This approach allows the use of real mea-
sured tree data such as height or crown shape.

Linsen et al. [LKMH05] presented a visualization
method for tree growth at interactive frame rates us-
ing global functions to model the shape and size of
the trees. They used some global parameters to de-
termine the local production rules but their approach
was too simple to produce realistic branch lengths. In
their method, several biological phenomena were not
considered including the fact that growth is periodical
in years, or that plants try to avoid growing leaves in
shadows.

Several approaches account for the light available
for the growth of plants [Ben96, HB03, HdFBR04,
SSBD03]. In these approaches a light source is mod-
eled and the amount of light a leaf or a branch receives
is computed. The illumination computation is very in-
tense due to the complex and changing geometry of
growing trees. The computations of the precise illu-
mination inside a tree crown are further complicated
by the reflected and transmitted light. To allow for in-

teractive modeling, our light computation needs to be
much faster. We propose a fast approximate computa-
tion of the light distribution that is sufficiently precise
for growth modeling and for realistic shadow compu-
tations.

3 Modeling

3.1 Global Functions

Our tree growth model is based on global functions
of time that describe global properties of the tree
during growth. For modeling we use functions for
the diameter at breast heightfDBH, tree height fH ,
crown diameterfCD and the crown heightfCH. These
functions are derived from real measured data for
seven single-stemmed tree species, the London plan-
etree (Platanus x acerifolia), silver maple (Acer sac-
charinum), Modesto ash (Fraxinus excelsior), golden-
rain tree (Koelreutaria paniculata), Southern magno-
lia (Magnolia grandiflora), Chinese pistache (Pistacia
chinensis), and hackberry (Celtis occidentalis).

3.2 Biological Background

We briefly summarize the biological characteristics of
tree growth for single-stemmed trees that are impor-
tant to our approach; for a more detailed explanation,
we refer the reader to the literature [SS02, Mat91,
Nul68].

A tree is a plant that grows over years, building up
a large branching structure. The growth of a branch
segment is divided into two phases, primary growth
and secondary growth. Primary growth is the elonga-
tion of a bud from last year’s growth to a shoot ter-
minated by an apical bud. During primary growth,
leaves and lateral buds are produced. After the first
year’s growth, branch segments start the secondary
growth phase, which is characterized by steady thick-
ening while elongation stops. The apical bud always

Figure 1: Annual growth of a branch. The apical
bud (red) on the left produces an apical shoot (red) on
the right with a new apical bud (red) and lateral buds
(green). One of the lateral buds on the left produces a
lateral shoot (green).

produces the longest shoot and elongates the branch,
while the lateral buds produce shorter shoots, a phe-
nomenon known as apical dominance. The lateral
buds do not always produce a shoot. The probability
that they will produce a shoot is mainly dependent on
the available light. A schematic example of the growth
of one branch is shown in Figure 1.

The leaves growing along the shoots produce energy
by the process of photosynthesis. Thus trees tend to
grow leaves in positions with good light. The different
responses of plants to light and shadow are explained
and discussed inPhotomorphogenesis in Plantsby
Kendrick and Kronenberg [KK86]. Branches receiv-
ing enough light try to produce many leaves to pro-
duce energy. Thus they tend to bifurcate more of-
ten. Branches exposed to less light do not bifurcate as
much; they tend to grow faster and to produce longer
branches in order to reach for more light.

3.3 Tree Growth

A branching structure consists of bifurcations and
branches. To generate complex branching structures,
computer models typically use iteratively and simul-
taneously applied local production rules. In order
to generate branching structures that consider global
properties like the global functions derived in Sec-
tion 3.1 or the available light distribution, we have to
extend these local production rules to rules that couple
local reproducibility with global growth properties.

In our model, a branch consists of branch segments
representing the annual growth. A branch segment is
defined by its length, diameter, starting point, and di-
rection. A bifurcation is characterized by the bifur-
cation angle, the divergence angle, and the ratios of
length and diameter between the parent branch and the
child branches. The bifurcation angle describes the
angle between the new and old branches and the di-
vergence or twisting angle describes the change in ori-
entation because not all branches lie in one plane. In
addition to branches and bifurcations, we also model
leaf growth. Flowers and fruits can be handled in the
same way but are not included in our model, since our
goal is the visualization of growth over several years
while seasonal changes are omitted. The leaves spi-
ral around the branch equidistantly. The leaves only
grow on young and small branches that are exposed to
sufficient light.

Tree growth is modeled in discrete steps each repre-
senting 1

n-th of a year wheren is exchangeable and
can accommodate existing graphics hardware equip-
ment. In our implementation we usen = 20. In each
step, the production rules are applied to all branch seg-
ments. Using a pseudocode description, the recursive
function for growing branches is given by:

grow (branch)
if (primary growth)

compute new length
if (end of primary growth)

produce apical branch segment

produce lateral branch segment
if (secondary growth)

compute radius
grow(apical branch)
if (lateral branch exists)

grow(lateral branch)

The result of “produce lateral branch segment” is a
new lateral branch segment but only if the global pa-
rameters allow its generation. Otherwise nothing is
done. A branch segment is in the phase of primary
growth for one year. Afterwards, the secondary growth
starts.

Every branch has an order representing its depth in the
branching structure (Weibull ordering). The trunk has
order 0, the branches connected to the trunk have order
1 and so on.

3.3.1 Trunk length

The trunk consists of two parts, one below the crown
and one surrounded by the crown. The lengths of both
are controlled by the global functionsfH and fCH. The
length of the part below the crown is calculated as the
difference between the measured tree height and the
measured height of the crownl(t) = fH(t)− fCH(t)
wheret is the age of the tree in years. The length of
the part surrounded by the crown is given by the mea-
sured height of the crown,fCH(t). The whole trunk
consists of many trunk segments each representing an-
nual growth and the last one is the only one in the pri-
mary growth phase. Thus the growth of the last seg-
ment is given by the difference between old and new
crown height, fCH(t)− fCH(t −∆t) for time steps of
size∆t.

3.3.2 Branch length

For calculating the length of each branch, its order, its
relative position,pr ∈ [0,1], along the parent branch,
and the length of the parent branch,lp, are used. The
length calculation of the branches is done with the help
of a crown shape function,c : [0,1]→ R, which is rep-
resented by a geometric function that returns the rela-
tive length of a branch at a relative position,pr , along
the trunk to fit the crown shape (see Figure 2). The
crown shape function is applied recursively for the en-
tire branching structure, i.e., the length of each branch
is determined with respect to the crown shape function
applied to its parent branch.

Multiplying the relative length of a branch,c(pr),
by the length of the parent branch,lp, by an order-
depending factor, and by a length scaling factor,sl ,
gives the new length

l = sl ·
c(pr) · lp

0.5+0.5·order
.

This scaling factorsl ∈ R+ randomly assigned to each
branch during its initialization is uniformly distributed
over [0.6,1]. To allow for a few branches to break out

pr

c(pr)

Figure 2: Example for elliptical crown shape func-
tion: pr is the relative position of the starting point of a
branch andc(pr) the computed relative branch length.

of the given shape and grow towards empty regions,
5% of the branches of order≥ 2 are assigned a factor
uniformly distributed over[1.2,1.5]. Again the growth
is only added to the length of the last branch segment,
i.e., the only segment of the branch in primary growth
phase.

Since branches grow towards light, we adjust our
model so that light influences the scaling factorsl .
When there is only a little light at the branch apex, the
scaling factor increases such that the branch reaches
out of the shadow. When there is plenty of light at
the apex of the branch, the scaling factor does not in-
crease.

3.3.3 Radius

The radius of each branch segment is computed us-
ing the diameter at breast height functionfDBH. Sim-
ilar to the method of scaling the length with factorsl ,
we apply a scaling factorsr ∈ [0,1] to the radius. The
new radius for each branch segment or trunk segment
is given by

r(t) = sr · fDBH(t) ,

wheret, again, denotes the age of the branch segment
in years. The scaling factorsr for a branch segment is
computed during initialization depending on the scal-
ing factorsr, f of the previous branch segment as

sr = sr, f · (1−sr, f ·0.7) .

3.3.4 Bifurcation

Once the primary growth of a branch segment stops,
the production rules for new branches have to be ap-
plied. As mentioned in Section 3.2, the probability

that a bud near the apex will produce a shoot is much
larger than for the other buds. In our model, the apical
bud always produces a new shoot, which elongates the
branch and becomes a new segment. One lateral bud
can produce a new shoot which starts a new branch of
one order higher. The probability is determined by the
local tree density, the available light at this position,
and a random factor. Basically, plenty of light leads to
many bifurcations and the absence of light leads to no
further bifurcations.

For these new shoots, the scaling factorssl andsr are
generated, and the angles characterizing the bifurca-
tion are determined. The angles used are inspired by
the ones that can be seen in nature in the respective tree
species. In particular, branches tend to spiral around
the parent branch.

3.4 Light

For the purpose of interactive modeling and visualiza-
tion light calculations must be fast. We use a method
to approximate the available light at each position in-
side the crown of the tree. We divide an axes-aligned
box that covers the full-grown tree into discrete vol-
umes. We send light rays simulating daylight through
the scene that lose intensity as they pass through the
cells. The loss of intensity is proportional to the per-
centage of the cell’s space covered by branches and
leaves.

After each growth step, the light distribution within
the crown has to be recomputed. Therefore, we de-
fine equidistant planes parallel to the ground in the
crown space. Thus, the bounding box of the tree is
partitioned into slabs. Each branch is projected into
the lower plane in each slab using parallel projection
while information on its radius and number of leaves
is stored.

Each plane is divided into squares forming a regular
grid. The size of the grid is adapted to the size of the
crown. For each squareS, a density,D ∈ [0,1], is com-
puted that measures the percentage of the square not
covered by branches or leaves

D = ∏
i∈S

(1−A(i)) · (1− l(i))

where A(i) is the area of the part of the projected
branchi that intersectsS, and l(i) is the area of the
leaves ofi whose projection intersectsS. DensityD
can be interpreted as the density of the cuboid above
the square and it approximates the percentage of the
incoming light that passes through this cuboid. Note
that branches that are projected to the same position in
the square are both fully considered as we are comput-
ing the density of the cuboid.

With this information we need to simulate daylight to
compute the illumination within the trees crown. The
direction of the incoming sunlight varies over the day.
Thus we cannot assume a steady light source with par-
allel rays, but need to consider directional light. Benes

[Ben96] discussed the effect of daylight and its inten-
sity and direction. The light enters the scene with
the greatest intensity from the top and decreases to-
wards the sides. Therefore we send many rays from
the top and fewer rays from the sides as shown in Fig-
ure 3. For interactive modeling, the efficiency of the

Figure 3: Light rays (green) from the boundary faces
directed underneath the tree are used to simulate day-
light.

ray traversal computations is important. We adopt the
idea of Bresenham’s line-drawing algorithm [Bre65]
and generalize it to 3D to quickly compute the se-
quence of cuboids that are traversed by each ray. The
amount of light available for each cuboid accumulates
with each ray that traverses it. If a ray with intensityIr
hits a cuboid with previous intensityIc, Ic gets updated
using the accumulation rule

Ic = 1− ((1− Ic) · (1− Ir)) = Ic + Ir − IcIr .

If the cuboid has densityD, then the intensity of the
traversing rayIr is reduced by multiplying it byD. Af-
ter all ray traversals we have a good approximation of
the light available for each cuboid.

4 Rendering

In our implementation, all geometry is rendered as tex-
tured polygons. As a texture for the bark, we used
photographs of the trees’ bark, and as a texture for the
leaves, we scanned a typical leaf or took photographs.

4.1 Branches

For each branch a closed mesh of generalized cylin-
ders is generated. For branches of higher orders, a new
mesh is generated that starts inside the parent branch.
Hence, we do not have to compute a special bifurca-
tion structure but instead generate the impression of
branches coming out of the parent branch.

4.2 Leaves

The leaves surrounding a branch are rendered as
equidistant triangles twisted around the branch. The
position of each leaf has to be computed after every
growth step as it depends on the new position of the
branch and on the new diameter of the branch. For
each leaf, the coordinates of a triangle are computed in
such a way that the triangles are tangent to the branch.
Therefore, no leaf stalk starts inside the branch, and
each leaf is connected to the branch. These triangles
are rendered using a partially transparent leaf texture.

4.3 Shadows

Shadows are very important for natural-looking
scenes. For realistic shadows, we need soft shadowing,
which is too time-consuming to compute precisely. In-
stead, we approximately compute hard shadows and
render them using textures with higher opacity in the
center and decreasing opacity to the boundary. We can
render such polygons in real-time and generate soft
shadows.

The positions of the shadows of the branches and the
attached leaves are computed using the results of the
light computation described in Section 3.4. As a re-
sult of the light computation, we obtain planes with
projected coordinates of all branch segments. In addi-
tion, we store information about their diameters and
the leaves at these branch segments. For each pro-
jected branch segment, the coordinates of a quadrilat-
eral are computed. For the shadows of the leaves the
coordinates of small squares around the respective pro-
jected branch are computed. The soft-shadow textures
of all branches and leaves are accumulated in a texture
buffer, which is rendered at each frame.

Real shadowing includes not only the shadows under-
neath the tree on the ground but also self-shadowing
within the tree. We apply self-shadowing to the leaves
with the help of the available light information ob-
tained from the computations described in Section 3.4.
The leaves are divided into 10 luminance classes de-
pending on the amount of incoming light. The leaves
of each class are rendered with the respective lumi-
nance so that leaves appear darker or brighter due to
the light that arrives at the small cuboid in which they
are located. All leaves are rendered with the same tex-
ture.

4.4 Implementation

For every branch segment, the orientation is stored as
a rotation relative to the orientation of the previous
branch segment. These rotations are not stored as ma-
trices but as quaternions to avoid matrix computations.
The branch segments are stored in a binary tree with
the first trunk segment being the root. While travers-
ing the tree, the start position of a branch segment is
passed as a parameter of the parent branch segment.
This position can be used directly, since only the an-
cestors affect this new position. With this position
and the orientation, the coordinates of the generalized
cylinders are computed, again with the help of quater-
nions. Even the leaf positions are computed this way.

The simulation can be stopped at any time for a closer
look at the tree of this age. To speed up the perfor-
mance, we save all the necessary coordinates, normals
and texture coordinates in each step and render them at
once. Therefore no new geometry computations have
to be performed when the simulation is interrupted.

5 Results and Discussion

We animated the growth of prototypical trees from 4
to 50 years. We did not start the animation earlier,
as we had no data available for trees younger than 4
years. The animation can be halted at any time to have
a closer look at a tree of a certain age. The frame rates
we achieved allow for changing the viewpoint interac-
tively even while the animation continues, and growth
modeling processes are executed in addition to the ren-
dering.

We were able to animate trees of realistic natural ap-
pearance. Moreover, the trees fit the global mea-
sured functions of tree height, crown height and width,
trunk length, and radius. One can also observe com-
mon natural phenomena of trees within our computer-
generated models. For example, the interior of the
crown exhibits fewer branches and leaves than along
the outside due to the light distribution. This shows
that using light information for modeling growth re-
ally helps improve the model, getting closer to a real
tree. The branching structure of the trees looks very
realistic. It is not as regular as it would be when ap-
plying simple L-systems, and it follows natural laws
of tree growth. For the local production rules, we use
several stochastic components to achieve a higher di-
versity within our trees and also among our trees.

In Figure 4, some screen-shots of growing trees taken
from the animation can be seen. The trees all have
different densities, crown shapes, and overall appear-
ances. The last screen-shot of the two Southern mag-
nolia trees shows the effect randomness has on the
trees. Both trees use the same light and growth pa-
rameters, but have a distinct appearance. In addition,
we provide a video showing the animated growth at
www.math-inf.uni-greifswald.de/informatikJP/rudnick/video.

Depending on the computer system used, the interac-

(a) (b) (c)

(d) (e) (f)

Figure 4: Screen-shots of different tree species taken from our animations: Modesto ash at 20 years (a), silver
maple at 20 years (b), hackberry at 20 years (c), London planetree at 30 years (d), Chinese pistache at 30 years (e),
and two Southern magnolias at 50 years (f).

tive animation may slow down a little for older trees
due to the large number of branch segments. Obvi-
ously the time for all calculations depends on the num-
ber of branch segments. In every growth step, the
local production rules have to be applied to all seg-
ments, the light information for every position inside
the crown has to be computed, and every branch has
to store this information for its own position. For ren-
dering all polygons of branches, leaves, and shadows,
the respective geometry has to be computed. When
the growth simulation is halted, the animation achieves
a better frame rate because no growth steps have to
be performed and only the rendering computations are
needed. In Table 1, the computation time in millisec-
onds for the individual modeling computations and
the rendering is shown dependent on the number of
branch segments. We enlist the computation time for
the growth modeling (applying production rules), for
updating the light distribution, and for generating the
mesh geometry. The Southern magnolia, for example,
with 30,000 branch segments is rendered with nearly
half a million polygons. The times were measured on a

PC equipped with a 3.06GHz processor and an NVidia
GeForce 6800 ultra graphics card.

Although implementation on the GPU may be used to
further improve the frame rates, our overall goal was to
distribute our program over the web for city planning
purpose. Thus, our system should run on any personal
computer with any hardware configuration. Thus, we
decided not to require specific graphics hardware.

6 Conclusions and Future Work

We have presented a real-time tree-growth animation
for urban street trees. The real-time computations in-
clude all tree-growth modeling steps, geometry gen-
eration, and rendering. The growth of the trees is
controlled by given, global functions of time for tree
height, diameter at breast height, and crown height and
width. In our model, we have mapped these global pa-
rameters to local production rules. The trees are gen-
erated by simultaneously and iteratively applying lo-

branch computation times (inms) rendering
segments growth light mesh time (inms)

5,000 7 7 2 16
10,000 13 8 12 16
20,000 27 12 30 33
30,000 40 13 60 33

Table 1: The computation time in milliseconds for
each frame, dependent on the number of branch seg-
ments. A tree with 30,000 branch segments is quite a
large and old tree. It consists of nearly half a million
polygons.

cal production rules to all branches. This approach
produces trees with a natural branching structure that
fits the global properties. In our model, we have also
included the influence of light on the growth of the
tree. We used a data structure giving us global control
of the tree and allowing us to compute the available
light at every position inside the crown at any time. As
a result, crown density conforms to characteristics of
measured trees, as does crown size.

For rendering purposes, we used a polygon-based ap-
proach with photographs and scans for textures. The
appearance of the tree is highly realistic when con-
sidering real-time constraints. In our animation we
reached interactive rates due to the sophisticated yet
simple modeling and rendering methods. For shadow
computations including self shadowing we made use
of the light distributions computed during modeling.

We applied our model to seven different single-
stemmed tree species. For future work we plan to
apply our method to additional tree species, includ-
ing multi-stemmed ones. We will also model conifers
when the necessary global functions are available. An-
other objective for future work is to include the effects
of buildings on light distribution and tree-growth.

Acknowledgments
This research was supported in part by funds provided
by the U.S.D.A. Forest Service, Pacific Southwest Re-
search Station, and the Elvenia Slosson Research En-
dowment for Ornamental Horticulture at the Univer-
sity of California, Davis.

References
[AK85] M. Aono and T.L. Kunii. Botanical tree image gen-

eration. IEEE Computer Graphics & Applications,
4(5):10–34, 1985.

[Ben96] B. Benes. An efficient estimation of light in simula-
tion of plant development. InComputer Animation
and Simulation ’96, pages 153–165. Springer-Verlag,
1996.

[Blo85] J. Bloomenthal. Modeling the mighty maple. InSIG-
GRAPH ’85: Proceedings of the 12th annual con-
ference on Computer graphics and interactive tech-
niques, pages 305–311, New York, NY, USA, 1985.
ACM Press.

[Bre65] J. E. Bresenham. Algorithm for computer control of a
digital plotter. IBM System Journal, 4(1):25–30, July
1965.

[CSHD03] M. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang
tiles for texture and image generation. In A.P. Rock-
wood, editor, SIGGRAPH ’03 Proceedings. ACM
SIGGRAPH, 2003.

[DCSD02] O. Deussen, C. Colditz, M. Stamminger, and G. Dret-
takis. Interactive visualization of complex plant
ecosystems. In M. Gross, K. I. Joy, and R. J. Moor-
head, editors,Proceedings of IEEE Visualization ’02
conference. IEEE Computer Society Press, 2002.

[GMW04] C. Galbraith, L. M̈undermann, and B. Wyvill. Im-
plicit visualization and inverse modeling of growing
trees.Computer Graphics Forum (Proceedings of Eu-
rographics 2004), 23(3), 2004.

[HB03] W. Van Haevre and P. Bekaert. A simple but effective
algorithm to model the competition of vitual plants for
light and space.Journal of WSCG, 11(1), 2003.

[HdFBR04] W. Van Haevre, F. di Fiore, P. Bekaert, and F. Van
Reeth. A ray density estimation approach to take into
account environmental illumination in plant growth
simulation. InSCCG ’04: Proceedings of the 20th
spring conference on Computer graphics, pages 121–
131. ACM Press, 2004.

[KK86] R. E. Kendrick and G. H. M. Kronenberg.Photomor-
phogenesis in Plants. Kluwer Academic Publishers,
1986.

[LD99] B. Lintermann and O. Deussen. Interactive modeling
of plants. IEEE Computer Graphics & Applications,
19(1), 1999.

[Lin68] A. Lindenmayer. Mathematical models for cellular in-
teraction in development.Journal of theoretical biol-
ogy, 18:280–315, 1968.

[LKMH05] L. Linsen, B. J. Karis, E. G. McPherson, and
B. Hamann. Tree growth visualization.Journal of
WSCG, 13((1)–(3)):81–88, 2005.

[Mat91] C. Mattheck. Trees: The mechanical Design.
Springer-Verlag, Berlin Heidelberg, 1991.

[Nul68] W. Nultsch. Allgemeine Botanik. Georg Thieme Ver-
lag, Stuttgart, 1968.

[PHHM97] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Mech.
Visual models of plant development. In G. Rozen-
berg and A. Salomaa, editors,Handbook of Formal
Languages, Vol. III: Beyond Words, pages 535–597.
Springer-Verlag, Berlin, 1997.

[PHM93] P. Prusinkiewicz, M. Hammel, and E. Mjolsness. An-
imation of plant development. In J.T. Kajiya, editor,
Computer Graphics (SIGGRAPH ’93 Proceedings),
volume 27, pages 351–360. ACM SIGGRAPH, 1993.

[PHMH95] P. Prusinkiewicz, M. Hammel, R. Mech, and J. Hanan.
The artificial life of plants: Artificial life for graph-
ics, animation, and virtual reality. InSIGGRAPH ’95
Course Notes, pages 1–38. ACM SIGGRAPH, 1995.

[PL90] P. Prusinkiewicz and A. Lindenmayer.The algorithmic
beauty of plants. Springer-Verlag, New York, 1990.

[PMKL01] P. Prusinkiewicz, L. M̈undermann, R. Karwowski, and
B. Lane. The use of positional information in the mod-
eling of plants. InSIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and in-
teractive techniques, pages 289–300, New York, NY,
USA, 2001. ACM Press.

[SS02] E. Strasburger and P. Sitte.Lehrbuch der Botanik für
Hochschulen. Spektrum, Akad. Verlag, Heidelberg,
2002.

[SSBD03] C. Soler, F.X. Sillion, F. Blaise, and P. Dereffye. An ef-
ficient instantiation algorithm for simulationg radiant
energy transfer in plnat models.ACM Trans. Graph.,
22(2):204–233, 2003.

