

Applying Observing Data for Coastal Decision Making: Impacting Resources

IOOS, NERRS and Partners: Supporting Coastal Resource Management within the Mid-Atlantic Region

William Reay Virginia Institute of Marine Science, College of William and Mary Chesapeake Bay NERR

Michael DeLuca Rutgers University Jacques Cousteau NERR

CSC NERRS IOOS Enhancement Proposal

Mid-Atlantic, Northwest and Northeast

Goals:

- To establish NERRS as a timely provider of environmental information
- Information supports integrated research, education and stewardship applications.
- Key component of the Integrated Ocean Observing System.

Outcomes:

- Near-term: Build capacity; Demonstrate products.
- Mid-term: Decision-makers have the skill sets and capacity to inform resource management with real- and near real-time data streams from the NERRS.
- Long-term: Coastal and ocean decision-makers are applying scientific data and information generated by NERRS.

CSC NERRS IOOS Enhancement Proposal

Part I. Telemetry

- Sutron: Water Quality
- Campbell: Weather
- Part II. Data Management
 - NOAA National Environmental Satellite Data and Information Service
 - NERRS Central Data Management Office
 - NWS / HADS; Format and Content Compliant Metadata

CSC NERRS IOOS Enhancement Proposal

Part III. Pilot Projects

- Ecosystem Health
- Natural and Anthropogenic Forcings

Part IV. Product Evaluation

Coastal Training Program Focus Groups

WILLIAM & MARY VIRGINIA INSTITUTE OF MARINE SCIENCE SCHOOL OF MARINE SCIENCE

Chesapeake Bay Shallow Water Monitoring Program: Data Applications to SAV Water Quality Criteria and Restoration

DATAFLOW

Habitat Criteria Assessment Method:

Cumulative Frequency Diagram

	×		Y
Cruise Date	% Area Exceeding	Rank	Cumulative Probability
	100		0
Jun 02	75	1	4
Mar 02	72	2	13
May 03	67	3	21
May 02	65	4	29
Apr 02	55	5	38
Jun 04	50	6	46
Mar 03	49	7	54
Apr 04	39	8	63
May 04	35	9	71
Apr 03	34	10	79
Jun 03	25	11	88
Mar 04	20	12	96
	0		100

Chesapeake Bay Shallow Water Monitoring Program: Data Applications to SAV Water Quality Criteria and Restoration

1 m MLW Contour Water Clarity Non-attainment Water Clarity Attainment

Continuous Fixed Stations

Habitat Criteria Assessment Method: Cumulative Frequency Diagram

Turbidity (NTU)

Click Stations for Data Click Legend Symbols to Toggle Stations On/Off Fixed Monthly Stations - Current & **Historical Data** Real-Time 16) **Continuous Monitors** Near-Time Monitoring Type: 23 Weather Stations **Continuous Monitors** Data Variables: Water Quality Wind Speed, Wind Direction. Mapping Relative Humidity, Air Temperature, Precipitation Rate and 2005 Current Algal Accumulation, PAR, and Barometric Bloom Events Pressure Weather Stations Data Frequency: Data Collected Every 15 Minutes Data Geographical Distribution: **Click for Daily** Data Collected at Otter Point Creek Satellite Images and Data Maps Site, Bush River Data Updates: Telemetered Hourly Data Online Format: Charts and Data Tables Selectable in Various Increments or by Full Year.

StriperTracker

an estuarine observatory to monitor transmitter-tagged fish

Impetus

- Contribute to a calculation of fish population size through an understanding of stock structure, habitat use, migratory pathways
- Examine structure of estuarine habitat from the fish-eye view
- SWMP data application
- Census Of Marine Life

- existing hydrophones
 planned hydrophone
- Physical/chemical data logger

Click here to tag and

track your own

virtual striped bass!

Home

StriperTracker.org

About the Project

Tagging

Habitat

<u>Fishes of</u> Great Bay Marine Field Station are trying to better understand the coastal migration of striped bass. The study area includes the Mullica River/Great Bay estuary, the southern end of Barneget Bay, and the coastal ocean outside of Little Egg Inlet off Tuckerton, New Jersey.

Scientists from the Rutgers University

Teachers

<u>Kids</u>

Adopt A Fish

Glossary

Related Links

StriperTracker Website

Provides movement data to public

Includes lesson plans for teachers

Scientist's Log updates

Information on biology and links to more

Adopt-a-fish program for community participation

Next Steps:

- Pilot at other NERRS
- Engage Fishery Scientist Coastwide

Striped Bass migration routes from the principal spawning grounds of the Chesapeake Bay, Delaware River, and Hudson River

Chesapeake Bay National Estuarine Research Reserve

USGS

Chesapeake Bay Observing System

Wind and Waves Stations

COOPERATIVE EXPANSION AND INTEGRATION DEMONSTRATION (CCIED): Wind, Waves, Dissolved Oxygen

Principal Providers (North to South):

- NOAA Chesapeake Bay Office
- University of Maryland Center for Environmental Science
- Virginia Institute of Marine Science College of William and Mary
- Old Dominion University
 Principal User: National Weather Service

Principal Product

Improved wind and wave forecasts, but data also will improve hydrodynamic modeling, and ecological forecasts of hypoxia, sea nettles, harmful algal blooms,..., which are important for coastal managers.

MUDBED: <u>MULTI-D</u>ISCIPLINARY <u>BENTHIC EXCHANGE DYNAMICS</u>

WILLIAM& MARY

Pls: Diaz, Friedrichs, Kuehl, Harris, McNinch, Sanford, Schaffner

http://www.vims.edu/realtime

Verification of "Relative Chlorophyll" values based on satellite imagery

- Oceansat and FYI-D (PRC) Satellites
- 360 m resolution
- SeaWifs OC4 algorithm/Blue-green ratio

Real-time Satellite Data Webpage www.marine.rutgers.edu/cool/sat_data

