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Outline

• Challenges in the analysis of health care costs.

• Misuse of statistical methods in analysis of costs in medical literature.

• Some new statistical methods for the analysis of health care costs.
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Some challenges in analysis of costs

• A proportion of the population can usually be expected to incur no costs during a
typical study period.

• Non-zero cost observations are typically skewed to the right; their distribution may
be approximated by a log-normal distribution (Diehr et al., 2000; Annual Reviews).

• Health care costs typically exhibit heteroscedasticity.
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Focus on population means

• Although it is a common practice to use the median instead the mean as the
measure of central location in skewed data, many applications do call for the use
of means.

• This is particularly common in the analyses of medical cost data, because the
mean can be used to recover the total cost, which reflects the entire expenditure
on health care in a given patient population.
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Misuse of methods for analysis of costs in medical literature

• Zhou et al. (1997a, Annals of Internal Medicine) reviewed statistical methods in
studies of medical costs published in medical journals between January, 1991 to
January, 1996 and found that at least 26% of the studies might have wrong
conclusions.

• Barber and Thompson (1998, British Medical Journal) critically reviewed the
statistical methods used in analysis of health care costs in randomized trials, and
they found that in at least two thirds of the published papers, the main conclusions
regarding costs were not justified.
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Some newly developed statistical methods

• One population

• Two populations

• Three or more populations

• Regression models.
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Statistical problem in one population

• Let W1, . . . , Wn be a random sample from a skewed distribution with mean θ and
variance τ2. We are interested in point and interval estimators for θ.
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Point estimators of θ

• Let W1, . . . , Wn be a random sample from a skewed distribution with mean θ and
variance τ2. We are interested in point and interval estimators for θ.
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Point estimators of θ, cont

Assuming that Y = log W ∼ N(µ, σ2) (Zhou, 1998, Stat Med), we have the following
estimators for θ.

• The sample mean, W̄ .

• the ML estimator:

exp(Ȳ +
m

2(m + 1)
S2),

where m = n − 1, Ȳ and S2 are the sample mean and variance of Y1, . . . , Yn.

• A uniformly minimum variance unbiased (UMVU) estimator:

exp(Ȳ )gm(S2/2),

where

gm(t) =
∞X
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• A conditionally minimal MSE estimator:

exp(Ȳ )gm(
m − 3

2m
S2).
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Results

• After deriving the mean square errors of the four estimators, we obtained the
following results:

• The standard estimator, the sample mean, has the largest MSE.

• We recommend the use of the ML estimator when skewness is not high.

• Otherwise we recommend the use of the conditionally minimal MSE estimator.

• Future research problem: searching for better estimators, particularly when the
log-normal distribution does not hold.
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Interval estimation of θ

Assume that Yi = log Wi ∼ N(µ, σ2). A commonly used (naive) interval:

• Construct a confidence interval based on log-transformed outcome, Yi’s,
Ȳ ± Z1−α/2

S√
n

.

• Transform the interval back to the original outcome,

exp(Ȳ ± Z1−α/2
S√
n

).

• Since this interval is for exp(µ), not for θ, the naive interval is biased.
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Interval estimation of θ, based on the original data

• Large-sample central limit theory:

W̄ ± Z1−α/2

√
bτ2n,

where W̄ and bτ2 are the sample mean and variance of the original observations,
Wi’s.

• Student’s interval of θ, based on the original data:

W̄ ± t1−α/2,n−1

√
bτ2n,
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New Interval One

• Note that log(θ) = µ + σ2/2.

• The biased corrected ML estimator of log θ: Ȳ + S2/2 with the variance estimate,
S2/n + S4/(2m).

• a 1 − α level confidence interval for θ:

exp(Ȳ + S2/2 ± Z1−α/2

s
S2

n
+

S4

2(n − 1)
).

• A simulation study suggests this interval has good coverage probability (Zhou and
Gao (1997, Stat in Med)).

• Or, the modified version (Olsson, 2005, Journal of Statistical Education):

exp(Ȳ + S2/2 ± t1−α/2,n−1

s
S2

n
+

S4

2(n − 1)
).

• The modified version outperforms the original one when the sample size is small.
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Generalized confidence intervals

• Krishnamoorthy and Mathew (2003) proposed an interval for θ using the idea of
generalized confidence intervals ( Journal of statistical planning and inference,
115, 103-121)
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Simulation study

• Olsson (2005) compared the performance of the naive approach, the new interval
approach, the modified method with t instead of z as multiplier, the generalized
confidence intervals, and the large-sample central limit method.

• The large-sample method gives a consistently lower coverage than the nominal
level.

• The easy to compute new and modified confidence intervals perform well with the
modified method being better in small sizes.

• The generalized confidence interval approach also works well; a small
disadvantage is that it requires a computer to simulate the sampling distribution.
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A real example

• We illustrate the method using data from a study of the effect of obesity on hospital
charges following knee replacement (KR) procedures.

• This dataset consists of hospital charges for 355 obese patients following KR
operations.

• The distribution of costs was skewed significantly toward higher cost patients, and
the log transformed data approximate a normal distribution.

• A formal Shapiro-Wilk test for the normality on the log-transformed data gives a
p-value of 0.25.
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Results

The 95% confidence intervals for the mean of hospital charges:

• The naive method,

[$8, 839.6, $9, 363.7]

• The new method,

[$9, 326.0, $9, 893.2]
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A general skewed distribution

• If the distribution of Wi is unknown, some modified t-intervals that have achieved
limited success have been proposed using an Edgeworth expansion of the
standard t-statistic.
◦ Here are some references: Hall (1992, Biometrika) Sutton (1993, JASA) Chen

(1995, JASA), Zhou and Gao (2000, Amer. Statist.).

• Future research: finding better non-parametric intervals
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Statistical problem in one population with additional zeros

• Let W1, . . . , Wn be a random sample from a lognormal distribution containing
additional zero values. That is, if Wi > 0, logWi has N(µ, σ2).

• Construction of an interval for θ = E(Wi) = P (Wi > 0)E(Wi | Wi > 0).
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Statistical problem in one population with additional zeros

• Let W1, . . . , Wn be a random sample from a lognormal distribution containing
additional zero values. That is, if Wi > 0, logWi has N(µ, σ2).

• Construction of an interval for θ = E(Wi) = P (Wi > 0)E(Wi | Wi > 0).
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Interval estimation

• Owen and DeRouen (1980, Biometrics) derived a minimum variance unbiased
estimator (MVUE) confidence interval for θ.

• Zhou and Tu (2000, Biometrics) have proposed a percentile-t bootstrap interval
based on the sufficient statistics, a biased-corrected maximum likelihood (ML)
estimation using normal approximation, and an interval based on the signed
log-likelihood ratio test statistic. The bootstrap and likelihood ratio confidence
intervals were recommended for means of lognormal data with zeros. But the
methods perform not so well in very small sample situations.

• Tian (2005, Stat in Med) proposed an alternative generalized inference approach
for confidence interval estimation and hypothesis testing.
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Two populations without any zeros

• Wi1: the outcome variable of the ith patient in the first sample, i = 1, . . . , n1. Wi2:
the outcome variable of the jth patient in the second sample, i = 1, . . . , n2.
Mj = E(Wij), and σ2

j = V ar(Wij).

• Assume that Xij = logWij ∼ N(µj , σ2
j ).

• The null hypothesis of interest is H0 : M1 = M2.
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Some existing methods

• Student’s test on Wij ’s; it is valid when both n1 and n2 are large.

• Wilcoxon non-parametric test, based on Wij ’s

• Student’s test on logWij ’s

• Two-sample bootstrap test.
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A simple valid test

• Zhou et al (1997, Biometrics) proposed the following test statistics:

Z =
bµ2 − bµ1 + (1/2)(S2

2 − S2
1)r

S2

1

n1
+

S2

2

n2
+ (1/2)(

S4

1

n1−1
+

S4

2

n2−1
)

,

where bµj and S2
j are the jth sample mean and variance.

• The two-sided p-value = 2Φ(− | Z |).

– p. 24/78



Simulation results

• The Z-score method has the observed type I error rate that is the closest to the
pre-set nominal level even with small sample sizes (n1 = n2 = 25).

• The type I error rates of the other existing four tests are all larger than the nominal
level and become larger as the difference in two skewness increases.

• With unequal sample sizes, the Z-score method has a greater advantage over the
other tests.
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More complicated tests

• Modified signed Likelihood ratio tests for the ratio of means of two independent log
normal distributions (Wu et al, 2002).
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Two extensions

• Zhou and Tu (2000, Computational Statistics & Data Analysis) proposed new
confidence intervals for the difference in and the ratio of the means of cost data
with additional zeros.

• Zhou et al. (2000, Stat in Med) proposed new tests for comparing means of health
care costs in a paired design study.
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Three or more populations with additional zeros

• Let W1j , . . . , Wnjj be a random sample from the jth population containing
additional zeros and Mj = E(Wij), j = 1, . . . , K.

• Assume that for Wij > 0, Yij = logWij ∼ N(µj , σ2
j ). The null hypothesis of

interest is H0 : M1 = . . . = MK .
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New Tests

• Zhou and Tu (1999, Biometrics) proposed a computationally more complicated
likelihood ratio test.

• Tu and Zhou (1999, Stat in Med) proposed a computationally simple Wald-type
test.

• Simulation results suggest (1) that the likelihood ratio test has the best type I error
rate (closest to the nominal level), and is closely followed by the Wald test, (2) that
for unequal sample sizes, the likelihood ratio test has better coverage accuracy
than the Wald test, and (3) that when the sample sizes are large, the type I error
rates of the two tests are quite close to the nominal level.
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Regression models for costs

• We are interested in the effect of patient-level factors (such as patients’ medication
compliance and patients¡ R© satisfaction with their health care providers) on health
care costs of patients.
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Existing regression models for skewed data

In statistical literature, there are four common ways of modeling skewed cost data.

1. The standard linear regression model with Ordinary least squares (OLS) without
any transformation.

2. The Cox proportional hazards model (Dudley et al, 1993).

3. A parametric skewed distribution family for ǫ, leading to generalized linear models
with an exponential family (Blough et al (1999)).

4. Transformation model so that transformed costs have a particular type of
distribution, e.g. normal, homoscedastic, symmetric distribution, or remove
extreme skewness with more efficient estimation (Ruppert (2001)).
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Comments on OLS linear models

Advantages

1. Easy

2. No retransformation problem

3. Easy to compute marginal and Incremental effects

Disadvantages

1. Clear violation on normality and homoscedasticity.

2. Not robust in small to medium sized data set or in large datasets with extreme
observations

3. Can obtain predictions with negative costs
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Comments on Cox regression models

Advantages

1. Semi=parametric model without assuming the normality assumption.

Disadvantages

1. The regression coefficients in the Cox proportional hazards model pertain to the
hazard ratio, it is difficult to interpret them in the context of health care costs
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Comments on GLM

Advantages

1. No retransformation problems

2. Gains in precision from estimator of the assumed model holds

3. Consistent even if the variance function is misspecified.

Disadvantages

1. Can suffer substantial precision losses if heavy-tailed (log) error term (i.e.,
log-scale residuals have high kurtosis (> 3) or if variance function is misspecified
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Extension of GLMs

• A non-parametric GLM by Chiou and Muller (1998, JASA): g(E(W )) = X′β, and
V ar(W ) = σ2(E(W )), where both g(.) and σ(.) are unknown functions.

• A semi-parametric GLM by Basu and Rathouz (2005, Biostatistics):
gλ(E(W )) = X′β, and V ar(W ) = h(E(W ); γ1, γ2), a parametric function of the
mean with two unknown parameters. Here gλ(y) is a Box-Cox transformation
function, and h(E(W ); γ1, γ2) = γ1(E(W ))γ2 , a power family or
h(E(W ); γ1, γ2) = γ1E(W ) + γ2(E(W ))2, a quadratic variance function.
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Comparison of these two approaches

• Usually, generalized linear models and transformation models lead to different
non-linear regression relationships between E(W ) and X.

• Which model is correct will depend on a particular application and whether we
have additive or multiplicative errors.

• Unlike the transformation model, with the GLM we do not have the problem of
re-transformation bias.

• The GLM addresses skewness by the choice of a distribution family, a commonly
used one being a Gamma, Poisson, or negative binomial distribution, and tackles
the non-linearity by the choice of its link function, commonly used ones being a log
or square root link.

• Estimation of GLM still only use the first two moments of cost data, ignoring the
information from the third and higher moments.
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Advantages of transformation models over GLM

• When the expected value of W is related to a vector of covariates, X, in a complex
way, often a transformation of W will simplify this relationship by inducing
linearities or removing interactions (Ruppert, 2000). Suppose that

W = β0Xβ1

1 . . . X
βJ

J + ǫ,

a complicated non-linear model, where ǫ is a small random error. Because
log(µ + ǫ) ≈ log(µ) + ǫ/µ for small values of ǫ, we obtain that log(W ) follows
approximately the linear model

log(W ) = β∗
0 + β1X∗

1 + . . . + βJX∗
J + (β0Xβ1

1 . . . X
βJ

J )−1ǫ,

where β∗
0 = log(β0), and X∗

j = log(Xj).
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Advantages of transformation models over GLM, cont

• The transformation method can induce a particular type of distribution or remove
extreme skewness so that more efficient estimators and more appropriate plotting
can be obtained. For example, for highly skewed health care costs, where most of
the data are crowded into the lower left-hand corner of the plot, it is hard to see
what type of regression model is appropriate between the outcome and a predictor.

• A transformation that can induce the symmetric distribution of transformed data
would make it much easier to see a relationship between the transformed outcome
and a predictor.

• The transformation method for estimating E(W ) uses information from higher
moments.
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Re-transformation bias

• One complication in the use of a transformation model is possible
re-transformation bias.

• As we are interested in dollar scale not in transformed-dollar scale, we have to
transform regression results on the transformed scale back to results on original
dollar-scale.

• If this re-transformation is not properly done, we may introduce bias in our results
called "re-transformation bias".
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Existing semi-parametric transformation model

• Welsh and Zhou (2006) and Zhou and Cheng (2008) proposes the following
semi-parametric transformation model to analyze skewed and heteroscedastic
variance data:

H(Y ) = X′β + σ(X′γ)ε, (0.1)

where Y is a scalar dependent variable, H(·) is a known increasing transformation
function, σ(·) is the known variance function, X is a q × 1 vector of observed
explanatory variables with the first element being 1, β and γ are vectors of
unknown parameters, and ε is an error term that has a unknown distribution F with
mean 0 and variance 1. Here the error term ε is independent of X.

• In the model (0.4), we allow the effect of X on the mean and variance to be
different.
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Software

• We developed a computer program in R.

• It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS.

• Our program can run on R 2.0.0 and later releases.

• The program is available from http://faculty.washington.edu/∼azhou/Heter/.
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Software, cont

• Our program reads in patient data files in plain text format

• Estimates regression parameters bα, bβ, and bθ
• Then computes both the externally weighted estimator bu∗ and the internally

weighted estimators bu of mean on the original scale.

• Welsh and Zhou (2005) showed that both the internally weighted estimator and the
externally weighted estimator have very similar bias and MSE.

• While the internally weighted estimator has slightly smaller bias then the externally
weighted estimator, the externally weighted estimator has slightly smaller MSE
than the internally weighted estimator.

• Therefore, we give both estimators so that users can choose which one to use.
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Software, cont

• In addition to these two mean estimators, our program also outputs their statistics,
including standard deviation, asymptotic confidence interval, and an option for
bootstrap confidence interval.

• Our program can run in both interactive mode and batch mode.
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An example

• We illustrate the use of our computer program in a data set on hypertension
patients from a prospective drug utilization review (DUR) study.

• A goal of our analysis is to estimate the average of in-patient charges of a patient
given his/her age, gender, race, and general health status as measured by SF-36.

• Since the in-patient charges are zero for some patients, we apply a two-stage
heteroscedastic regression model to our data set.
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An example, cont

• Let Yi be the in-patient charge of the ith patient, and corresponding covariates are
defined as follows.

• Xi1 is the age of the patient; Xi2 represents the patient’s race (Xi2 = 1 for
Caucasians and Xi2 = 0 for African Americans); Xi3 represents the gender of the
patient (Xi3 = 1 for males and Xi3 = 0 for females); Xi4 is the score based on
100 representing ith patient’s general health status.
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An example, cont

• For i = 1, . . . , n, we model the probability of non-zero in-patient charge by the
logistic regression model,

log
P (Yi = 0 | Xi1, . . . , Xi4)

P (Yi > 0 | Xi1, . . . , Xi4)
= α0 + α1Xi1 + . . . α4Xi4, (0.2)

• and we model the conditional magnitude of the positive charges Yi given Yi > 0

by the log-transformed, heteroscedastic linear regression model

log Yi = β0 + β1Xi1 + . . . + β4Xi4 +exp{(θ0 + θ1Xi1 + . . . + θ4Xi4)/2}ǫi. (0.3)
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Input data

0 56 0 0 32

0 64 1 1 25

1952.05 68 1 1 42

0 54 1 1 50

......
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Input data

Please specify the name of input data file: example.dat Please

choose method for estimating parameters beta and theta

1: MLE estimator, maximize log-likelihood function (default)

2: MLE estimator, solve estimating equation

1

Do you want to give initial guess of parameters (default: all

zeros)? (Y/N)n alpha.0 = 0 0 0 0 0 beta.0 = 0 0 0 0 0 gamma.0 = 0 0

0 0 0

Please specify (1-r) confidence interval (default r=0.05):

r =

r = 0.05

Do you want to calculate bootstrap confidence interval? (Y/N)y

Please specify bootstrap sample size (default 100): 100

Do you want to assign seed for random number generator? (Y/N)n

Seed not assigned.
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Commands

Please specify the name of input data file: example.dat

Please choose method for estimating parameters beta and theta

1: MLE estimator, maximize log-likelihood function (default)

2: MLE estimator, solve estimating equation

1

Do you want to give initial guess of parameters (default: all

zeros)? (Y/N)n alpha.0 = 0 0 0 0 0 beta.0 = 0 0 0 0 0 gamma.0 = 0 0

0 0 0

Please specify (1-r) confidence interval (default r=0.05):

r =

r = 0.05

Do you want to calculate bootstrap confidence interval? (Y/N)y

Please specify bootstrap sample size (default 100): 100

Do you want to assign seed for random number generator? (Y/N)n

Seed not assigned.
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Commands, cont

Please input covariates values: 1: 55 1 0 50 Covariate = 55 1 0 50

Do you want to see estimation results for another covariate? (Y/N) y

Please input covariates values: 1: 65 1 0 50 Covariate = 65 1 0 50

Do you want to see estimation results for another covariate? (Y/N) n
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Results

estimator of parameter alpha = 1.513531 -0.008025662 0.4702371

0.3740364 0.007434743

std of alpha estimator = 0.7334805 0.01321834 0.3182745 0.2856736

0.006093177

estimator of parameter beta = 9.538691 -0.004213263 -0.8231364

0.02954837 0.003566381

std of beta estimator = 0.701519 0.0126878

0.3566817 0.2814012 0.005726485

estimator of parameter theta =

-0.9736211 0.05375912 -1.048779 -0.5785688 -0.01572478

std of theta

estimator = 0.9676426 0.01870368 0.4402539 0.3763115 0.00826068
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Results, cont

Source data file: example.dat Number of observations: 483

Number of covariates: 4

----------------------------------------------------------

Covariate = 2 2 2 2

Externally weighted estimator:

mean = 111.6968

standard deviation = 145.8094

95% confidence interval = [0, 397.478]

95% bootstrap confidence interval = [0.7717479, 3523.01]

Internally weighted estimator:

mean = 111.3817

standard deviation = 144.0542

95% confidence interval = [0, 393.7227]

95% bootstrap confidence interval = [0, 3539.867]

----------------------------------------------------------
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A new non-parametric transformation model

• We propose the following nonparametric transformation model to analyze skewed
and heteroscedastic variance data:

H(Y ) = X′β + σ(X′γ)ε, (0.4)

where Y is a scalar dependent variable, H(·) is a unknown increasing
transformation function, σ(·) is the known variance function, X is a q × 1 vector of
observed explanatory variables with the first element being 1, β and γ are vectors
of unknown parameters, and ε is an error term that has a unknown distribution F

with mean 0 and variance 1. Here the error term ε is independent of X.

• In the model (0.4), we allow the effect of X on the mean and variance to be
different.
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Identifiability Assumptions

• To make the model (0.4) identifiable, we need to make the
following assumptions.

• Like Horwitz (1996), we assume that there exists y0 such
that H(y0) = 0.

• Re-arrange X so that its first component X1 has the
absolute continuous density conditional on X2, . . . ,Xp. Let
β1 be the corresponding coefficient. | β1 |= 1.
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Some special cases

• Model (0.4) includes as special cases a large number of widely used and
extensively investigated models that make stronger assumptions than the ones
made in the paper about H and F .

• Linear regression models, log-linear regression models, the Cox proportional
hazard model, and accelerated failure time models

• Transformation models in which H is specified up to a vector of finite-dimensional
parameters (e.g.,Box and Cox, 1964; Bickel and Doksum, 1981)

• Transformation models in which F is specified up to a vector of finite-dimensional
parameters, and H is nonparametric (Cheng et al.1995, Dabrowska and Doksum
1988).
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Some notation

• Let {Yi, Xi, i = 1, · · · , n} be a random sample of (Y, X) that satisfies the model
(0.4).

• Denote Z1 = X′β , Z2 = X′γ, Z1i = X′
iβ, and Z2i = X′

iγ.

• Let G(·|z1, z2) be the cumulative distribution function (CDF) of Y conditional on
Z1 = z1 and Z2 = z2, and p(·, ·) be the probability density function of (Z1, Z2).

• Assume that H, F , and G are differentiable with all their arguments.

• Define h(y) = dH(y)/dy, f(y) = dF (y)/dy, p(y|z1, z2) = ∂G(y|z1, z2)/∂y, and
gj(y|z1, z2) = ∂G(y|z1, z2)/∂zj , j = 1, 2.
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Estimation method

• Since under the model (0.4), Y depends on X only through the index Z1 and Z2,
the model (0.4) implies that

G(y|z1, z2) = F (
H(y) − z1

σ(z2)
),

and we can show that p(y|z1, z2) = −g1(y | z1, z2)h(y).

• Denote g1(y, z1, z2) = g1(y|z1, z2)p(z1, z2) and
p(y, z1, z2) = p(y|z1, z2)p(z1, z2), we get

g1(y, z1, z2)h(y) = −p(y, z1, z2). (0.5)

• Hence we obtain that h(y) = −
Pn

i=1
p(y,Z1i,Z2i)P

n
i=1

g1(y,Z1i,Z2i)
, and

H(y) = −
Z y

y0

Pn
i=1 p(u, Z1i, Z2i)Pn
i=1 g1(u, Z1i, Z2i)

du. (0.6)

• The expression (0.6) forms the basis for the estimator of H proposed here.
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Estimation of H(.)

• From (0.6), we see that to derive an estimator of H(.), we need to estimate
p(z1, z2), G(y|z1, z2) and derivatives of G(y|z1, z2) when the values of β and γ

are given.
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Estimation of H(.), cont

• We estimate G(y|z1, z2) by the following kernel estimator:

Gn(y|z1, z2) =
1

nh1h2pn(z1, z2)

nX

i=1

I(Yi ≤ y)K1

„
Z1i − z1

h1

«
K2

„
Z2i − z2

h2

«
, (0.7)

where K1 and K2 be bounded and symmetric kernel functions with the support
[−1, 1] with h1 and h2 being bandwidths.

• Here pn(z1, z2) is the kernel density estimate of p(z1, z2), and is given by

pn(z1, z2) =
1

nh1h2

nX

i=1

K1

„
Z1i − z1

h1

«
K2

„
Z2i − z2

h2

«
. (0.8)
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Estimation of H(.), cont

• Since g1(y|z1, z2) = dG(y|z1, z2)/dz1, we obtain an estimator of g1(y|z1, z2) by
differentiating Gn(y|z1, z2) with respect to z1,

g1n(y|z1, z2) = ∂Gn(y|z1, z2)/∂z1. (0.9)

• Although p(y|z1, z2) is the probability density function of Y conditional on
Z1 = z1, Z2 = z2, it can not be estimated by ∂Gn(y|z1, z2)/∂y because
Gn(y|z1, z2) is a step function of y.

• Instead, we use the following kernel density estimator for p(y|z1, z2):

pn(y|z1, z2) =
1

nh1h2h0pn(z1, z2)

nX

i=1

K0(
Yi − y

h0
)K1

„
Z1i − z1

h1

«
K2

„
Z2i − z2

h2

«
, (0.10)

where K0 be bounded and symmetric kernel functions with the support [−1, 1]

with h0 being a bandwidth.
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Estimation of H(.), cont

By substituting (0.8), (0.9) and (0.10) into (0.6), we obtain the estimator Hn of H,

Hn(y) = −
Z y

y0

Pn
i=1 pn(u|Z1i, Z2i)pn(Z1i, Z2i)Pn
i=1 g1n(u|Z1i, Z2i)pn(Z1i, Z2i)

du. (0.11)
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Estimation of β and γ

• Since E((H(Y ) − Z1)2 | X) = σ2(X′γ), we can use the following estimating
equations to simultaneously estimate β and γ:

nX

i=1

(H(Yi) − X′
iβ)Xi

σ2(X′
iγ)

= 0, (0.12)

and

nX

i=1

˘
(H(Yi) − X′

iβ)2 − σ2(X′
iγ)
¯

Xi = 0, (0.13)

when given H.

• From the equation (0.12), we obtain a closed-form estimator of β:

βn =

 
nX

i=1

XiX
′
i

σ2(X′
iγ)

!−1 nX

i=1

XiH(Yi)

σ2(X′
iγ)

. (0.14)

– p. 62/78



Estimation algorithm of β, γ and H(·).

1. Selection of initial values.

(a) Initial values for β and H. We can still obtain consistent estimates for β and
H even we misspecify the variance function, and hence, we can obtain
reasonable starting values for β and H with estimates obtained under the
homoscedasticity model,

H(Y ) = X′β + σε. (0.15)

Under this homoscedastic model, we can estimate β by the maximum rank
correlation (MRC) method proposed by Han(1987); that is, we estimate β with
eβ = argmaxβWn(β), where Wn(β) =

P
i6=j{Yi > Yj}{X′

iβ > X′
jβ}. And

then we can estimate H using the proposed method with large enough h2 so
that K2( Z2i−z2

h2
) = 1 for any z2 and i = 1, · · · , n.

(b) Initial values for γ. Given β and H, we estimate γ by the equation (0.13).

2. Estimation of H(.). Given β and γ, we estimate H by (0.11).

3. Estimation of β and γ. Given H, we estimate β and γ by (0.14) and (0.13).

4. Iteration. Repeat Steps 2 and 3 until two successive values of β and γ don’t differ
significantly.
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Prediction of µ(x) = E(Y | X = x)

• For given covariates x of a patient, we are interested in predicting µ(x). Under the
model (0.4), we can write

µ(x) =

Z
H−1(xT β + σ(xT γ)u)dF (u). (0.16)

•

• We propose to estimate F by the empirical distribution bF of the standardized

residuals, bei =
bH(Yi)−XT

i
bβ

σ(XT
i

bγ)
, where bH, bβ and bγ are the estimators of H, β and γ.
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Non-parametric estimator

• Therefore, replacing H, β, γ, and F by bH, bβ, bγ, and bF in (0.16), we obtain the
following estimator of µ(x):

bµ(x) =
1

n

nX

i=1

bH−1

 
x′bβ + σ(x′bγ)

bH(Yi) − X′
i
bβ

σ(X′
ibγ)

!
. (0.17)

• This estimator can be considered as an extension of Duan’s smearing estimator
(Duan, 1982) to the heteroscedastic transformation model with the unknown
transformation and error distribution functions.
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Simulation studies

• We conduct a simulation study to assess the finite-sample performance of the
proposed method.

• Unlike the existing parametric or the single-semiparametric models, where one of
the transformation and error distribution functions is specified, the validity of our
method does not rely on parametric specifications for both the transformation and
error distribution functions.

• Hence we expect our estimators of the untransformed scale expectation and
regression parameters are more robust than the ones derived under the existing
parametric and single-semiparametric methods.

• We also want to know whether the added robustness is gained at the expense of
reduced efficiency.
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Simulation studies, cont

• To investigate this, we compare the performance of the proposed method with the
following models:

1. the CTCD model, where the transformation and error distribution functions are
correctly specified by a parametric model, the case that serves as the gold
standard,

2. the CTMD model, where the transformation is correctly specified, but the error
distribution is misspecified, and

3. the MTCD model, where the error distribution is correctly specified, but the
transformation function is misspecified. The CTCD model is used to
investigate the efficiency of the proposed method, and the MTCD and CTMD
models are used to investigate the robustness of the proposed method.

4. Two existing methods, Basu’s method and Chiou’s method.
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First simulation study

• In our first simulation study, we consider a true transformation regression model
with one binary covariate, one continuous covariate, and a non-logarithm
transformation function. For n = 2000 subjects, we generate covariates X1 and
X2 from the binomial distribution with p = 0.5 and the uniform distribution on [0, 2],
respectively, the random error ε from the standard normal distribution. We let our
outcome follow the following transformation model:

H(Y ) = β0 + X1β1 + X2β2 +
p

0.4 + γX1ε,

where H(y) = Φ−1{exp(y − 10)}, β0 = −1.8, β1 = 1.4 β2 = 1.4, and γ = −0.35.

• We assess the performance of the various estimators of the regression
parameters and the untransformed scale expectation in terms of standard
deviation (SD), bias, and the root of mean squared error (RMSE).

• In the MTCV model, the transformation function is misspecified as a function
H(y) = exp(y − 10).
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Simulation studies, cont

• We present the results of RMSE and related quantities for the untransformed scale
expectation at the combination of x1 = 1, 1.5, 2 and x2 = 0.5 in Table below based
on 200 simulated data sets.
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First simulation results on predicted means

x1 x2 Average value Method Bias SD RMSE

0 0.0 6.5023 Proposed 0.1362 0.2166 0.2558

CTCV 0.0015 0.0884 0.0884

CTMV 0.0022 0.0874 0.0874

MTCV 2.8103 0.0182 2.8104

CHIOU 0.8027 0.2261 0.8340

BASU Failed to converge

0 1.0 8.7948 Proposed -0.0062 0.0420 0.0424

CTCV -0.0030 0.0277 0.0279

CTMV -0.0015 0.0253 0.0253

MTCV 0.7702 0.0227 0.7705

CHIOU -0.3023 0.0627 0.3087

BASU Failed to converge
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First simulation results on predicted means, cont

x1 x2 Average value Method Bias SD RMSE

1 0.0 8.9171 Proposed 0.0384 0.0334 0.0509

CTCV 0.0015 0.0358 0.0358

CTMV 0.0019 0.0349 0.0350

MTCV 0.6480 0.0050 0.6480

CHIOU 0.1796 0.1890 0.2607

BASU Failed to converge

1 1.0 9.8181 Proposed -0.0057 0.0088 0.0105

CTCV -0.0001 0.0021 0.0021

CTMV -0.0001 0.0021 0.0021

MTCV -0.0724 0.0047 0.0726

CHIOU -0.0637 0.0227 0.0677

BASU Failed to converge

– p. 71/78



Conclusion

• Among the two existing GLM-based estimators, we found that Baus & Rathouz’s
procedure failed to converge for all of 200 simulated samples, suggesting that the
Baus & Rathouz’s estimator is not stable.

• Chiou and Muller’s estimator has much larger bias and SD than our newly
proposed estimator, and is badly biased.

• By comparing results among the parametric CTCV, CTMV, and MTCV estimates,
we conclude that misspecification of the transformation function can lead to large
bias and large RMSE while misspecification of variance function has minimal effect
on bias and RMSE.

• Comparing our new estimator with the gold standard estimator, the CTCV
estimator, derived under correctly specified transformation and variance function,
the empirical efficiency of our new estimator is around 60% on average.

– p. 72/78



Second simulation study

• In our second simulation study, we considers a true transformation regression
model with a logarithm transformation function, a constant variance, and an
asymmetrical distribution error.

• For n = 2000 subjects, we generate covariates X1 and X2 from the binomial
distribution with p = 0.5 and the uniform distribution on [0, 1], respectively, and the
random error ε from the Gamma distribution with scale of 1 and shape of 4.

• We let our outcome follow the following transformation model:

H(Y ) = β0 + X1β1 + X2β2 + ε/2,

where H(y) = 2 log(y), β0 = −8, β1 = 4, and β2 = 4.
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Second simulation results on predicted means

x1 x2 Average cost Method Bias SD RMSE

1 0.0 0.4287 Proposed 0.0276 0.0191 0.0336

CTCV -0.0012 0.0125 0.0126

MTCV 0.2068 0.0292 0.2088

BASU* -0.0035 0.0176 0.0180

CHIOU** 0.1308 0.0639 0.1456

1 0.5 1.1653 Proposed -0.0113 0.0496 0.0509

CTCV -0.0038 0.0238 0.0241

MTCV 0.2009 0.0418 0.2052

BASU* -0.0078 0.0265 0.0276

CHIOU** 0.1470 0.0466 0.1542

* The procedure failed to converge in 37 out of the 200 samples, the summaries are

based on the 163 remaining samples. ** The procedure failed to converge for 23 out of

the 200 samples, the summaries are based on the 177 remaining samples.
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An example

• The sample used here was from a study on the effectiveness of the Improving
Mood-Promoting Access to Collaborative Treatment (IMPACT) collaborative care
management program for late-life depression (Unutzer, et al., 2002).

• In this talk, we focus on the total outpatient cost in the first year (Y ), the mean and
standard deviation of Y are $6258.442 and $5065.507, respectively, and the
coefficients of skewness and kurtosis of Y are 3.36 and 26.94, respectively.

• We fit the data using our model with the outcome variable being outpatient costs in
the first year, and the two independent variable, X1 and X2.

• Here X1 was the binary treatment indicator, and X2 was the mean score of the 20
depression items from the Symptom Checklist.
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An example, cont

• We set the variance function to be a polynomial function σ2(x; p) =
Pp

k=0 αkxk,
p = 1, 2, · · · , where p was chosen to minimize the following GF (p):

GF (p) = min
γ

nX

i=1

“
H̃(Yi) − X′

iβ̃
”2

− σ2(X′
iγ; p)

ff2

,

where eH and β̃ were the initial values of H and β, respectively.

• The results showed that GF (p) did not substantially change with p.

• Hence to assure σ2(x) ≥ 0, here we selected σ2(x; p) = x2.
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The estimates of the expected costs of a patient

Proposed CHIOU BASU

Rand SCL Expection(se) Expection(se) Expection(se)

1 0.04 5008.6(444.4) 5239.9(74.7) 5334.8(213.0)

0 0.04 4424.0(500.6) 4639.4(10.5) 4991.9(390.1)

1 1.50 6916.1(392.9) 6779.1(26.7) 6717.8 (57.6)

0 1.50 6172.1(216.4) 6177.7(40.7) 6167.4(2.2)

1 3.20 9177.3(1156.9) 8574.4(31.9) 9802.8(3921.1)

0 3.20 8349.5(816.3) 7971.8(97.5) 8622.3(1668.5)
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The estimated transformation and its 95% confidence limits for IMPACT data.
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