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Abstract 
 
The standard approach to conducting verification analysis using complex 
physics problems with no exact solution presents two significant limita-
tions. Computational solutions that converge by oscillation are not calcu-
lable and the technique is limited to a simple error ansatz. An improve-
ment to the current method is presented. The absolute value of the point-
wise error is calculated, allowing for local oscillatory convergence. The 
equations are then solved using Newton’s method for the convergence 
constants and an estimated exact solution simultaneously. This procedure 
allows for a more complex ansatz if desired. The improved method was 
tested on four pure hydrodynamics problems using the Eulerian code 
RAGE. A linear acoustic wave and a 1D Riemann problem have exact 
mathematical solutions, which were compared to the estimated solution. A 
nonlinear acoustic wave and 2D Riemann problem have no exact solu-
tions, but the estimated solution was shown to be useful in providing a 
more accurate solution on a coarse grid than the calculated solution. In ad-
dition, the method was able to calculate the convergence of oscillatory 
points at the discontinuities. 
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1. Introduction   
 
An important element of verification activities is the quantitative evaluation and analysis of 
the error between computed and exact solutions for well-defined problems.1 This approach, 
known as code verification, is based on several assumptions that constrain the nature of the 
analysis. The quantitative analysis is based on an ansatz for the discretization error; equally 
important is the further supposition that an exact solution is known and available for the 
problem of interest. An alternative approach, calculation verification, quantifies the self-
convergence through an error ansatz with an estimated exact solution standing in for the 
exact solution.2 Normally, the estimated exact solution is not calculated directly. Both 
approaches provide quantitative convergence rates for a code on the problem of interest. 
These approaches, though limited, have proved to be fruitful methods both for identifying 
code shortcomings (e.g., software bugs or limitations of numerical methods) and for 
providing quantitative evidence in support of software quality. 
 
In this investigation, we extend the standard verification constraints discussed above. In 
particular, we do not assume that an exact solution exists, and we modify the error ansatz 
accordingly to allow calculation of oscillatory convergence. By oscillatory convergence, we 
are referring to the case where the computational solution approaches closer and closer to 
the exact solution as the zoning is refined, but sometimes with computational results of 
greater magnitude and sometimes with results of smaller magnitude than the exact solution. 
In addition, instead of solving the ansatz analytically, we solve it using Newton’s method. A 
computational solution allows for a more complex ansatz, if desired. As a consequence of 
the solution method, one calculates a pointwise estimation of the “exact” solution that is 
mathematically consistent with the convergence parameters. Viewed alone, the 
modifications we propose are relatively minor (indeed, trivial) extensions of the standard 
approach. This approach may be particularly useful in situations that could contain large 
numbers of oscillatory converging points, such as phenomena containing discontinuities 
(e.g., shocks). 
 
As part of this report, we seek to explore the accuracy of the estimated solution by applying 
the procedure to problems for which an exact solution does exist. This comparison provides 
quantitative—albeit limited—guidance as to how the simulation code may behave in the 
case in which an exact solution does not exist, examples of which we also examine. There 
are differences in the convergence rates calculated using an estimated solution and an exact 
solution. Understanding the difference between the estimated and exact solutions is 
therefore critical to understanding the error of convergence rates calculated without an exact 
solution. 
 

                                                
1 Another aspect of code verification is the Method of Manufactured Solutions [Sal00,Roa02, Knu03], 
which we do not discuss. There are additional elements of verification, related primarily to software issues 
(including, e.g., code coverage metrics). We limit our investigation to the “code physics verification.”  For 
extensive reviews of verification, see [AIAA98, IEEE98, Roa98a, Roa98b, Roa98c, Obe03, ASME04, 
Roy05]. 
2 Note that calculation verification is distinct from code comparison [Tru03], which, as almost always prac-
ticed, is not part of verification per se. 
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The balance of this report is structured as follows. In §2, we review standard convergence 
analysis. This information forms the basis for the development in §3 of the extended 
convergence analysis that is the foundation of our work. We present results of this approach 
on a small set of gas dynamics problems in §4; these problems include both 1-D and 2-D 
Cartesian geometry problems, some having smooth solutions and others exhibiting 
discontinuities. We summarize this research and conclude in §5. 
 
2. Standard Verification Convergence Analysis 
 
Throughout this report we consider the evaluation of the numerically computed solution to 
partial differential equations that depend on both space x and time t. Although the 
applications we consider in §4 are restricted to the dynamics of a single, inviscid, non-heat-
conducting, polytropic gas, the method we develop applies to numerical solutions of space- 
and time-dependent partial differential equations (PDE). We first restrict ourselves to the 1-
D case, i.e., where there is only a single spatial variable. In this case, the standard error 
ansatz regarding the behavior of pointwise discretization error at position x and time t is 
given by [Kam02], 
 

! 

" *
x,t( ) # " x,t( )

$x

$t
 =  E

0
x,t( )  +  A x,t( ) $x( )

q x, t( )
 +  B x,t( ) $t( )

r x, t( )

+  o $x( )
q x, t( )

, $t( )
r x, t( )( ).

 (2-1) 

 
Because Eq. (2-1) has been written pointwise, all variables are functions of position and 
time. In this expression, ξ * is the exact solution for some physical quantity such as density 
or pressure, and 

! 

"#x
#t  is the computed solution for the same physical quantity obtained on a 

grid with characteristic discrete spatial scale ∆x and characteristic discrete time scale ∆t. A 
fixed grid and time step are assumed with no spatial or temporal refinement as the 
simulation proceeds. The zeroth order error is designated E0, q is the spatial convergence 
rate, r is the temporal convergence rate, and A and B are the corresponding convergence 
prefactors. The expression 

! 

o(("x)
q
,("t)

r
) represents higher order terms that approach zero 

faster than (∆x)q and (∆t)r as both ∆x  and  ∆t  become vanishingly small. 
 
In the following development, all higher order terms are assumed small due to a small grid 
spacing and are neglected. Previous experience suggests that temporal errors are small 
compared to spatial errors, so the temporal errors are neglected as well. For the moment, we 
assume that the exact solution is unknown and one must solve for it. We refer to an exact 
solution that is calculated from the error ansatz as an estimated solution and designate it by 

! 

ˆ " . Rearranging the expression with all the unknowns on the right hand side and with the 
understanding that the computational value and all unknowns are functions of (x,t), 
 

! 

"#x  =  ˆ " $ E
0

 $  A #x( )
q
.  (2-2) 

 
We assume consistency of the numerical method with the continuous equations and that it 
converges to the exact solution, in which case there is no zeroth order error. Eq. 2-2 then 
becomes  
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! 

"#x  =  ˆ "  $  A #x( )
q
.  (2-3) 

 
When the estimated solution is calculated, it will effectively contain any zeroth order, 
temporal and all higher order error terms that have been neglected. The nature of the 
estimated solution is, therefore, a strong function of the error ansatz selected. The estimated 
solution in Eq. (2-3) will produce a value corresponding to the limit for the computational 
solution with infinitely small spatial zoning, but with a finite temporal discretization. Some 
spatial errors will persist through the higher order spatial terms that have been neglected. 
The estimated solution is not equivalent to an exact, analytical solution. 
 
The error ansatz (2-3) is valid for any geometry in one dimension, but may also be used for 
two and three spatial dimensional problems. The only caveat to higher dimensions is that the 
ansatz is limited to Cartesian geometry with all of the discretizations along different 
dimensions equivalent. For mesh geometries that are not Cartesian, it may not be possible to 
have equal discretizations between the different dimensions. For example, in spherical 
geometry, Δθ is inherently different than Δr. With minor modification, the ansatz may be 
extended to other geometries in multiple dimensions or to discretization schemes without 
equivalent spacing. 
 
With three unknowns, three calculations of different zoning completely specify a solution 
for the ansatz, with coarse (c), medium (m), and fine (f) zoning, 
 

! 

"c  =  ˆ "  #  A $xc( )
q
, "m  =  ˆ "  #  A $xm( )

q
, " f  =  ˆ "  #  A $x f( )

q
. (2-4) 

 
In order to solve Eqs. (2-4), the calculated values are mapped onto the coarse grid by spatial 
averaging. Assuming that the zoning ratios (σ defined in Eq. 2-5 below) are the same, 
 

! 

"xc =#"xm =# 2"x f ,   (2-5) 
 
and eliminating the estimated solution, Eqs. (2-4) become 
 

! 

"m #"c = A$x f
q% q

(% q
#1), " f #"m = A$x f

q
(% q

#1). (2-6) 
 
The solutions to Eqs. (2-6) are 
 

! 

q = log
"m #"c
" f #"m

$ 

% 
& & 

' 

( 
) ) / log *( ), A =

" f #"m
+x f

q (* q #1)
, ˆ " = " f + A+x f

q (* q #1). (2-7) 

 
The fundamental assumption of the ansatz is that error decreases as zone size decreases, 
 

! 

ˆ " #"c > ˆ " #"m > ˆ " #" f $ 0.  (2-8) 
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At any point in the mesh, the order of the numerical values of the physical variables output 
by the simulation, 

! 

"c,  "m ,  and " f , from largest to smallest, may be in one of six possible 
sequences. In the two cases where the coarse calculation value is intermediate, 
 

! 

"m # "c # " f ,   or    

! 

" f # "c # "m ,  (2-9) 
 
then, there is no value for the estimated solution that satisfies Eqs. (2-8). In such cases, 
convergence may not be calculated for the cell. 
 
If the simulation values are increasing with Δx such that 
 

! 

" f < "m < "c ,  (2-10) 
 
then the ansatz (2-3) is valid and the solution space for the estimated solution in order to 
satisfy Eqs. (2-8) is 
 

! 

ˆ " # " f .  (2-11) 
 
Likewise, if the simulation values are decreasing with Δx, then the ordering of the 
simulation values and the solution space for the estimated solution are respectively given by, 
 

! 

" f > "m > "c,
ˆ " # " f .   (2-12) 

 
We refer to the previous two cases as monotonic convergence. Two possibilities remain, 
which represent oscillatory convergence. They and their solution spaces for the estimated 
solution are 
 

! 

"m > " f > "c,
"m + " f

2
> ˆ " >

"m + "c

2
,

"c > " f > "m ,
"m + " f

2
< ˆ " <

"m + "c

2
.

 (2-13) 

 
It is possible for all three computational points to reside outside the allowable solution space 
with oscillatory convergence. Although oscillatory convergence satisfies Eqs. (2-8), the 
standard ansatz does not allow it. When solving for q with oscillatory convergence, one 
finds the argument of the natural logarithm to be negative in Eqs. (2-7). Typically, only 
points with asymptotic convergence have been calculated. Most sets of points in the 
majority of simulations do not exhibit oscillatory convergence, so calculating monotonic 
convergence has proven an acceptable method for most problems. Unfortunately, oscillatory 
convergence may occur in some problems, e.g., at shock and discontinuity boundaries, and 
may therefore be important for non-smooth problems.  
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In addition to calculating pointwise convergence, global convergence rates may also be 
calculated using various global norms. The global norm ||•|| is a functional that maps its 
argument to the non-negative real numbers according to the definition [Hag88], 
 

  

! 

y
"
# y1

"
+ y2

"
+K yN

"( )
1/"

,  (2-14) 

 
where y is some vector and α is an integer. The norm is effectively a measure of the length 
of the vector. In the case of simulations, the vector is the collection of values from each 
computational cell with a total of N cells on the coarse grid. Once the estimated solution has 
been determined, the norm for the computational error may be calculated, 
 

! 

ˆ " #"$x
%
& ˆ " x

i
,t
i( ) #"$x xi,ti( )

%

i=1

N

'
( 

) 
* * 

+ 

, 
- - 

1/%

.  (2-15) 

 
The particular norm should appropriately account for the nature of the functions being 
quantified, e.g., the L2 “energy” norm (α = 2) for smooth solutions and the L1 “total 
variation” norm (α = 1) for discontinuous solutions. The equations for global convergence 
may be written, 
 

! 

ˆ " #"c
$

= Ag%xc
qg , ˆ " #" f

$
= Ag%x f

qg .  (2-16) 

 
The g subscript on the convergence rate and prefactor is a reminder that they represent 
global values and are functions of time, but not of space. Taking σ to be the ratio between 
the coarse and fine zoning, the solutions to Eqs. (2-16) are, 
 

! 

qg  =  log ˆ " #"c
$

 #  log ˆ " #" f
$

[ ] log %( )  ,

Ag  =  ˆ " #"c
$

&xc( )
qg

.

  (2-17) 

 
Now we consider the pointwise case when the exact solution is known. Only two 
computational solutions are required to solve for convergence and the pointwise 
convergence relations become, 
 

! 

"* #"c = A$xc
q
, "* #" f = A$x f

q
,  (2-18) 

 
where the exact and calculated solutions, A and q are all functions of position and time. 
Rigorously, the exact solution at the center of the computational cell should not be used for 
codes that employ the finite volume method instead of finite difference schemes, as does the 
RAGE code used in this study. Instead, the integrated average of the exact solution over the 
entire cell should be used in Eq. (2-18). However, previous has shown little difference in the 
results between convergence calculations that used the exact solution at the zone center and 
calculations using the integral of the exact solution across the zone. 
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Although the exact solution may be calculated on the same grid as the fine computational 
solution, we instead map the fine solution onto the coarse grid instead because the 
convergence constant and rate are both spatially discretized on the coarse grid. The solutions 
to Eqs. (2-10) are, 
 

! 

q  =  log "*
#"c( )  #  log "*

#" f( )[ ] log $( )  ,

A  =  "*
#"c( ) %xc( )

q

.

  (2-19) 

 
The equations for global convergence and their solutions with a known exact solution are 
analogous to the global case with the estimated solution, Eqs. (2-16) and (2-17), only the 
estimated solution is replaced by the exact solution. When calculating the norms with 
known exact solutions, one may use either the fine grid solutions interpolated onto the 
coarse grid, or the exact solution expanded to the fine grid. 
 
3. Extended Verification Convergence Analysis 
 
The ability to calculate oscillatory convergence may be important in determining global 
convergence of the algorithm. In order to do this, the error ansatz (2-3) and related Eqs. 
(2-4) need only be changed slightly by considering absolute values of the difference 
terms, i.e., 
 

! 

ˆ " #"c =  A $xc( )
q
, ˆ " #"m =  A $xm( )

q
, ˆ " #" f =  A $x f( )

q
. (3-1) 

 
These equations can no longer be solved analytically. Instead, Newton’s method can be 
employed to computationally solve for the estimated solution, A, and q simultaneously 
[Pre92a]. An advantage of Newton’s method is that it allows for the solution of a more 
complex ansatz than Eqs. (2-3), if desired. The equations to be solved are rewritten, 
 

! 

F =

F
1

F
2

F
3

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

=

ˆ ( )(c  )  A *xc( )
q

ˆ ( )(m  )  A *xm( )
q

ˆ ( )( f  )  A *x f( )
q

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

, (3-2) 

 
in which F, 

! 

ˆ " , A, and q change with each iteration of the Newton solver. The objective is 
to determine the variables such that 

! 

F = 0 , within some tolerance, for all F. Implicit in 
Eq. (3-2) is the assumption that values are in an asymptotic regime consistent with the error 
ansatz, so that higher-order terms can justifiably be neglected. All quantities in Eq. (3-2) are 
to be evaluated on the coarse grid, so that the medium and fine computational solutions must 
be spatially averaged. 
 
A vector of the three unknowns is defined, 
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! 

b j "  

b
1

b
2

b
3

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

 =  

ˆ ) 

A

q

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
, (3-3) 

 
and the Jacobian matrix of Eq. (3-2), 
 

! 

J "
#Fi
#bj

,
#Fi
#b1

 =

+1, if  b1 $% i( )  >  0  ,

0, if  b1 $% i( )  =  0  ,

$1, if  b1 $% i( )   <  0  ,

& 

' 
( 

) 
( 

#Fi
#b2

= $*xi
q
,

#Fi
#b3

= $A*xi
q

ln *xi( ).
 (3-4) 

 
Although the derivative of the argument of the absolute value is technically undefined 
when its argument is zero, it appeared reasonable to set it to zero for such a special case. 
An analytical Jacobian was used for the work presented here, but a subroutine was in-
serted into the code in order to computationally determine the Jacobian for a more com-
plex ansatz. 
 
In order to solve for the change in b in order for 

! 

F = 0 , the Jacobian matrix is multiplied 
by the change in each variable and then equated with the negative of the vector F, 
 

! 

J •"b = #F  (3-5) 
 
To solve Eq. (3-5) for δb, the Jacobian matrix is factored into lower, L, and upper, U tri-
angular matrices using partial pivoting. The following two equations are then solved us-
ing a combination of forward and backward substitution: 
 

! 

L • y = "F, U •#b = y . (3-6) 
 
Taking the full Newton step was found to be inadvisable. Implementation of the Newton 
solver using the full Newton step resulted in few points converging. The direction of the 
vector δb is guaranteed to be a decent direction for F, but only at the starting point (at b). 
Nonlinear effects can quickly result in an increase (or larger than linear decrease) of F as 
one travels along the vector δb. A method had to be implemented in order to determine 
the appropriate distance along δb to travel and take the iterative step [Pre92b]. To do so, a 
metric of what defines an acceptable step is needed. The functions f and g are defined, 
 

! 

f "
1

2
F •F, g #( ) " f bold + #$b( ),

dg #( )
d#

=%f •$b . (3-7) 

 
Calculating the minimization of the function g would waste too much computational ef-
fort. The function g should not be minimized, rather simply finding a step that produces 
an acceptable decrease in f is needed. An acceptable decrease is defined as one for which 
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! 

g(") # g(0) +$ "
dg 0( )
d"

% 

& 
' 

( 

) 
* , (3-8) 

 
in which α is chosen to be about 10-4. Thus, we do not seek the entire decrease predicted 
from first order, but accept a smaller decrease if the nonlinear terms are significant. 
 
The full Newton step (λ = 1) is tried first [Pres92b]. If it is unsuccessful, then the func-
tion g is modelled using a second order polynomial fit to the three known points, g(l), 

! 

dg 1( ) /d" , and g(0). The parabola was minimized by setting the derivative to zero and 
solving for λ. The parabola should have a positive coefficient for the squared term result-
ing in the extrema being a minimum. If the second value of λ is unacceptable, a cubic 
polynomial fit is used and minimized. The procedure is repeated until an acceptable step 
length is found. One must be careful not to make the step too short. A minimum step size 
was prescribed. In addition to requiring that F = 0 within some tolerance for convergence 
to be declared, the code also required that δb be reduced to some minimum tolerance as 
well. The procedure for finding the appropriate step length is not as related to bisection as 
to function approximation. Frequently bisection is used as a backup to Newton’s method, 
but unfortunately in multidimensional parameter space, this is not possible in our prob-
lem. 
 
A related consideration in calculating an appropriate step length is the validity of the 
Newton method. Newton iteration assumes dominance of the first order terms. Steps 
large enough to produce second order terms that are of significant size compared to the 
first order terms must be avoided. In Eqs. (3-2), there are two second-order terms that are 
nonzero, 
 

! 

"2Fi

"q2
#q( )

2
= $A ln %xi( )[ ]

2
%x

q #q( )
2
,

"2Fi

"A"q
#A#q( ) = $ln %x( )%xq #A#q( ) . (3-9) 

 
By taking the ratio of second to first derivatives, the expressions for maximum step sizes 
may be determined, 
 

! 

"q <<
1

ln #x f( )
, "A << A . (3-10) 

 
Assignment of an appropriate initial value for the array of unknowns to be used in the 
iterative solver is important. If the fine grid computational solution was within the allow-
able solution space for the estimated solution, then the starting point for the estimated 
solution was chosen to be the fine grid solution, 
 

! 

b1

0( )
 =  ˆ " (0)

 =  " f  , (3-11) 
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where the superscript indicates the iteration index. With this assignment, we obtain initial 
values for the other two unknowns, which provide solutions for the convergence rate q 
and prefactor A  in the case where an exact solution is given: 
 

! 

b2
0( )

 =  A
0( )  =  b1

0( )
"#c $xc( )

q
0( )

,

b3
0( )

 =  qi
0( )  =  logb1

0( )
"#c  "  logb1

0( )
"#m[ ] log% .

 (3-12) 

 
If the fine grid solution was not within the acceptable solution space for the estimated 
solution, then starting at the fine grid solution did not always yield convergence. Instead, 
the estimated solution was estimated by calculating the center of the solution space de-
fined by Eqs. (2-13), 
 

! 

b1
(0) = ˆ " (0) =

1

4
"c + 2"m + " f( ). (3-13) 

 
The associated pointwise convergence rate and prefactor were then determined according 
to Eqs. (2-7) for each cell. A loop was placed over all cells in the mesh so that pointwise 
convergence was calculated for each cell. 
 
Although most grid points converged, a few did not for a variety of reasons. First, at cer-
tain points the ordering of the function values was inconsistent with the assumption of the 
ansatz as described by Eqs. (2-8). Second, non-convergence follows if all of the function 
values are essentially equal, to within a user-specified tolerance. Third, the Newton 
method sometimes produced a zero element on the diagonal of the upper triangular ma-
trix, which would give a divide by zero error in the code. Most of the time, this could be 
overcome by simply assigning a minimum value to all the diagonal elements, but the 
price of such a procedure was to eliminate the certainty that δb was indeed a descent di-
rection for f. If δb was an ascent direction, then convergence could not be calculated. The 
last and least common reason for points not converging was that there was an insufficient 
number of iterations of the Newton solver. The maximum number of iterations was set to 
100. If the solver failed to converge on a few points in a particular problem, a reduction 
in the tolerance of the convergence criteria was made until all points either converged or 
didn’t in under 100 Newton iterations. Experimentation with code parameters showed 
that increasing the maximum number of Newton solver iterations did not usually result in 
all the points converging, while lowering the tolerance did. The mesh points at which 
convergence was not obtained were flagged and treated specially in the subsequent analy-
sis. As a related comment, sometimes the fine grid computational solution was within 
machine precision of the exact analytical solution, in which case the convergence rate and 
constant could not be calculated for the exact solution. 
 
Upon completion of the analysis for a given problem, one obtains the set of parameters 
{

! 

ˆ " 
i
, Ai, qi} at the (coarse) grid points of the computational mesh. As with any set of data, 

one can evaluate the statistical measures of these quantities; the simplest statistics to 
evaluate are the sample mean and standard deviation (i.e., the square root of the variance) 
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of the convergence rates {qi} and prefactors {Ai}. As noted above, there are found to be 
grid points for which a converged solution was not obtained; these points were excluded 
from the evaluation of the mean and standard deviation. More precisely, for the case of 
the convergence rate, we evaluate the mean 

! 

ˆ q i and variance  

! 

ˆ " qi
2   as: 

 

! 

ˆ q i  =  
1

" N 
 qi  

i=1

" N 

#     and    

! 

ˆ " qi

2
 =  

1

# N $1
qi $ ˆ q i( )

i=1

# N 

%
2

 , (3-14) 

 
where  

! 

" N   is the total number of “valid” grid points, i.e., points for which a converged 
solution was obtained. An identical procedure is followed for the statistical characteriza-
tion of the convergence prefactor via 

! 

ˆ A 
i
 and 

! 

ˆ " 
A
i

2 . One could develop a more thorough sta-
tistical characterization of the approximate probability distribution function of these data, 
but we have not pursued such an analysis in this report. 
 
To summarize, the approach we have presented allows for the evaluation of the local as-
ymptotic convergence parameters together with an estimate of the function value at each 
(coarse) grid point. These numerical estimates are obtained as the solution to a set of non-
linear, coupled equations. This process provides estimates for the solution and, through 
the convergence parameters, the associated discretization error at each point for problems 
that do not possess exact solutions. We now turn to demonstrations of this method. 
 
4. Results and Interpretation 
 
In this section, we apply the technique described above to a set of hydrodynamics prob-
lems. The governing equations for these problems are the Eulerian-frame equations for 
the dynamics of a single, inviscid, non-heat-conducting gas, describing the conservation 
of mass, momentum, and total energy as: 
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 +  

"

"x
#ux( )  +  

"
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"
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"
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"
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. 
/ = 0  .

 (4-1) 

 
In these equations, ρ is the density, ux is the x-velocity, p is the thermodynamic pressure, 
and 

! 

E = 1/2( ) ux
2 + uy

2( ) + e  is the specific total energy, where e is the specific internal en-
ergy (SIE). We assume the polytropic gas equation of state (EOS) 
 

! 

p =  " #1( )  $  e  , (4-2) 
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where  γ  is the adiabatic exponent. We consider the following four problems: 
 

1. a 2-D linear acoustic wave problem;  
2. a 2-D nonlinear acoustic wave problem; 
3. a 1-D Riemann problem (i.e., a shock-tube problem); and 
4. a 2-D Riemann problem. 
 

We present a matrix of characterizations for these problems in Table 1. We have chosen 
this set of problems as it offers a mixture of solution properties that spans the issues of 
smooth and discontinuous solution behavior, either with or without an exact solution. In 
particular, problems 1 and 3 have exact solutions; therefore, for these problems we can 
compare the outcome of our analysis, which provides an estimate of the exact solution, 
with the true solution. Problems 2 and 4 do not have exact solutions, however, so the re-
sults of our analysis will provide new answers in addition to convergence characteristics.  
 

Table 1. Features of problems considered in this report. 
 Does possess an 

exact solution 
Does not possess an 

exact solution 
Smooth        
solution 

1:    2-D linear 
acoustic wave 

2:   2-D nonlinear 
acoustic wave 

Non-smooth 
solution 

3:   1-D Riemann 
 problem 

4:   2-D Riemann 
problem 

 
We used the RAGE hydrodynamics code to perform the numerical simulations. RAGE is 
an adaptive mesh refinement (AMR) hydrodynamics code that uses a high-order 
Godunov (direct Eulerian, piecwise linear) method with an approximate Riemann solver 
to obtain the solution of the gas dynamics equations. We only consider 1-D and 2-D Car-
tesian geometries in the problems that we evaluate. The calculations that we perform with 
RAGE were all done on uniform, non-AMR grids; we restrict the calculations considered 
in this manner to be consistent with the error ansatz that governs these analyses. Also, 
wherever possible we use the default input parameters to the code; of coarse, we modify 
the input parameters required to assign the initial conditions, the computational mesh, and 
the output data, which were specified in NCSA-compliant HDF files [NCSa, NCSb]. 
 
All simulations were run with constant, forced, time steps. The same time step was used for 
meshes with different zonings on the same problem. Simulations without forced time step 
were run first, in order to determine what the appropriate size of the forced time step should 
be. 
 
Four physical quantities were calculated and analyzed for each problem. They were den-
sity, pressure, SIE, and either speed or x-velocity (for the 1D test problem). Four simula-
tions of different zoning were run for each test problem, a total of sixteen runs in all. As 
the convergence code requires three simulations of different zoning to perform an analy-
sis, this resulted in two convergence calculations for each variable and each problem, or 
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eight convergence calculations total. We now turn to descriptions and evaluation of the 
test problems. 
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4a. A 2-D linear acoustic wave problem 
 
The 2-D acoustic wave problem, described in detail in [Kam03] (see also [Lan87, 
Whi74]), is based on specific initial condition for the 2-D Cartesian gas dynamics equa-
tions. When the amplitude of the initial conditions is sufficiently small (in a manner to be 
made precise), then there exists a closed form solution that is asymptotically valid for 
early time. This closed form result involves the solution of a linear wave equation, so we 
refer to this configuration as the “linear” acoustic wave problem, which we analyze in 
this section. For initial conditions of the same form but with larger initial amplitude, the 
duration of simulation time for which asymptotic solution is valid decreases, and there is 
no closed-form solution for the resulting nonlinear problem at the same final time. In the 
subsequent section, we consider the latter case, which we refer to as the “nonlinear” 
acoustic wave problem. The initial conditions for both of these Cartesian geometry prob-
lems consist of constant, uniform values of density, pressure, and velocity that have given 
sinusoidal perturbations. For the linear problem, the initial amplitude of these perturba-
tions is sufficiently small that the true solution oscillates as a acoustic wave solution of a 
linear wave equation for relatively long times. In the nonlinear problem, the initial ampli-
tude of the perturbations is large, so that nonlinearities develop more quickly and no as-
ymptotically exact solution is available at the times of interest. In either case, however, 
the solution remains smooth for the times considered. 
 
To further motivate the solution to these 2-D acoustic problems, we posit that the solution 
at all times consists of a sum of uniform, constant physical fields, subscripted 0, and 
small (in a sense to be made precise) perturbations, indicated by primes: 
 

! 

"

p

ux ,ux( )

=

=

=

"
0

 +  # "  ,

p
0

 +  # p  ,

ux0
,uy0( ) + # u x , # u y( )  ,

 (4-3) 

 
for the density ρ, pressure p, and x- and y-velocities (ux,uy). For the polytropic gas EOS, 
the square of the quiescent sound speed, c0, can be expressed as: 
 

! 

c
0

2 =  "  " #1( )  e
0
 . (4-4) 

 
The ordering of the terms in Eqs. (4-3) is based on the primed terms being small in the 
following quantitative sense: 
 
ρ´/ ρ0 << 1,     p´/p0 << 1,    ux´/c0,    uy´/c0 << 1 . (4-5) 
 
As shown in [Lan87, Whi74], the solution for the primed quantities can be derived from a 
potential ϕ(x,t) that satisfies the following linear wave equation: 
 

! 

" 2#

"t 2
 $  c

0

2%2#  =  0  , (4-6) 
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The velocity perturbation is given by the gradient of this potential: 
 

! 

" u x , " u y( )  =  #$  =  
%$

%x
,
%$

%y

& 

' 
( 

) 

* 
+  , (4-7) 

 
while the pressure and density perturbations are related to the time derivative of the po-
tential: 
 

! 

" # =  $
#0

c0

2

%&

%t
, " p =  $ #0

%&

%t
. (4-8) 

 
The problem we consider is defined on the unit square 

! 

"# x,y( ) : x,y( )$ 0,1[ ] % 0,1[ ]{ }  
with periodic boundary conditions along the edge 

! 

"#. We prescribe the temporal de-
pendence to be oscillatory with angular frequency ω. In this case, the solution for the po-
tential is 
 

! 

" x,t( )  =  
#

k
 sin k $ x( )  cos %t( )  ,  (4-9) 

 
where the wavevector  

! 

k " kx
ˆ x + ky

ˆ y   governs both the direction and period of the spatial 
variation of the solution, where 

! 

ˆ x  and ˆ y  are unit vectors. Based on these relations, the 
closed-form solution for the specific problem we consider is given in Table 2. The initial 
conditions (IC) are a special case of this solution and are given in Table 3.  
 

Table 2. 2-D linear acoustic wave solution. 
Variable Base solution (•)0 Perturbed solution (•)´ 

ux 0 ε (kx/k) cos(kx x + ky y) cos(ωt) 
uy 0 ε (ky/k) cos(kx x + ky y) cos(ωt) 
ρ 1 ε (ρ0ω/k) sin(kx x + ky y) sin(ωt) 
p 3/10 (ε/c0

2) (ρ0ω/k) sin(kx x + ky y) sin(ωt) 
 

Table 3. 2-D linear acoustic wave initial conditions. 
Variable Base IC (•)0 Perturbed IC (•)´ 

ux 0 ε (kx/k) cos(kx x + ky y) 
uy 0 ε (ky/k) cos(kx x + ky y) 
ρ 1 0 
p 3/10 0 

 
In the expressions in this table, k represents the magnitude of the wavevector, i.e., |k|. The 
specific parameters used in the problem we consider are given in Table 4. 
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Table 4. 2-D linear acoustic wave initial parameters. 
γ kx ky ω ε 

5/3 2π 2π 2π 10-4 
 
With these parameters, the calculation was run from an initial time of t = 0 s  to a final 
time of  t = 0.2 s  on meshes containing 50×50, 100×100, 200×200, and 400×400 zones 
on the unit square.  
 
We had to modify the RAGE initialization routine to assign the initial condition for the 
linear and nonlinear acoustic problems; these modifications were done to code version 
2004-1126, yielding a version that we denote RAGE 2004-1126*. For the 1D and 2D 
Riemann problems, the standard version of RAGE, 2004-1126 was used. 
 
The global convergence results are summarized in Tables 5–8. Table 5 contains the L1 
norm of the difference between the true exact solution and the computed solution over the 
various computational meshes. The purpose of showing the norms is not to provide in-
formation on the level of computational error, rather to show how the error changes and 
the code converges as a function of zoning. The values in this table can be used to com-
pute the exact, pair-wise convergence rate q and convergence prefactor A for these re-
sults. Those values are compiled in Tables 6 and 7. 
 
Table 5 shows a decrease in the global error of all physical quantities with zone size, as 
one would expect. Note that speed in the tables 
 

! 

u = ux
2

+uy
2  (4-10) 

 
is a scalar quantity, not a vector. Table 6 shows a decrease in the convergence rate with 
resolution, except for speed, which increases, then decreases again. Likewise, all of the 
prefactor values shown in Table 7 exhibit a decrease with zone size, except speed. Why 
the speed convergence rate and prefactor behave in this manner is unknown. Likewise, in 
Tables 6 and 7, the convergence rates and prefactors for the finest zoning for all quanti-
ties other than the speed are extremely small. We are uncertain as to why. 

 
Global Convergence Results 

 
Table 5. 2-D linear acoustic wave exact-computed L1 errors at t = 0.2 s. 

Nx, Ny ∆x, ∆y 

! 

"* # "$x
1

 

! 

p
*
" p#x

1
 

! 

e
*
" e#x

1
 

! 

u
*
" u#x

1
 

 (cm) (g cm-3) (dyne cm-2) (erg g-1) (cm s-1) 
50 0.02 2.81×10-7 1.40×10-7 8.43×10-8 2.65×10-7 
100 0.01 6.61×10-8 3.31×10-8 1.99×10-8 7.95×10-8 
200 0.005 1.62×10-8 8.38×10-9 5.48×10-9 2.02×10-8 
400 0.0025 7.48×10-9 4.70×10-9 3.88×10-9 5.68×10-9 

RAGE version 2004-1126* 
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Table 6. 2-D linear acoustic wave exact convergence rate q at t = 0.2 s. 
Range of cells Density Pressure Energy Speed 

50,100 2.09 2.08 2.08 1.73 
100,200 2.03 1.98 1.86 1.98 
200,400 1.11 0.833 0.496 1.83 

RAGE version 2004-1126* 
 

Table 7. 2-D linear acoustic wave exact convergence prefactor A at t = 0.2 s. 
Range of cells Density Pressure Energy Speed 

50,100 9.89×10-4 4.89×10-4 2.89×10-4 2.34×10-4 
100,200 7.61×10-4 3.08×10-4 1.06×10-4 7.15×10-4 
200,400 5.94×10-6 6.93×10-7 7.59×10-8 3.29×10-4 

RAGE version 2004-1126* 
 
The first two rows in Table 5 are to be compared to the values in Table 8 (both shown in 
Figure 2), which are the L1 norm of the difference between the exact solution and the es-
timated solution inferred on the indicated meshes (recall that three different meshes are 
required to infer an estimated solution on the coarsest mesh). Comparing the values in 
these two tables demonstrates that the estimated solution error is less than the computed 
solution error for the same grid, but more than the computed solution error for the fine 
grid. The estimated solution itself is a function of zone size and its corresponding error 
consistently drops with the zone size. 
 

Table 8. 2-D linear acoustic wave exact-estimated solution error at t=0.2 s. 
Nx, Ny ∆x, ∆y 

! 

"* # ˆ " 
1

 

! 

p
*
" ˆ p 

1
 

! 

e
*
" ˆ e 

1
 

! 

u
*
" u#x

1
 

 (cm) (g cm-3) (dyne cm-2) (erg g-1) (cm s-1) 
50 (100, 200) 0.02 1.25×10-7 6.27×10-8 3.76×10-8 5.21×10-8 
100 (200, 400) 0.01 3.12×10-8 1.56×10-8 9.37×10-9 2.27×10-8 

RAGE version 2004-1126* 
 
The mean and standard deviation of the computed pointwise convergence rate q over the 
computational mesh is shown in Table 9 and Figure 3, while Table 10 contains the corre-
sponding inferred convergence prefactor A. Recall that these values are calculated using 
only those mesh points for which a convergence rate is obtained, which, for these calcula-
tions, was the entire mesh. 
 
In all cases in Tables 9 and 10, the convergence rate and prefactor increase with a de-
crease in zone size, which is the opposite behavior observed from the global quantities. If 
the difference in computational results from two mesh resolutions is small, then likewise, 
the convergence rate and prefactor will be small. If there is a large difference in the com-
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putational results from the same two mesh resolutions, then the large change is inter-
preted as a larger convergence rate and prefactor. One would expect as a simulation be-
gins to converge and changes in the results with increased zoning decrease, then the con-
vergence rate and prefactor will also decrease. Such behavior is observed in the global 
values. 
 
One possible explanation for the increase in the convergence quantities with zoning is 
that there may be a few points that changed dramatically as the zoning was decreased 
producing relatively large convergence values, while most points produced a decrease in 
the convergence values. This hypothesis is supported by the large increase in the standard 
deviation going from the coarse to fine values. 
 

Mean, Pointwise Convergence Results 
 

Table 9. 2-D linear acoustic wave estimated convergence rate q at t = 0.2 s. 
Range of cells Density Pressure Energy Speed 
50 (100, 200) 2.60±0.290 2.60±0.291 2.60±0.292 2.45±0.120 

100 (200, 400) 2.83±0.585 2.83±0.585 2.83±0.585 2.55±0.168 
RAGE version 2004-1126* 

 
Table 10. 2-D linear acoustic wave estimated convergence coefficient A at t = 0.2 s. 

Range of cells Density Pressure Energy Speed 
50 (100, 200) (8.81±14.5)×10-3 (4.40±7.24)×10-3 (2.64±4.34)×10-3 (3.47±2.36)×10-3 
100 (200, 400) (1.48±5.32)×100 (7.40±26.6)×10-1 (4.44±16.0)×10-1 (7.04±4.33)×10-3 

RAGE version 2004-1126* 
 
Figures 1a-d contain plots that further elucidate the results. Figures 1a–d contain plots of 
the estimated solution and difference between the estimated and exact solutions for the 
density, pressure, speed, and SIE at the final time on the two meshes for which estimated 
solutions are obtained.  The sinusoidal nature of the solution is clearly evident in these 
images. For each of these physical quantities, the absolute magnitudes of the difference 
data are several orders of magnitude smaller than the corresponding computed or exact 
values.  Also, the features of the differences are aligned with the solution structure. 
 
Figure 2 contains plots of the L1 norm of the difference between the computed solution 
and the true exact solution (i.e., the data in Table 5, in black) and the difference between 
the estimated solution and the true exact solution (i.e., the data in Table 8, in blue) as a 
function of the mesh size, for all quantities.  
 
Figure 3 contains plots of the mean convergence rate q on the two computational meshes 
for which the estimated solution was obtained, for all physical quantities (i.e., the data in 
Table 9). These plots have uncertainty bounds indicating ± one standard deviation in 
these values, which are calculated from the distribution of convergence rate values on the 
mesh. The increase in standard deviation with decreasing zone size is clearly evident. 
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    50×50 Estimated Density      100×100 Estimated Density 

  
 
 
        Difference between exact and estimated solutions: 
   50×50  Density Difference      100×100 Density Difference 

  
 

 
Figure 1a. Plots of the estimated density (top) and difference between estimated and ex-
act density (bottom) for the 2-D linear acoustic wave problem at time t = 0.2 s on the two 
computational meshes considered. The left column has the results on the 50×50 mesh, the 
right column has results on the 100×100 mesh, both on the unit square. The density data 
(top row) range is (dark blue) 0.99985 ≤ ρ ≤ 1.00015 (dark red); recall that ρ ≡ 1.0 uni-
formly at t = 0 and evolves into a sinusoidal wave with small perturbations around the 
initial condition. The density difference data (bottom row) range is (dark blue) 0.0 ≤ ∆ρ ≤ 
{50: 2×10-7; 100: 6×10-8} (dark red). All values are in g/cm3. The estimated solution is 
extremely close to the exact solution for this problem. 
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    50×50 Estimated Pressure    100×100 Estimated Pressure 

  
 

Difference between exact and estimated solutions:  
      50×50 Pressure Difference      100×100 Pressure Difference 

  
 
 
Figure 1b. Plots of the estimated pressure (top) and difference between estimated and 
exact pressure (bottom) for the 2-D linear acoustic wave problem at time t = 0.2 s on the 
two computational meshes considered. The left column has the results on the 50×50 
mesh, the right column has results on the 100×100 mesh, both on the unit square. The 
pressure data (top row) range is (dark blue) 0.99985 ≤ p ≤ 1.00015 (dark red). Recall that 
p ≡ 0.3 uniformly at t = 0 and evolves into a sinusoidal wave with small perturbations 
around the initial condition. The pressure difference data (bottom row) range is (dark 
blue) 0.0 ≤ ∆p ≤ {50: 1×10-7;   100: 3×10-8} (dark red). All values are in dyne/cm2. The 
estimated solution is extremely close to the exact solution for this problem. 
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     50×50 Estimated SIE        100×100 Estimated SIE 

  
 

Difference between exact and estimated solutions:  
     50×50 SIE Difference       100×100 SIE Difference 

  
 

 
Figure 1c. Plots of the estimated SIE (top) and difference between estimated and exact 
SIE (bottom) for the 2-D linear acoustic wave problem at time t = 0.2 s on the two com-
putational meshes considered. The left column has the results on the 50×50 mesh, the 
right column has results on 100×100 mesh, both on the unit square. The SIE data (top 
row) range is (dark blue) 0.44995 ≤ e ≤ 0.45005 (dark red). Recall that 

! 

e " 9 /20  uni-
formly at t = 0 and evolves into a sinusoidal wave with small perturbations around the 
initial condition. The SIE difference data (bottom row) range is (dark blue) 0.0 ≤ ∆e ≤ 
{50: 7×10-8; 100: 2×10-8} (dark red). All values are in erg/g. The estimated solution is 
extremely close to the exact solution for this problem. 
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    50×50 Speed        100×100 Speed 

  
 

Difference between exact and estimated solutions: 
    50×50 Speed Difference      100×100 Speed Difference 

  
 

 
Figure 1d. Plots of the estimated speed (top) and difference between estimated and exact 
speed (bottom) for the 2-D linear acoustic wave problem at time t = 0.2 s on the two 
computational meshes considered. The left column has the results on the 50×50 mesh, the 
right column has results on the 100×100 mesh, both on the unit square. The speed data 
(top row) range is (dark blue) 0.0 ≤ u ≤ 0.000031 (dark red). The speed difference data 
(bottom row) range is (dark blue) 0.0 ≤ u ≤ {50: 1×10-7; 100: 2×10-8} (dark red). All val-
ues are in cm/s. The estimated solution is extremely close to the exact solution for this 
problem. 
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Figure 2. Plots of the L1 norm of the difference between the exact solution and the com-
puted (i.e., RAGE) solution (in black from Table 5), and the L1 norm of the difference 
between the exact solution and the estimated solution (in blue from Table 8) are shown. 
Data is displayed for the 2-D linear acoustic wave problem at t = 0.2 s on the four compu-
tational meshes considered, for code version 2004-1126*. Clockwise from the upper left, 
the plots correspond to density, pressure, specific internal energy, and speed. The lines on 
the left of each plot represent convergence rates of q = 0, 1, and 2. The equations give the 
effective convergence relation associated with each set of data points. The error in the 
estimated solution is approximately a factor of two smaller than the error in the corre-
sponding RAGE solution. 
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Figure 3. Plots of the mean pointwise convergence rate q from Table 9 for the 2-D linear 
acoustic wave problem at time t = 0.2 s on the two computational meshes for which the 
estimated solution was obtained. Clockwise from the upper left, results are plotted for the 
density, pressure, SIE, and speed. The uncertainty bounds in these plots indicate ± one 
standard deviation in these values, which are calculated from the distribution of conver-
gence rate values on the mesh.  
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4b. A 2-D nonlinear acoustic wave problem 
 
The nonlinear acoustic wave problem considered is a special case of the problem described 
in the previous section. Specifically, the domain, boundary conditions, and form of the 
initial conditions are the same; the only difference is the amplitude of the initial 
perturbation, which affects only the initial velocity, as indicated in Table 3. With a larger 
initial perturbation, the nonlinearities evolve and affect the solution at the final time. The 
waves do not remain sinusoidal, rather they began to steepen. 
 
The problem we consider is specified by the parameters in Table 11, where all other quanti-
ties are as in the preceding section. As will be shown, the difference in the amplitude of the 
perturbation by two orders of magnitude over the problem in the preceding section affects 
the details of the solution. With these parameters, the calculation was run from an initial 
time of t = 0 s  to a final time of  t = 0.2 s. 
 

Table 11. 2-D nonlinear acoustic wave initial parameters. 
γ kx ky ω ε 

5/3 2π 2π 2π 10-2 
 
The exact solution of Table 2 is not valid in this case, so one cannot evaluate exact con-
vergence parameters for this problem. We compared the results of the nonlinear simula-
tions to the exact linear solution to ensure that the problem was indeed nonlinear. The 
difference was several orders of magnitude larger than for the 2-D linear acoustic wave 
problem, demonstrating that we were indeed no longer in the linear regime. 
 
Convergence results for the 2-D nonlinear acoustic wave problem are catalogued in Ta-
bles 12, 13, and 14. Table 12 contains the global convergence results where the esti-
mated, instead of the exact, solution is used to evaluate the error in the coarse grid, com-
puted solution. As one would expect, global computational error is seen to decrease with 
zone size. The estimated solution is useful in that it can stand in place of the exact solu-
tion when no exact solution is known. Although not as accurate as the exact solution, the 
estimated solution is still more accurate than the coarse mesh, computed solution. One 
could question whether or not it would be better to interpolate the fine grid computational 
solution onto the coarse grid and use it to stand in place of the exact solution. 
 
Tables 13 and 14 contain the mean and standard deviation of, respectively, the computed 
convergence rate q over the computational mesh, and the corresponding inferred conver-
gence prefactor A. As with the linear problem, the mean quantities increase with decreas-
ing spatial discretization. Note the exceptionally large mean prefactors in the fine zoning 
case for density, pressure and internal energy, but not for speed in Table 13. We do not 
know why such anamolously large values are present in this problem. Very large prefac-
tors are present in subsequent problems, however their existence is due to regions of qui-
escent material. There is no quiescent material in the acoustic wave problems. 
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We have considered two hypotheses as to why the prefactors may be large. First, note 
that in Eqs. 2-7, with small zoning, large prefactors result from large convergence rates. 
Large convergence rates occur when 
 

! 

"m #"c

" f #"m
>>1. (4-10) 

 
Eqs. 2-7 was derived for an ansatz slightly different than the one we are using. Neverthe-
less, one could suspect that if the change in the physical quantities going from coarse to 
medium zoning is much larger than the change going from medium to fine zoning, then 
the convergence rate in Eqs. 3-1 is very large. Mean convergence rates for the nonlinear 
acoustic wave problem are close to three, but with a standard deviation of about one. 
There may therefore be some cells with convergence rates between four and five. For 

! 

q = 4,5  the ratio in Eq. 4-10 is on the order of 16-32. 
 
Although the nonlinear acoustic wave problem did not have an exact solution, the linear 
acoustic wave problem did. Both Table 6 and Figure 2 indicate that the global conver-
gence rate decreased dramatically when the mesh was increased from 200 to 400 cells for 
density, pressure, and SIE, but not for speed. A sudden decrease in the intermediate con-
vergence rate between the medium and fine meshes would result in a large ratio for Eq. 
4-10 and a large total convergence rate for the coarse-medium-fine mesh analysis (Table 
13). The large convergence rate would then create large prefactors. However, the linear 
acoustic wave problem did not show large, mean prefactors. Perhaps there was a similar, 
but more dramatic change in the convergence rate for the nonlinear acoustic wave prob-
lem, although it is unclear why convergence rates would change so abruptly with zoning. 
 
An alternative hypothesis is that there are spurious roots for the error ansatz and the New-
ton solver sometimes converges to these roots instead of the real roots. We hoped by 
starting the Newton solver close to the calculated solutions to only find the root of inter-
est, but such is not guaranteed. 
 

Global Convergence Results 
 

Table 12. 2-D nonlinear acoustic wave computed-estimated solution error, t = 0.2 s. 
Nx ∆x 

! 

ˆ " # "$x 1
 

! 

ˆ p " p#x 1
 

! 

ˆ e " e#x 1
 

! 

ˆ u " u#x 1
 

 (cm) (g cm-3) (dyne cm-2) (erg g-1) (cm s-1) 
50 (100,200) 0.02 1.59×-5 7.96×-6 4.77×-6 2.18×-5 

100 (200,400) 0.01 3.84×-6 1.92×-6 1.15×-6 5.88×-6 
RAGE version 2004-1126* 
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Mean, Pointwise Convergence Results 
 

Table 13. 2-D nonlinear acoustic wave estimated convergence rate q, t = 0.2 s. 
Range of cells Density Pressure Energy Speed 
50 (100,200) 2.59±0.287 2.59±0.288 2.58±0.290 2.44±0.166 
100 (200,400) 2.92±1.09 2.92±1.05 2.91±0.987 2.56±0.229 

RAGE version 2004-1126* 
 

Table 14. 2-D nonlinear acoustic wave estimated convergence coefficient A, t = 0.2 s. 
Range of cells Density Pressure Energy Speed 
50 (100,200) 0.938±1.94 0.470±0.977 0.281±0.579 0.334±0.224 
100 (200,400) (3.89±27.3)×11 (3.46±24.3)×10 (2.00±14.0)×9 0.736±0.391 

RAGE version 2004-1126* 
 
Figures 4-6 contain plots that further clarify these results. Figures 4a–d contain plots of 
the RAGE solution for the density, pressure, speed, and SIE at the final time on the four 
computational meshes. As for the problem of the previous section, the smooth, oscillatory 
nature of this solution is once again evident in these images. Figure 5 contains a plot of 
the L1 norm of the difference between the estimated solution and the computed solution 
for the four computational meshes inferred (Table 12). Figure 6 contains plots of the 
pointwise values of the convergence rate on the two meshes for which the estimated solu-
tion was obtained (Tables 13). 
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    50×50 Density        100×100 Density 

  
 

    200×200 Density       400×400 Density 

  
 

 
Figure 4a. Plots of the computed density for the 2-D nonlinear acoustic wave problem at 
time t = 0.2 s on the four computational meshes considered. Clockwise from the upper 
left, the plots correspond to the 50×50, 100×100, 400×400, and 200×200 meshes on the 
unit square. The data range is (dark blue) 0.985 ≤ ρ ≤ 1.015 (dark red); all values are in 
g/cm3. Recall that ρ ≡ 1.0 uniformly at t = 0 and evolves into a sinusoidal wave with 
small perturbations around the initial condition. The refinement in the solution is evident 
with increasing zoning. 
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    50×50 Pressure        100×100 Pressure 

  
 

    200×200 Pressure       400×400 Pressure 

  
 

 
Figure 4b. Plots of the computed pressure for the 2-D nonlinear acoustic wave problem 
at time t = 0.2 s on the four computational meshes considered. Clockwise from the upper 
left, the plots correspond to the 50×50, 100×100, 400×400, and 200×200 meshes on the 
unit square. The data range is (dark blue) 0.293 ≤ p ≤ 0.307 (dark red); all values are in 
dyne/cm2. Recall that p ≡ 0.3 uniformly at t = 0 and evolves into a sinusoidal wave with 
small perturbations around the initial condition. The refinement in the solution is evident 
with increasing zoning. 
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    50×50 SIE         100×100 SIE 

  
 

    200×200 SIE        400×400 SIE 

  
 

 
Figure 4c. Plots of the computed SIE for the 2-D nonlinear acoustic wave problem at 
time t = 0.2 s on the four computational meshes considered. Clockwise from the upper 
left, the plots correspond to the 50×50, 100×100, 400×400, and 200×200 meshes on the 
unit square. The data range is (dark blue) 0.445 ≤ e ≤ 0.455 (dark red); all values are in 
erg/g. Recall that 

! 

e " 9 /20  uniformly at t = 0 and evolves into a sinusoidal wave with 
small perturbations around the initial condition. The refinement in the solution is evident 
with increasing zoning. 
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    50×50 Speed        100×100 Speed 

  
 

    200×200 Speed        400×400 Speed 

  
 

 
Figure 4d. Plots of the computed speed for the 2-D nonlinear acoustic wave problem at 
time t = 0.2 s on the four computational meshes considered. Clockwise from the upper 
left, the plots correspond to the 50×50, 100×100, 400×400, and 200×200 meshes on the 
unit square. The data range is (dark blue) 0.0 ≤ u ≤ 0.0031 (dark red); all values are in 
cm/s. Recall that 0.0 ≤ u ≤ 0.01 at t = 0. The refinement in the solution is evident with 
increasing zoning. 
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Figure 5. Plots of the effective error for the 2-D nonlinear acoustic wave problem at time 
t = 0.2 s on the two computational meshes for which the estimated solution was obtained 
(Table 12). Although it appears visually similar, this is a different kind of data than that 
shown in Figures 2 and 9. Clockwise from the upper left, results are plotted for the den-
sity, pressure, SIE, and speed. The lines in the lower left of each plot represent conver-
gence rates of q=0, 1, and 2. The equation in blue gives the effective convergence relation 
associated with the two data points in each plot. 
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Figure 6. Plots of the mean convergence rate q for the 2-D nonlinear acoustic wave prob-
lem at time t = 0.2 s on the two computational meshes for which the estimated solution 
was obtained (Table 13). Clockwise from the upper left, results are plotted for the den-
sity, pressure, SIE, and speed. The uncertainty bounds in these plots indicate ± one stan-
dard deviation in these values, which are calculated from the distribution of convergence 
rate values on the mesh. 
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4c. A 1-D Riemann problem 
 
The 1-D Riemann (i.e., shock tube) problem for a polytropic gas is a workhorse in the 
field of hydrodynamics algorithms for both methods development and verification. This 
problem plays such an important role because it manifests key nonlinearities and discon-
tinuities while possessing a solution that can be directly evaluated for polytropic gases. 
Moreover, it is very easy to initialize simulation codes for this problem, which consists 
initially of two constant, uniform states separated at an internal boundary. The computa-
tional boundaries are sufficiently far removed from the developing wave interactions as 
to be irrelevant to the region of interest. Although the solution to this problem cannot 
generally be obtained in closed form, it is directly computable, requiring the iterative 
numerical solution of a nonlinear equation; see [Got88] for a detailed explanation of this 
problem. 
 
There are several possibilities for the structure of the solution to the 1-D Riemann prob-
lem. These solutions involve combinations of shock waves, rarefaction fans, and contact 
discontinuities. We consider the case in which a rarefaction fan, a contact discontinuity, 
and a shock wave develop. The initial conditions for the case we consider are given in 
Table 15.  
 

Table 15. 1-D Riemann problem initial conditions, with γ = 1.4. 
 ρ p e u 
 (g cm-3) (dyne cm-2) (erg g-1) (cm s-1) 
x < 0.5 1.00 1.00 2.50 0.00 
x > 0.5 2.25 1.80 2.00 0.00 

 
This problem was run on the domain 0 < x < 1, with meshes of 20, 40, 80, and 160 zones. 
The exact solution was computed using an algorithm based on the paper of Gottlieb & 
Groth [Got88].3  The solution was compared at a single time of t = 0.2 s. Plots of the ex-
act and computed solutions at this time are given in Fig. 7. The plots in this figure sug-
gest qualitatively that the calculations are converging, since the computed solutions ap-
pear to approach the exact solutions as the mesh becomes finer. 

 

                                                
3 See also the work of Quartapelle et al. [Qua03] for an approach to the exact solution of the 1-D Riemann 
problem for more general equations of state. 
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Figure 7. Plots of the exact and computed solution for the 1-D Riemann problem, for the 
initial conditions given in Table 15, at the final time t = 0.2 s. The exact solution is the 
black line and the computed solution is given for 20 (red), 40 (gold), 80 (blue), and 160 
(purple) points on the unit interval. Clockwise from the upper left, the following quanti-
ties are plotted: density, pressure, SIE, and x-velocity. Qualitatively, these plots suggest 
convergence, since the computed solution approaches the exact solution as the mesh be-
comes finer.  
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Table 16 catalogues the global L1 global error between the exact and computed (RAGE) 
solution for key physical variables. These values are computed based on the grids deline-
ated by the number and dimension of the computational cells indicated in the first two 
columns of this table. An important aspect of the table is in showing how the error 
changes with zoning, not in the magnitude of the error itself. The norm values can be 
used to compute the pair-wise convergence rate q and convergence prefactor A for these 
results. Those values, compiled in Tables 17 and 18, all indicate convergent calculations. 
In particular, the convergence rates, which vary between ~0.6 and ~0.9, are consistent 
both with a theoretical maximum convergence rate of unity for this problem [Kim95, 
Eng98] as well as with previous experience on convergence analysis for problems con-
taining shocks. Note that x-velocity is used in this problem in place of speed. For density 
and pressure, the convergence rate and prefactor increase with decreasing zone size, the 
opposite of the linear acoustic wave problem; this and may have to do with the increase 
in resolution of the rarefaction wave. The convergence rate and prefactor for energy and 
x-velocity show no discernable trend. The velocity and SIE both contribute to the total 
energy. Assuming that the error for total energy was decreasing steadily, the error for the 
velocity and SIE could be shifting somewhat between the SIE and velocity as the zoning 
is refined. 

 
Global Convergence Results 

 
Table 16. 1-D Riemann problem exact-computed L1 errors at t = 0.2 s. 

Nx ∆x 

! 

"* # "$x
1

 

! 

p
*
" p#x

1
 

! 

e
*
" e#x

1
 

! 

u
x

*
"u

x#x
1

 

[0,1] (cm) (g cm-3) (dyne cm-2) (erg g-1) (cm s-1) 
20 0.05 4.10×10-2 3.59×10-2 3.73×10-2 2.18×10-2 
40 0.025 2.59×10-2 2.11×10-2 2.32×10-2 1.24×10-2 
80 0.0125 1.59×10-2 1.20×10-2 1.43×10-2 7.29×10-3 

160 0.00625 9.25×10-3 6.28×10-3 9.63×10-3 3.72×10-3 
RAGE version 2004-1126 

 
Table 17. 1-D Riemann problem exact-computed convergence rate q at t = 0.2 s. 

Range of cells Density Pressure SIE x-Velocity 
20,40 6.60×10-1 7.67×10-1 6.80×10-1 8.17×10-1 
40,80 7.09×10-1 8.08×10-1 7.05×10-1 7.66×10-1 
80,160 7.78×10-1 9.40×10-1 5.67×10-1 9.68×10-1 

RAGE version 2004-1126 
 

Table 18. 1-D Riemann problem exact-computed convergence prefactor A at t = 0.2 s. 
Range of cells Density Pressure SIE x-Velocity 

20,40 2.96×10-1 3.58×10-1 2.86×10-1 2.52×10-1 
40,80 3.54×10-1 4.16×10-1 3.13×10-1 2.09×10-1 
80,160 4.80×10-1 7.40×10-1 1.71×10-1 5.07×10-1 

RAGE version 2004-1126 
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The first two rows in Table 16 are to be compared to the values in Table 19, which fol-
lows. That table contains the L1 norms of the difference between the exact solution and 
the estimated solution that is calculated as a solution to the method outlined in §3 for the 
indicated meshes (recall that computed values on three different meshes are required to 
infer an estimated solution on the coarsest mesh). Comparing the errors presented in these 
two tables, three important aspects of the global norm of the estimated solution are to be 
seen. First, it is approximately a factor of two smaller than the global norm of the com-
puted solution on the same mesh. Second, it is slightly smaller than the global norm of 
the computed solution on the next finer mesh. Third, it is seen to be greater than the 
global norm of the computed solution on the finest mesh with which the estimated solu-
tion was calculated. 
 

Table 19. 1-D Riemann problem exact-estimated solution error at t = 0.2 s. 
Nx ∆x 
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x
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 (cm) (g cm-3) (dyne cm-2) (erg g-1) (cm s-1) 
20 (40,80) 0.05 1.97×10-2 1.62×10-2 1.78×10-2 9.95×10-3 

40 (80,160) 0.025 1.28×10-2 9.52×10-3 1.14×10-2 5.90×10-3 
RAGE version 2004-1126 

 
Table 20 contains the mean and standard deviation of the computed convergence rate q 
for the indicated computational mesh, while Table 21 contains the corresponding values 
for the inferred convergence prefactor A. That the standard deviations are comparable 
to—if not greater than—the means suggests that these simple measures are poor statistics 
with which to characterize these distributions. Recall that these values are calculated us-
ing only those mesh points for which a convergence rate is obtained. 
 
The values of the prefactor for fine zoning in Table 21 are extremely large, as was previ-
ously seen in the nonlinear acoustic wave problem in Table 14, however for a different 
reason. Both the 1- and 2-D Riemann problems had quiescent regions where very little 
change occurred during the simulation. Figures 11 and 12 show how the convergence rate 
and prefactor both increased dramatically in these regions of little interest, resulting in 
very large average convergence rates, prefactors and standard deviations for all physical 
quantities. One possible solution to this problem of data pollution from quiescent regions 
would have been to include a mask when averaging the convergence rates and prefators, 
such that only cells that contribute significantly to the error are counted in the average. 
The quiescent regions have cells that contribute negligibly to the computational error. 
 

Mean, Pointwise Convergence Results 
 

Table 20. 1-D Riemann problem estimated convergence rate q  at t = 0.2 s. 
Range of cells Density Pressure Energy x-Velocity 

20 (40,80) 2.92±2.02 3.10±2.00 2.93±2.05 3.06±1.91 
40 (80,160) 4.11±3.77 4.40±3.33 4.26±3.51 4.06±3.03 

RAGE version 2004-1126 
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Table 21. 1-D Riemann problem estimated convergence coefficient A  at t = 0.2 s. 
Range of 

cells 
Density 
(×105) 

Pressure 
(×105) 

Energy 
(×105) 

x-Velocity 

20 (40,80) (5.59±23.9)×105 (6.32±26.7)×105 (2.13±8.51)×105 (1.88±7.12)×104 
40 (80,160) (6.49±38.9)×1019 (1.89±11.3)×1015 (6.29±36.5)×1014 (2.71±15.9)×1013 

RAGE version 2004-1126 
 
Figures 8–12 shed further light on these results. Figures 8a and 8b contain plots, respec-
tively, for the 20/40/80 and 40/80/160 cases, of the pointwise absolute difference between 
the exact solution and the estimated solution for the physical variables on the meshes for 
which the estimated solution was obtained. In these plots, the exact solution is indicated 
as a black line, the estimated solution as a blue line, the calculated (RAGE) solution as a 
red line, and the pointwise error (plotted against the right ordinate) as a purple line. The 
dashed red lines around the calculated solution in these plots correspond to the values  
±A∆xp about those values. The dashed lines can give one a sense of the magnitude of er-
ror in the computed solution. Notice that the dashed lines from the error ansatz do not 
always encompass the exact solution, however, they do indicate where the error is great-
est. 
 
Not unexpectedly, the greatest difference between the estimated solution and the exact 
solution occurs where the solution has discontinuities in slope, i.e., at the shock, the head 
and tail of the rarefaction, and, in the case of density and SIE, the contact. The difference 
between the 20/40/80 (8a) and 40/80/160 (8b) cases are that the discontinuities are better 
localized in the higher resolution case, which also has errors that are generally slightly 
greater in absolute magnitude than those of the lower resolution case. 
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Figure 8a. Solutions and absolute difference between the exact and estimated solutions 
for the 1-D Riemann problem on the 20-zone base computational mesh at t = 0.2 s. 
Clockwise from the upper left, the following quantities are plotted: density, pressure, SIE, 
and x-velocity. The exact solution on this mesh (in black), the estimated solution (in 
blue), and the calculated solution (in red) are plotted against the left ordinate, while the 
difference between these solutions (in purple) is plotted against the right ordinate. The 
dashed lines (in red) indicate values that are  ±A∆xp relative to the calculated solution. 
Notice that the error is highest at the discontinuities. 
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Figure 8b. Plots of the absolute difference between the exact and estimated solutions for 
the 1-D Riemann problem on the 40-zone base computational mesh at t = 0.2 s. Clock-
wise from the upper left, the following quantities are plotted: density, pressure, SIE, and 
x-velocity. The exact solution on this mesh (in black), the estimated solution (in blue), 
and the calculated solution (in red) are plotted against the left ordinate, while the differ-
ence between these solutions (in purple) is plotted against the right ordinate. The dashed 
lines (in red) indicate values that are  ±A∆xp relative to the calculated solution. Notice 
that the error is highest at the discontinuities. 
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Figure 9 contains plots of the data in Tables 16 and 19. The black values in these plots 
are the L1 norm of the difference between the exact solution and the computed solution as 
a function of the mesh size for the four computational meshes. The blue values in these 
plots are the L1 norm of the difference between the exact solution and the estimated solu-
tion as a function of the mesh size for the four computational meshes. For reference, in 
the lower left-hand corner of these plots are straight lines corresponding to convergence 
rates of zero, one, and two. For the estimated solution, no contribution to the L1 norm is 
accrued for points that did not converge. These plots graphically depict the important re-
sult to be inferred from Tables 16 and 19, viz., that the error in the estimated solution is 
approximately a factor of two smaller than the error in the RAGE solution at the same 
mesh resolution. Moreover, the error in the estimated solution is smaller than the error in 
the RAGE solution at one-half the mesh resolution.  
 
Figure 10 contains plots of the data in Table 20, viz., the mean convergence rates plus or 
minus one standard deviation, as a function of the base mesh size.  The variance shown in 
these values can be understood from the results plotted in Fig. 11, which shows the 
pointwise convergence rate as a function of ordinate of cell-centered position in the mesh. 
Specifically, Figs. 11a and 11b contain plots, respectively, for the 20/40/80 and 
40/80/160 cases, of the pointwise convergence rate  q (in purple) together with the esti-
mated solution (in blue) and the computed solution on the same mesh (in red).These plots 
indicate that the local convergence rate (plotted against the right ordinate) is, overall, no-
tably greater than the theoretical convergence rate of unity, except near the discontinui-
ties, where it does drop to that value. Interior to the developing wave structure, the con-
vergence rate is quite high (say, above two). In the region of nominally quiescent flow, 
i.e. before the shock and beyond the rarefaction, values in the computed solution that de-
viate slightly from the unperturbed values lead to the extremely high convergence rates. It 
is the nature of the distribution of these values that contributes to the large standard de-
viations in Table 20. 
 
In the finer resolution case (40/80/160, Fig. 11b), there were a small number of points at 
which the procedure did not converge; these points were given artificially low conver-
gence rate values and appear as drop-outs on these plots. Visual comparison of the esti-
mated (blue) and corresponding computed (red) solution clearly demonstrates that our 
technique produces estimated solutions with “tighter” discontinuities and that are argua-
bly qualitatively superior to the computed solution at the same mesh resolution. 
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Figure 9. Plots of the L1 norm of the difference between the exact solution and the com-
puted (i.e., RAGE) solution (in black) and the estimated solution and the computed solu-
tion (in blue) over the various computational meshes for the 1-D Riemann problem at 
t=0.2 s on the four computational meshes considered, for code version 2004-1126 (Tables 
16 and 19). Clockwise from the upper left, the plots correspond to density, pressure, spe-
cific internal energy, and velocity. The lines in the lower left of each plot represent con-
vergence rates of q = 0, 1, and 2. The equations give the effective convergence relation 
associated with each set of data points. The error in the estimated solution is approxi-
mately a factor of two smaller than the error in the corresponding RAGE solution; in fact, 
the error in the estimated solution is smaller than the error in the RAGE solution at one-
half the mesh resolution. 
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Figure 10. Plots of the mean convergence rate q for the 1-D Riemann problem at time t = 
0.2 s on the two computational meshes for which these values were obtained (Table 20). 
Clockwise from the upper left, results are plotted for the density, pressure, SIE, and x-
velocity. The uncertainty bounds in these plots indicate ± one standard deviation in these 
values, which are calculated from the distribution of convergence rate values on the 
mesh. 
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Figure 11a. Plots of the pointwise convergence rate q for the 1-D Riemann problem es-
timated from the 20-, 40-, and 80-zone computational meshes at t = 0.2 s. The estimated 
solution (in blue) and the computed solution (in red) are plotted against the left ordinate, 
while the pointwise convergence rate (in purple) is plotted against the right ordinate. 
Clockwise from the upper left, the following quantities are plotted: density, pressure, SIE, 
and x-velocity. 
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Figure 11b. Plots of the pointwise convergence rate q for the 1-D Riemann problem es-
timated from the 40-, 80-, and 160-zone computational meshes at t = 0.2 s. The estimated 
solution (in blue) and the computed solution (in red) are plotted against the left ordinate, 
while the pointwise convergence rate (in purple) is plotted against the right ordinate. 
Clockwise from the upper left, the following quantities are plotted: density, pressure, SIE, 
and x-velocity. 
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Figures 12a and 12b contain plots for the 20/40/80 and 40/80/160 cases, respectively, of 
the estimated solution (in blue), the computed solution on the same mesh (in red), and the 
pointwise convergence prefactor A (in purple against a logarithmic axis). As shown in 
these plots, the local convergence prefactor (plotted against the right ordinate) varies sig-
nificantly in value. The few-order-of-magnitude variation of the convergence prefactor 
within the developing wave structure is expected, based on previous experience. The ex-
treme values in the regions of ostensibly quiescent flow, however, are surprising. These 
values are, in some sense, anomalous, and suggest that the statistics of this quantity are 
significantly non-Gaussian over these meshes; consequently, the sample mean and vari-
ance provide poor characterizations of these data. It is the nature of the distribution of 
these values that contributes to the large standard deviations in Table 21. 
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Figure 12a. Plots of the pointwise convergence prefactor A for the 1-D Riemann problem 
estimated from the 20-, 40-, and 80-zone computational meshes at t = 0.2 s. The esti-
mated solution (in blue) and the computed solution (in red) are plotted against the left 
ordinate, while the pointwise convergence rate (in purple) is plotted against the right or-
dinate. Clockwise from the upper left, the following quantities are plotted: density, pres-
sure, SIE, and x-velocity. 
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Figure 12b. Plots of the pointwise convergence prefactor A for the 1-D Riemann problem 
estimated from the 40-, 80-, and 160-zone computational meshes at t=0.2 s. The esti-
mated solution (in blue) and the computed solution (in red) are plotted against the left 
ordinate, while the pointwise convergence rate (in purple) is plotted against the right or-
dinate. Clockwise from the upper left, the following quantities are plotted: density, pres-
sure, SIE, and x-velocity. 
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4d. A 2-D Riemann problem 
 
The 2-D Riemann problem for an inviscid, non-heat-conducting, polytropic gas is a geo-
metrical extension of the 1-D shock tube problem. More precisely, instead of two regions 
of uniform initial values, the four quadrants of the 2-D plane are initially assigned differ-
ent, uniform states that evolve under the dynamics of the governing Euler equations. Un-
like the 1-D case, however, there is no exact solution for the 2-D Riemann problem; nev-
ertheless, it has engendered much interest in the computational applied mathematics 
community. The richness of the numerically determined solution structures hints at sig-
nificant complexity in the solution space for multidimensional gas dynamics problems.  
 
Recent numerical evidence suggests that 19 fundamentally different patterns or types of 
structures can develop for the 2-D Riemann problem for a polytropic gas 
[Lax98,Sch93a,Sch93b]. Two of these solutions consist solely of rarefactions, two consist 
solely of shocks, and two consist solely of contact discontinuities (i.e., slip lines); the re-
maining solutions develop from combinations of these fundamental waves. We consider 
one of the all-rarefaction cases in our analysis. The domain of interest is the unit square 

! 

"# x,y( ) : x,y( )$ 0,1[ ] % 0,1[ ]{ } ; the full computational domain, however, is 

! 

" # x,y( ) : x,y( )$ %1,2[ ] & %1,2[ ]{ }' " , so that effects of the computational boundary 
∂

! 

"  do not influence the calculated solution in Ω at the time of interest. With the four 
initial regions of the domain of interest numbered I–IV counter-clockwise from the upper 
right (i.e., I 

! 

" x,y( ) : x > 0.5  and  y > 0.5{ }, II

! 

" x,y( ) : x # 0.5  and  y > 0.5{ }, etc.), the 
initial conditions for this problem are given in Table 22. The meshes we consider had 
32x32, 64x64, 128x128, and 256×256 cells in them. We evaluate the solution at the final 
time of t = 0.2, as considered in [Lax98]. 
 

Table 22. 2-D Riemann rarefaction problem initial conditions, with γ = 1.4. 
Region ρ p e u v 
 (g cm-3) (dyne cm-2) (erg g-1) (cm s-1) (cm s-1) 
    I 1.0 1.0 2.5 0.0 0.0 
    II 0.5197 0.4 1.9242 -0.7259 0.0 
    III 0.1072 0.0439 1.0238 -0.7259 1.4045 
    IV 0.2579 0.15 1.4541 0.0 -1.4045 

 
As for the 2-D nonlinear acoustic wave problem of §4b, there is no exact solution to this 
problem. We catalogue the convergence results in Tables 23 and 24, which contain, 
respectively, the mean and standard deviation of the computed convergence rate q over 
the computational mesh, and the corresponding inferred convergence prefactor A. As 
with the 1-D Riemann problem, the prefactors are exceptionally large. Maps of the 
prefactor in the following figures (Figures 14a-h) show that the exceptionally high 
prefactors are concentrated in an area of quiescence at the top right hand corner of the 
computational mesh. The quiescent region contributes little to the computational error, so 
a more accurate measure of the mean prefactor and convergence rate would exclude the 
large values found in the quiescent region. 
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Global Convergence Results 
 

Table 23. 2-D Riemann problem computed-estimated solution error at t = 0.2 s. 
Nx ∆x 

! 

ˆ " # "$x 1
 

! 

ˆ p " p#x 1
 

! 

ˆ e " e#x 1
 

! 

ˆ u " u#x 1
 

 (cm) (g cm-3) (dyne cm-2) (erg g-1) (cm s-1) 
32 (64, 128) 0.03125 8.77×10-3 8.791×10-3 3.69×10-2 2.013×10-2 

64 (128, 256) 0. 015625 5.703×10-3 4.917×10-3 2.015×10-2 1.135×10-2 
RAGE version 2004-1126 

 
Mean, Pointwise Convergence Results 

 
Table 24. 2-D Riemann rarefaction problem estimated convergence rate q, t = 0.2 s. 

Range of cells Density Pressure Energy Speed 
32 (64, 128) 1.91±1.23 2.16±1.28 1.99±1.07 2.09±1.27 

64 (128, 256) 2.29±1.73 2.45±1.80 2.38±1.77 2.42±1.77 
RAGE version 2004-1126 

 
Table 25. 2-D Riemann rarefaction problem estimated convergence prefactor A, t=0.2 s. 
Range of cells Density Pressure Energy Speed 

32 (64, 128)   (2.33±65.5)×1010   (6.60±94.6)×1010  (2.07±63.8)×109 (1.43±39.6)×109 
64 (128, 256)   (7.11±196)×1020   (9.95±274)×1020  (7.02±195)×1020 (2.77±108)×1024 

RAGE version 2004-1126 
 
Figures 13-16 contain plots that further illuminate the results for the 2-D Riemann rare-
faction problem. Figures 13a–d contain, respectively, plots of the computed solution for 
the density, pressure, SIE, and speed at the final time on the four computational meshes. 
These plots show the continuous nature of the solution, and are qualitatively reminiscent 
of the plots given, e.g., by Lax & Liu [Lax98] and Kamm & Rider [Kam98].4  
 
Figures 14a-h each contains four plots: the estimated solution, the convergence index, the 
conference prefactor, and the convergence rate, all over the computational mesh for the 
various quantities (density, pressure, SIE, and speed) and different resolutions (32/64/128 
and 64/128/256). The convergence index (upper right plot) shows graphically the conver-
gence of points within the Newton solver. The only failure of the solver algorithm is 
shown by the red cells (in all figures except 14c-d) for which a zero was found in the di-
agonal of the upper triangular matrix. As these figure show, the Newton solver success-
fully converged for almost all cells where it was possible to converge. In Figures 14e-f, 
there are horizontal and vertical band structures in the solution; these may be due to dis-
continuous initial conditions. These structures can be seen to correlate to extrema in both 
the prefactor and convergence rate plots. 
 
Figure 15 contains plots of the global error with the estimated solution standing in for the 
exact solution. Figure 16 displays the pointwise mean and standard deviation of the con-

                                                
4 Note, however, that the solution is not smooth: at the edges of the rarefaction fan regions, the solution is 
continuous but not differentiable. 
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vergence rate and show exceptionally large uncertainty bounds, which increase with zon-
ing refinement. 
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    32×32 Density        64×64 Density 

  
 

    128×128 Density       256×256 Density 

  
 

 
Figure 13a. Plots of the computed density for the 2-D Riemann rarefaction problem at 
the time t = 0.2 s on the four computational meshes considered. Clockwise from the up-
per left, the plots correspond to the 32×32, 64×64, 256×256, and 128×128 meshes on the 
unit square. The data range is (dark blue) 0.09 ≤ ρ ≤ 1.0 (dark red). All values are in 
g/cm3. 
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    32×32 Pressure        64×64  Pressure 

  
 

    128×128 Pressure       256×256 Pressure 

  
 

 
Figure 13b. Plots of the computed pressure for the 2-D Riemann rarefaction problem at 
the time t = 0.2 s on the four computational meshes considered. Clockwise from the up-
per left, the plots correspond to the 32×32, 64×64, 256×256, and 128×128 meshes on the 
unit square. The data range is (dark blue) 0.04 ≤ p ≤ 1.0 (dark red). All values are in 
dyne/cm2. 
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    32×32 SIE         64×64  SIE 

  
 

    128×128 SIE        256×256 SIE 

  
 

 
Figure 13c. Plots of the computed SIE for the 2-D Riemann rarefaction problem at the 
time t = 0.2 s on the four computational meshes considered. Clockwise from the upper 
left, the plots correspond to the 32×32, 64×64, 256×256, and 128×128 meshes on the unit 
square. The data range is (dark blue) 1.0 ≤ e ≤ 2.5 (dark red). All values are in erg/g. 
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    32×32 Speed         64×64  Speed 

  
 

    128×128 Speed        256×256 Speed 

  
 

 
Figure 13d. Plots of the computed speed for the 2-D Riemann rarefaction problem at the 
time t = 0.2 s on the four computational meshes considered. Clockwise from the upper 
left, the plots correspond to the 32×32, 64×64, 256×256, and 128×128 meshes on the unit 
square. The data range is (dark blue) 0.0 ≤ u ≤ 1.6 (dark red). All values are in cm/s. 
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     32×32 Estimated density       32×32 Convergence index 

  
 

      32×32 Convergence rate    32×32 Convergence prefactor 

  
 

 
Figure 14a. Plots of the estimated quantities related to density for the 2-D Riemann rare-
faction problem from the 32-, 64-, and 128-zone computational meshes at t = 0.2 s. 
Clockwise from the upper left, these are plots of: (i) the estimated density, on the range 
(dark blue) 0.09 ≤ ρ ≤ 1.0 (dark red) in g/cm3; (ii) Newton solver convergence index (iii) 
convergence prefactor A, on the logarithmic range (dark blue) 1 ≤ A ≤ 1010 (dark red); 
and (iv) convergence rate, on the range (dark blue) 0 ≤ q ≤ 4.0 (dark red). The top right 
plot shows that the method did not converge primarily along a horizontal band approxi-
mately one-quarter up the mesh from the bottom, which we speculate corresponds to the 
final position of the initial discontinuity.  From the plots in the bottom row, it is seen that 
the method converged at very high rates in the upper right corner, where essentially no 
evolution has taken place. 
 
Newton solver convergence index key: 
(1) Blue :          Newton solver converged. 
(2) Light Blue: Points with an order for which no solution exists (Eq. 2-9). 
(3) Yellow:       Points too close together to calculate convergence reliably. 
(4) Red:            A zero was in the diagonal of the U matrix and the Newton solver failed. 



 

LA-UR-05-8002  UNCLASSIFIED  ADC: W. J. RIDER 61 

 
     64×64  Estimated density      64×64  Convergence index 

  
 

     64×64  Convergence rate    64×64  Convergence prefactor 

  
 

 
Figure 14b. Plots of the estimated quantities related to density for the 2-D Riemann rare-
faction problem from the 64, 128-, and 256-zone computational meshes at t = 0.2 s. 
Clockwise from the upper left, these are plots of: (i) the estimated density, on the range 
(dark blue) 0.09 ≤ ρ ≤ 1.0 (dark red) in g/cm3; (ii) Newton solver convergence index (iii) 
convergence prefactor A, on the logarithmic range (dark blue) 1 ≤ A ≤ 1020 (dark red); 
and (iv) convergence rate q, on the range (dark blue) 0 ≤ q ≤ 4.0 (dark red). The top right 
plot shows that the method did not converge primarily along a horizontal band near the 
upper boundary and along horizontal bands near the upper boundary; we speculate that 
these also correspond to the final position of the initial discontinuity. From the plots in 
the bottom row, it is seen that the method converged at very high rates in the upper right 
corner, the upper left corner, and along a horizontal band near y ≈ 0.25.  
 
Newton solver convergence index key: 
(1) Blue :          Newton solver converged. 
(2) Light Blue: Points with an order for which no solution exists (Eq. 2-9). 
(3) Yellow:       Points too close together to calculate convergence reliably. 
(4) Red:            A zero was in the diagonal of the U matrix and the Newton solver failed. 
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     32×32 Estimated pressure       32×32 Convergence index 

  
 

      32×32 Convergence rate    32×32 Convergence prefactor 

  
 

 
Figure 14c. Plots of the estimated quantities related to pressure for the 2-D Riemann 
rarefaction problem from the 32-, 64-, and 128-zone computational meshes at t = 0.2 s. 
Clockwise from the upper left, these are plots of: (i) the estimated pressure, on the range 
(dark blue) 0.04 ≤ p ≤ 1.0 (dark red) in dyne/cm2; (ii) Newton solver convergence index 
(iii) convergence prefactor A, on the logarithmic range (dark blue) 1 ≤ A ≤ 1010 (dark 
red); and (iv) convergence rate, on the range (dark blue) 0 ≤ q ≤ 4.0 (dark red). The top 
right plot shows that the method did not converge primarily along a horizontal band ap-
proximately one-quarter up the mesh from the bottom, which we speculate corresponds to 
the final position of the initial discontinuity.  From the plots in the bottom row, it is seen 
that the method converged at very high rates in the upper right corner, where essentially 
no evolution has taken place.  
 
Newton solver convergence index key: 
(1) Blue :          Newton solver converged. 
(2) Light Blue: Points with an order for which no solution exists (Eq. 2-9). 
(3) Yellow:       Points too close together to calculate convergence reliably. 
(4) Red:            A zero was in the diagonal of the U matrix and the Newton solver failed. 
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     64×64  Convergence rate    64×64  Convergence prefactor 

  
 

 
Figure 14d. Plots of the estimated quantities related to pressure for the 2-D Riemann 
rarefaction problem from the 64, 128-, and 256-zone computational meshes at t = 0.2 s. 
Clockwise from the upper left, these are plots of: (i) the estimated pressure, on the range 
(dark blue) 0.04 ≤ p ≤ 1.0 (dark red) in dyne/cm2; (ii) Newton solver convergence index 
(iii) convergence prefactor A, on the logarithmic range (dark blue) 1 ≤ A ≤ 1020 (dark 
red); and (iv) convergence rate q, on the range (dark blue) 0 ≤ q ≤ 4.0 (dark red). The top 
right plot shows that the method did not converge primarily along a horizontal band near 
the upper boundary and along horizontal bands near the upper boundary; we speculate 
that these also correspond to the final position of the initial discontinuity. From the plots 
in the bottom row, it is seen that the method converged at very high rates in the upper 
right corner, the upper left corner, and along a horizontal band near y ≈ 0.25.  
 
Newton solver convergence index key: 
(1) Blue :          Newton solver converged. 
(2) Light Blue: Points with an order for which no solution exists (Eq. 2-9). 
(3) Yellow:       Points too close together to calculate convergence reliably. 
(4) Red:            A zero was in the diagonal of the U matrix and the Newton solver failed. 
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         32×32 Estimated SIE       32×32 Convergence index 

  
 

      32×32 Convergence rate    32×32 Convergence prefactor 

  
 

 
Figure 14e. Plots of the estimated quantities related to SIE for the 2-D Riemann rarefac-
tion problem from the 32-, 64-, and 128-zone computational meshes at t = 0.2 s. Clock-
wise from the upper left, these are plots of: (i) the estimated SIE, on the range (dark blue) 
1.0 ≤ e ≤ 2.5  (dark red) in erg/g; (ii) Newton solver convergence index (iii) convergence 
prefactor A, on the logarithmic range (dark blue) 1 ≤ A ≤ 1010 (dark red); and (iv) con-
vergence rate, on the range (dark blue) 0 ≤ q ≤ 4.0 (dark red). The top right plot shows 
that the method did not converge primarily along a horizontal band approximately one-
quarter up the mesh from the bottom, which we speculate corresponds to the final posi-
tion of the initial discontinuity.  From the plots in the bottom row, it is seen that the 
method converged at very high rates in the upper right corner, where essentially no evo-
lution has taken place.  
 
Newton solver convergence index key: 
(1) Blue :          Newton solver converged. 
(2) Light Blue: Points with an order for which no solution exists (Eq. 2-9). 
(3) Yellow:       Points too close together to calculate convergence reliably. 
(4) Red:            A zero was in the diagonal of the U matrix and the Newton solver failed. 
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     64×64  Convergence rate    64×64  Convergence prefactor 

  
 

 
Figure 14f. Plots of the estimated quantities related to SIE for the 2-D Riemann rarefac-
tion problem from the 64, 128-, and 256-zone computational meshes at t = 0.2 s. Clock-
wise from the upper left, these are plots of: (i) the estimated SIE, on the range (dark blue) 
1.0 ≤ e ≤ 2.5 (dark red) in erg/g; (ii) Newton solver convergence index (iii) convergence 
prefactor A, on the logarithmic range (dark blue) 1 ≤ A ≤ 1020 (dark red); and (iv) conver-
gence rate q, on the range (dark blue) 0 ≤ q ≤ 4.0 (dark red). The top right plot shows that 
the method did not converge primarily along a horizontal band near the upper boundary 
and along horizontal bands near the upper boundary; we speculate that these also corre-
spond to the final position of the initial discontinuity. From the plots in the bottom row, it 
is seen that the method converged at very high rates in the upper right corner, the upper 
left corner, and along a horizontal band near y ≈ 0.25.  
 
Newton solver convergence index key: 
(1) Blue :         Newton solver converged. 
(2) Light Blue: Points with an order for which no solution exists (Eq. 2-9). 
(3) Yellow:       Points too close together to calculate convergence reliably. 
(4) Red:            A zero was in the diagonal of the U matrix and the Newton solver failed. 
 



 

LA-UR-05-8002  UNCLASSIFIED  ADC: W. J. RIDER 66 
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Figure 14g. Plots of the estimated quantities related to speed for the 2-D Riemann rare-
faction problem from the 32-, 64-, and 128-zone computational meshes at t = 0.2 s. 
Clockwise from the upper left, these are plots of: (i) the estimated speed, on the range 
(dark blue) 0.0 ≤ u ≤ 1.6  (dark red) in cm/s; (ii) Newton solver convergence index (iii) 
convergence prefactor A, on the logarithmic range (dark blue) 1 ≤ A ≤ 1010 (dark red); 
and (iv) convergence rate, on the range (dark blue) 0 ≤ q ≤ 4.0 (dark red). The top right 
plot shows that the method did not converge primarily along a horizontal band approxi-
mately one-quarter up the mesh from the bottom, which we speculate corresponds to the 
final position of the initial discontinuity.  From the plots in the bottom row, it is seen that 
the method converged at very high rates in the upper right corner, where essentially no 
evolution has taken place.  
 
Newton solver convergence index key: 
(1) Blue :          Newton solver converged. 
(2) Light Blue: Points with an order for which no solution exists (Eq. 2-9). 
(3) Yellow:       Points too close together to calculate convergence reliably. 
(4) Red:            A zero was in the diagonal of the U matrix and the Newton solver failed. 
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Figure 14h. Plots of the estimated quantities related to speed for the 2-D Riemann rare-
faction problem from the 64, 128-, and 256-zone computational meshes at t = 0.2 s. 
Clockwise from the upper left, these are plots of: (i) the estimated speed, on the range 
(dark blue) 0.0 ≤ u ≤ 1.6  (dark red) in cm/s; (ii) Newton solver convergence index (iii) 
convergence prefactor A, on the logarithmic range (dark blue) 1 ≤ A ≤ 1020 (dark red); 
and (iv) convergence rate q, on the range (dark blue) 0 ≤ q ≤ 4.0 (dark red). The top right 
plot shows that the method did not converge primarily along a horizontal band near the 
upper boundary and along horizontal bands near the upper boundary; we speculate that 
these also correspond to the final position of the initial discontinuity. From the plots in 
the bottom row, it is seen that the method converged at very high rates in the upper right 
corner, the upper left corner, and along a horizontal band near y ≈ 0.25.  
 
Newton solver convergence index key: 
(1) Blue :          Newton solver converged. 
(2) Light Blue: Points with an order for which no solution exists (Eq. 2-9). 
(3) Yellow:       Points too close together to calculate convergence reliably. 
(4) Red:            A zero was in the diagonal of the U matrix and the Newton solver failed. 
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Figure 15. Plots of the effective error for the 2-D Riemann rarefaction problem at time t 
= 0.2 s on the two computational meshes for which the estimated solution was obtained. 
Although it appears visually similar, this is a different kind of data than that shown in 
Figures 2 and 9. Clockwise from the upper left, results are plotted for the density, pres-
sure, SIE, and speed. The lines in the lower left of each plot represent convergence rates 
of q = 0, 1, and 2. The equation in blue gives the effective convergence relation associ-
ated with the two data points in each plot. 
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Figure 16. Plots of the mean convergence rate q for the 2-D Riemann rarefaction prob-
lem at time t = 0.2 s on the two computational meshes for which these values were ob-
tained. Clockwise from the upper left, results are plotted for the density, pressure, SIE, 
and speed. The uncertainty bounds in these plots indicate ± one standard deviation in 
these values, which are calculated from the distribution of convergence rate values on the 
mesh. 
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5. Summary and Conclusions 
 
We have described, implemented, and applied a method with which to gauge both an 
estimated solution and its asymptotic convergence properties based on a series of 
calculations performed on different spatial meshes. This method provides pointwise 
estimates of the local solution together with estimates of the uncertainty in the numerical 
discretization of the computed solution. This approach perforce requires several 
assumptions, but, as demonstrated, applies to both smooth and non-smooth solutions.  
 
We have evaluated this process on a small set of simple 1-D and 2-D test problems, 
simulations for which were conducted with the RAGE code. All computational grids were 
uniform and a constant, forced, time step was used. Simulations without forced time step 
were run first, in order to determine what the size of the forced time step should be. The 
results attest to the efficacy of this procedure for Eulerian calculations on structured meshes. 
The outcome of those investigations is summarized as follows. 

  
The 2-D linear acoustic wave problem: Global convergence was observed for this 
problem relative to both the exact (Table 6) and estimated (Table 9) solutions. 
Comparison of the exact, computed, and estimated solutions showed that the estimated 
solution is quite a bit better than the coarse mesh computed solution. The error between 
the exact and estimated solution is larger than between the exact and fine-mesh 
computed solution. However, we suspect that if the fine-mesh solution were averaged 
onto the coarse-mesh, it would have a higher error than the estimated solution. The 
estimated solution was found to be a function of the zoning of the three simulations used 
to construct it. The convergence rate and prefactor for the global, exact speed solution 
(Tables 6 and 7) had no discernable relationship with zone size, while the other physical 
quantities showed a decrease in their magnitude with zone size. 
 
The 2-D nonlinear acoustic wave problem: This problem had no exact solution and the 
estimated solution replaced the exact solution for the convergence study. Error norms 
between the estimated and calculated solutions showed greater than second order 
convergence (Table 13), comparable to the linear acoustic wave problem. The global 
prefactor for speed for the fine calculation had an anomalously low value. 

 
The 1-D Riemann problem:  Global convergence was observed for this problem for all 
physical quantities, relative to both the exact (Table 17) and estimated (Table 20) 
solutions. The exact, global convergence rate and prefactor increased with spatial 
resolution for density and pressure, the opposite behavior from the 2-D linear acoustic 
problem. For SIE and x-velocity, there was no discernable trend, which is noteworthy. 
Again, the error of the estimated solution was less than the computed coarse grid 
solution. The graphical results of Figs. 8a and 8b demonstrate how the estimated 
convergence properties can be interpreted as quantified uncertainties of the numerical 
discretization errors. 
 
The 2-D Riemann problem: Because the problem did not have an exact solution, the 
estimated solution was used in its place. Global error norms suggest convergence  
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quantified in Table 24. Importantly, the 2-D Riemann problem contained a number of 
points that converged in an oscillatory nature. Our method of calculating convergence 
allowed oscillatory points to be included in the global convergence analysis of this 
problem.  

 
In all problems, the mean and standard deviation of the pointwise convergence rate and 
prefactor increased with decreasing mesh size. The behavior seemed unusual and may be the 
result of a few outlying points that skewed the averages. 
 
The results on this study demonstrate the capacity of our method to obtain solutions that 
more faithfully resolve solution discontinuities. Overall, the procedure we propose 
appears to operate robustly on 1- and 2-D smooth and discontinuous problems. We draw 
this conclusion based on the results discussed in this section, namely, that (i) the 
procedure converges on a large fraction of the mesh points, (ii) the estimated solution 
provides an estimate of the exact solution that is quantitatively superior to the computed 
solution on the same mesh, and (iii) the computed convergence characteristics (rate and 
prefactor) provide reasonable bounds for the numerical discretization properties of the 
calculated solution. 
 
As a result of this study, we suggest that the following actions be considered.  
 

• Investigate the non-uniqueness of the computed solution. This approach depends on 
the solution to a set of nonlinear equations (Eq. 2-4), which may possess several 
solutions. It would be of interest to apply more sophisticated numerical techniques in an 
effort to obtain all solutions of these equations, to develop some confidence that the 
inferred solutions are indeed appropriate.  
 
• Exercise this approach on coupled mutiphysics problems. An important outcome of 
this approach is to provide estimates of the solution (and consistent discretization error 
measures) irrespective of the underlying equations. Coupled multiphysics problems—
for which few exact solutions exist—provide cases that are ideally situated to benefit 
from this technique. 
 
• Enhance the error ansatz. This could be undertaken by replacing the error relation we 
have assumed (e.g., Eq. (3-1)) with a more advanced error model, e.g., including 
temporal discretization error [Kam02] or a more sophisticated ansatz [Hem05]. Such 
extensions would require modification of the solution technique (i.e., the Newton’s 
method used in this study), but are otherwise straightforward. 
 
• Extend this approach to non-uniform meshes. This nontrivial extension would 
require both careful interpolation (i.e., conservative remap) procedures and 
characterization of appropriate length scales (represented as ∆x in the error ansatz). 
Whereas the necessary remapping techniques may be at hand, the thorny issue of 
proper length scale characterization remains, to the authors’ knowledge, unresolved 
(perhaps it could be circumvented by modifying the error ansatz to be independent of 
the length scale).  
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• Incorporate this method into an automated analysis toolbox. The analysis we have 
presented could be incorporated into the analysis frameworks presently being developed, 
e.g., the Pinocchio project [Hrb05] or AMHC_Tools [Gro05]. The inclusion of this 
method into such a toolbox would allow convenient application of this approach to a 
spectrum of problems by a larger set of users and analysts. 
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Appendix A. Evaluation of Solution Norms 
 
This appendix contains a very brief discussion of the implementation of the error norms in 
these expressions. The definition of the Lp norm of the function f  defined on the set  Ω  
contained in the space of n-tuples of real numbers is 
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where  µ(Ω)  is the measure of the set  Ω  (e.g., the length  L  in 1-D, the area  A  in 2-D or 
the volume  V  in 3-D). The expression of the element  dnx  depends the coordinates chosen, 
which is simplified in this study, as we consider only Cartesian geometry. Based on these 
definitions, the  L1  and  L2  norms are defined as 
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The specific coordinate systems we consider in this report include 1-D and 2-D Cartesian 
coordinates, so the definitions of the spatial elements (dnx) and integration domains are 
straightforward. 
 
The expressions in Eqs. (A-2) and (A-3) are evaluated using approximations based on the 
corresponding discretized values on the computational mesh. The following simple quad-
rature rule is used in these evaluations: 
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