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VERIFICATION AND VALIDATION OF A COMPOSITE MODEL 
François M. Hemez1, Trevor B. Tippetts2 

Los Alamos National Laboratory 
Engineering Sciences and Applications, ESA-WR 

Mail Stop T001, Los Alamos, New Mexico 87545, U.S.A. 

ABSTRACT 
The paper presents preliminary results of applying methods developed for verifying and 
validating the numerical simulations of multi-layered composite plates. A hierarchy of 
three validation experiments is defined to validate various aspects of the modeling. The 
experiments are: modal testing; quasi-static loading; and impact testing. The paper 
focuses on the validation of the modal response of eight-ply laminated composite plates. 
After verifying some implementation aspects of the code, mesh convergence studies are 
conducted. Effect screening is performed to restrict the varying input parameters to the 
most significant ones. Polynomial meta-models are developed to replace the potentially 
expensive finite element simulations. Uncertainty is propagated to estimate the variability 
of predictions given input uncertainty. Test measurements are compared to predictions 
of modal frequencies. A final statement is made about the predictive accuracy of the 
composite model and the level of confidence with which modal frequency predictions 
can be made for potentially different multi-layered configurations. Approved for unlimited, 
public release on November 16, 2004, LA-UR-04-8195, Unclassified. 

1. INTRODUCTION 
Multi-scale, non-linear models of composite materials have been developed for several 

years at the Los Alamos National Laboratory (LANL) in support of various applications such as 
the LANL Damage Prognosis project. Damage prognosis integrates advanced sensing, data 
interrogation, statistical pattern recognition, and science-based predictive models to forecast 
the performance and reliability of engineered systems. Because prognosis relies to a great 
extent on the deployment of a predictive capability, the credibility of numerical simulations 
must be established. This is accomplished through various activities collectively referred to as 
Verification and Validation (V&V). 

Results of applying several methods to verify and validate the modeling of multi-layered 
composite plates are presented [1]. A hierarchy of three validation experiments is defined to 
validate aspects of the modeling pertinent to the modal, quasi-static, and impact responses [2]. 
This paper discusses the assessment of prediction accuracy for the modal response of eight-
ply laminated composite plates. Mesh convergence errors, parametric variability, and model 
fitting uncertainty are thoroughly quantified. The predicted natural frequencies are compared to 
measurements, and a final statement is made about the predictive accuracy of the composite 
model and its ability to predict potentially different multi-layered configurations. 

                                                           
1 Technical Staff Member and ESA-WR Validation Methods team leader, E-mail: hemez@lanl.gov. 
2 Technical Staff Member of the ESA-WR Materials Behavior team, E-mail: tippetts@lanl.gov. 
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2. MODAL TESTING OF EIGHT-PLY LAMINATED COMPOSITE PLATES 
The modal response of a population of eight nominally identical composite plates is 

tested. The reason for replicate experiments is to estimate the variability of the modal 
response due to manufacturing and testing uncertainties. Each plate is 152.0 mm (6.0 inch) 
square, 1.0 mm (0.04 inch) thick, and made of eight orthotropic carbon fiber plies. Each ply is 
0.127 mm (0.005 inch) thick. The ply orientation from top to bottom is a [0; 45; 90; -45; -45; 90; 
45; 0] degree combination, which provides symmetry with respect to the mid-layer. In the 
following, the plies are numbered 1 through 8, from top to bottom. The material properties for 
the composite material are listed in Section 3. Figure 1 shows the composite plates. 

 
Figure 1. Population of eight-ply composite plates. 

The equipment used consists of a laptop computer for data processing and analysis, the 
DactronTM data acquisition system, a PCBTM impact hammer, four PCBTM accelerometers, and 
the corresponding signal conditioners. Each plate is drilled at two adjacent corners and 
suspended using with a long monofilament, hence, providing free-free boundary conditions. 
The free-floating boundary is selected because it is the easiest of boundary conditions to 
simulate numerically. 

Data sets are collected using a 4-channel DactronTM data acquisition system with a 
bandwidth of 600 Hertz and 4,096 frequency lines. Excitation is provided with a small impact 
hammer and an exponential window is applied to the measured signals. Three drive point 
measurements are conducted on each of the eight plates available. Five replicates are 
collected and averaged for each test to improve the signal-to-noise ratio. Figure 2 illustrates 
the modal test set-up, and Table 1 lists some of the data acquisition settings. 
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Figure 2. Picture of a suspended composite plate during modal testing. 

Table 1. Settings of the data acquisition system. 

Channel Quantity Engineering 
Unit (EU) 

Input Sensitivity 
(m-Volt / EU) 

Orientation 

1 Force lbf 1.0 1000.0 -Z 
2 Acceleration g 10.0 10.0 -Z 
3 Acceleration g 10.0 10.0 -Z 
4 Acceleration g 10.0 10.0 -Z 

 

 
Figure 3. Illustration of accelerometer and impact hammer locations. 
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Four accelerometers are mounted with wax at the four corners of each plate tested. 
Figure 3 illustrates the locations 1, 5, 21, and 25 of the four accelerometers (shown with blue 
circles) relative to the ply orientation angles. The numbers 1-25 shown represent hammer 
impact locations. Only accelerometers mounted at positions 1, 21, and 25 are connected to 
the data acquisition system. The fourth accelerometer is placed as a dummy at position 5 to 
make the instrument loading symmetric and, therefore, emphasize symmetric mode shapes. 

For simplicity, the analysis is here restricted to modal frequencies. Mode shape or modal 
damping predictions of the composite model can be verified and validated using the procedure 
outlined below. Modal frequencies are preferred because they provide low-dimensional 
features that well characterize the linear, low-frequency response of the laminate plate. 

Tables 2 and 3 show statistics of the first five identified frequencies. Mean and standard 
deviation values are listed in Table 2. The correlation matrix given in Table 3 is a normalized 
version of the covariance matrix Σyy.3 The covariance matrix Σyy is estimated by computing: 

( )( )T
yyyy µYµYΣ −−=  (1)

where Y denotes the data matrix and µy represents the vector of mean frequencies shown in 
Table 2. The data matrix, Y, collects the frequencies identified for each one of the eight plates: 
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where ωi,j denotes the jth frequency identified (j=1…NM) with the ith composite plate (i=1…NR); 
the number of modes is NM = 5; and the number of replicates is NR = 3 x 8 = 24.4 

Table 2. Statistics of identified modal frequencies. 

Mode Number Mean Frequency Standard Deviation Relative Deviation 

1 107.37 Hertz 1.05 Hertz 0.98% 
2 191.81 Hertz 2.37 Hertz 1.24% 
3 274.06 Hertz 2.92 Hertz 1.07% 
4 315.31 Hertz 3.13 Hertz 0.99% 
5 398.88 Hertz 3.00 Hertz 0.75% 

(The relative deviation is the standard deviation divided by the mean, expressed in percent.) 

It is concluded from Table 2 that measurements are very repeatable because the 
standard deviation values of identified frequencies are less than 1¼% of the mean values. 
Table 3 can be examined to study the correlation between frequency values. Correlation is 
observed between modes 4 and 5 (85%) and, to a lesser extent, between modes 2 and 3 
                                                           
3 The covariance matrix is normalized in such a way that entries on its main diagonal are equal to one. 
To do so, it is pre- and post-multiplied by a diagonal matrix formed with the inverse of the standard 
deviation values listed in Table 2 for each mode. It results the correlation matrix shown in Table 3. 
4 In reality, more than three drive-point measurements are conducted for some of the eight plates, which 
explains why more than NR = 24 replicate frequencies are available for correlation analysis. 
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(62%). Such information is useful, for example, in the context of finite element model updating 
where parameters are calibrated to improve the agreement between test measurements and 
model predictions. It suffices to define a fidelity metric from frequencies 1, 2, 4 because the 
other frequency values are somewhat correlated. 

Table 3. Correlation coefficients of identified modal frequencies. 

Correlation Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Mode 1 100.00% 27.38% 47.27% 14.06% 29.22%
Mode 2 27.38% 100.00% 62.45% 22.63% 37.56%
Mode 3 47.27% 62.45% 100.00% 45.84% 49.57%
Mode 4 14.06% 22.63% 45.84% 100.00% 85.41%
Mode 5 29.22% 37.56% 49.57% 85.41% 100.00%

 

 
Figure 4. Spread of identified frequencies relative to the low-frequency spectrum. 

Figure 4 provides a visual illustration of the frequency variability by showing the small 
spread relative to the frequency spacing. Figure 5 is similar to Figure 4, except that the mean 
frequency values are subtracted from each datum to better illustrate the variability. In Figure 5, 
the symbols represent individual measurements normalized to zero-mean, the solid-line boxes 
show one standard deviation away from the mean, and the dashed-line boxes show three 
standard deviations away from the mean. No outlier measurement is observed, which provides 
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confidence that the manufacturing process of the composite plates was well controlled and 
little environmental variability polluted the modal measurements.5 

 
Figure 5. Variability of identified frequencies (mean values removed). 

Lastly, the results of a Principal Component Analysis (PCA) are briefly presented. The 
purpose of this study is to quantify the amount of unit-to-unit variability, that is, the spread of 
frequency values that may result from what makes the composite plates slightly different from 
one another. Such factors may include small variations of plate dimensions, lack of material 
homogeneity, and small differences in the ply alignment. While Figures 4 and 5 quantify the 
overall variability, plate-to-plate variability cannot be discriminated from test-to-test variability. 

The principal components are computed from a Singular Value Decomposition (SVD) of 
the zero-mean data matrix, that is: 

( ) T
y V Σ UµY =−  (3)

where Σ, U, and V denote the diagonal matrix of singular values, matrix of left singular vectors, 
and matrix of right singular vectors, respectively. SVD is a computationally efficient calculation 
of the eigen-vectors of the covariance matrix Σyy, which is usually how PCA is performed. 

                                                           
5 An outlier is here defined as a datum that would be more than three standard deviations away from the 
mean, where the mean and standard deviation values are estimated from the population (see Table 2). 
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Table 4 lists the singular values of the decomposition. Note that “mode” here refers to a 
principal component mode, not to be confused with a resonant mode of the structure. The right 
and left singular vectors are illustrated in Figures 6 and 7, respectively. It can be observed 
from Table 4 that the first three principal components account for more than 82% of the 
correlation structure of the data matrix Y. This indicates that the correlation analysis can be 
restricted to the singular modes 1-3 without loosing too much information. 

Table 4. Singular values of the zero-mean modal frequency data matrix. 

Singular Mode Number Singular Value Percent Contribution 

1 39.54 42.66%
2 23.04 24.86%
3 13.54 14.61%
4 9.82 10.60%
5 6.74 7.27%

Total 100.00%
(The contribution is the singular value divided by the sum of all singular values, expressed in percent.) 
 
 

 
Figure 6. Right singular vectors of the zero-mean modal frequency data matrix. 
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Figure 7 (a). Left singular vectors 1, 2 of the zero-mean modal frequency data matrix. 

 
Figure 7 (b). Left singular vectors 3, 4 of the zero-mean modal frequency data matrix. 
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Figure 6 shows the five right singular vectors, Vk, where each one is a 5-coordinate 
vector. Modes are separated by solid-line vertical lines. The physical interpretation of right 
singular vectors is not straightforward. It can be observed, however, that all coordinates of the 
first right singular vector, V1, are positive, which indicates a positive trend in the correlation 
between the first five identified frequencies. This makes sense because an action taken to 
increase the first natural frequency (such as increasing the elasticity constants) also tends to 
increase the frequency of higher-order resonant modes. The second right singular vector, V2, 
identifies another trend where the correlation between natural frequencies 1-3 and natural 
frequencies 4-5 is negative. The physical interpretation of the third right singular vector, V3, is 
unclear. The relative “strength” of these trends is indicated by their singular values in Table 4. 

Figures 7(a) and 7(b) show the left singular vectors, Uk, for principal components 1-2 and 
3-4, respectively. The fifth left singular vector, U5, conveys no interesting information and it is 
not shown. The length of each Uk vector is equal to the number of replicates, or NR. Data 
collected for each plate are separated by solid-line vertical lines which makes it possible to 
segregate plate-to-plate variability from test-to-test variability. The analysis focuses on the first 
principal component mode, U1, for simplicity. It can be observed that the spread of coordinates 
is somewhat discontinuous when transitioning from one plate to the next. The amplitudes of 
these “jumps” are larger than the spread observed for the same plate tested. This indicates 
that plate-to-plate variability is a significant contributor to the overall variability of identified 
frequency values, more so than test-to-test variability. The lesson learned is that the numerical 
modeling should offer ways to account for such plate-to-plate variability. 

3. FINITE ELEMENT MODELING OF THE LAMINATED COMPOSITE PLATES 
A Finite Element Model (FEM) is developed to simulate the modal response of the plate 

and also its behavior when subjected to quasi-static loading and impact loading. The plate is 
meshed with 20-node quadratic hexahedra, with ten elements in each in-plane direction and 
one element through the thickness of each ply. Figure 8 illustrates the first four mode shapes 
predicted for the isotropic plate of the first code verification problem, see Section 4. 

The orthotropic material properties are listed in Table 5. They have been provided by the 
manufacturer and some have been confirmed through coupon testing. Only the independent 
material properties are listed in Table 5. Constraints imposed are E33=E22, G13=G12, ν13=ν12, 
and G23 = 3.0 x 10+9 N/m2 (kept constant). 

Table 5. Statistics on material properties obtained from coupon testing. 

Symbol Mean (µ) Standard Deviation (σ) 

E11 132.4 x 10+9 N/m2 3% of mean
E22 9.1 x 10+9 N/m2 2% of mean
G12 4.5 x 10+9 N/m2 3.6% of mean
ν12 0.30 Unknown
ν23 0.40 Unknown
ρ 1,522.0 kg/m3 2.5% of mean

Because the purpose of this work is to accurately predict the on-set and evolution of 
damage in the composite, elaborate constitutive and damage models are implemented. It is 
important to model the structure at all length scales at which damage and other forms of non-
linearity may occur. These include the macro-scale, associated with the in-plane plate 
dimensions; the meso-scale, associated with the ply thickness; and the micro-scale, or 
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material length scale, associated with the fiber diameter. The non-linear, homogenization, and 
damage aspects of the modeling are discussed in Reference [3]. Damage modes of interest 
include matrix fracture, ply splitting, delamination, and fiber fracture. Special elements that use 
a Cohesive Zone Model as the constitutive behavior are implemented to model the ply splitting 
and delamination fracture surfaces. It is emphasized that none of these damage modes are 
exercised here; only the prediction of the linear, modal response is verified and validated. 
 

  
Figure 8 (a). Predicted mode shape 1. Figure 8 (b). Predicted mode shape 2. 

  
Figure 8 (c). Predicted mode shape 3. Figure 8 (d). Predicted mode shape 4. 
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Table 6. Modal frequencies predicted by the nominal finite element model. 

Mode 
Number 

Frequency 
(Hertz) 

Description of the 
Modal Deflection Shape 

1 107.49 1st torsion, no coupling 
2 205.68 1st bending (2-transverse), no coupling 
3 278.15 1st bending (1-fiber), 1st bending (2-transverse), coupled 
4 334.05 1st bending (1-fiber), no coupling 
5 411.76 1st bending (1-fiber), 1st torsion (2-transverse), coupled 
6 556.74 1st bending (1-fiber), 2nd bending (2-transverse), coupled 
7 583.06 2nd bending (2-transverse), no coupling 
8 746.19 2nd bending (1-fiber), 2nd bending (2-transverse), coupled 
9 907.81 2nd bending (1-fiber), 3rd bending (2-transverse), coupled 

(“1-fiber” refers to the principal direction of fibers with modulus of elasticity E11, and “2-transverse” refers 
to the transverse direction with modulus of elasticity E22.) 

The first nine natural frequencies predicted by the nominal FEM are listed in Table 6. 
Although the model appears to be too “stiff”, a good qualitative agreement can be observed 
between predicted frequencies in Table 6 and identified frequencies in Table 2. 

4. COMPUTER CODE VERIFICATION 
The computational model is implemented and analyzed using the general-purpose finite 

element package HKS/ABAQUSTM [4]. Computer code verification is the first step of any V&V 
activity. It verifies that the code is error-free for the intended purpose of the application. 

The main difficulty of code verification is to obtain analytical, closed-form solutions against 
which calculations of the code can be verified. For this problem, the authors are only aware of 
two test problems as closed-form solutions can generally not be worked out with composite 
laminate materials and free-free boundary conditions. The first test verifies natural frequency 
predictions in the case of a square, free-floating, isotropic plate [5-7]. Table 7 compares the 
analytical and predicted natural frequencies. The plate is modeled with ten quadratic finite 
elements per side and one element through the thickness. Frequencies reported in Table 7 are 
normalized according to formulae presented in Reference [7]. 

Table 7. Normalized frequencies for the square, free-free, isotropic plate. 

 Mode 
2,2 

Mode 
1,3 

Mode 
3,1 

Mode 
3,2 

Mode 
2,3 

Mode 
4,1 

Mode 
1,4 

Analytical 13.49 19.79 24.43 35.02 35.02 61.53 61.53
HKS/ABAQUSTM 13.48 19.69 24.45 34.95 34.95 62.45 62.45
Error (%) 0.03 0.53 -0.05 0.20 0.20 -1.50 -1.50

(The error is calculated as analytical minus predicted, expressed in percent of the analytical value.) 

The second test verifies natural frequency predictions in the case of a square, simply 
supported, orthotropic plate. The analytical solution is obtained from Reference [8]. Tables 8 
and 9 compare the analytical and predicted natural frequencies for the cases of single-ply and 
three-ply laminates, respectively. In both cases, the plate is modeled with ten quadratic finite 
elements per side and one element through the laminate thickness. Frequencies reported in 
Tables 8 and 9 are normalized according to formulae presented in Reference [8]. 
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Table 8. Normalized frequencies for the single-ply, simply supported, orthotropic plate. 

 Mode 
1,1 I-A 

Mode 
1,2 I-A 

Mode 
2,1 I-A 

Mode 
2,2 I-A 

Mode 
1,3 I-A 

Mode 
1,1 I-S 

Mode 
3,1 I-A 

Analytical 0.047 0.103 0.119 0.169 0.189 0.217 0.218
HKS/ABAQUSTM 0.048 0.104 0.121 0.173 0.192 0.217 0.225
Error (%) -0.598 -0.971 -1.696 -1.866 -1.584 -0.002 -3.000

(The error is calculated as analytical minus predicted, expressed in percent of the analytical value.) 

Table 9. Normalized frequencies for the three-ply, simply supported, orthotropic plate. 

Stiffness ratio Ex1/Ex2 Density ratio ρ1/ρ2 Analytical HKS/ABAQUSTM Error (%) 

10 1 0.098 0.098 -0.026
15 1 0.112 0.112 -0.016
15 3 0.095 0.095 -0.015

(The error is calculated as analytical minus predicted, expressed in percent of the analytical value. The 
subscript 1 refers to the quantities associated with the two outer plies; the subscript 2 refers to the inner 
ply. Only the frequency of the first mode is shown.) 

The errors reported in Tables 7, 8, and 9 verify that the potential implementation and 
approximation errors are several orders of magnitude smaller than the experimental variability 
reported in Section 2 for the first five modes. Although code verification can never provide a 
formal proof that the implementation is error-free, it definitely appears to be the case here. The 
conclusion is that, for this problem, HKS/ABAQUSTM and the implemented composite material 
module solve the equations correctly. 

5. CONVERGENCE AND CALCULATION VERIFICATION 
Calculation verification assesses the convergence of the numerical solution for the 

application of interest. It is also referred to as solution verification because it verifies that the 
discretization (mesh size and/or time step) provides a converged solution. 

Solution verification relies on the assumption that the true-but-unknown solution of the 
continuous equations, or yC, is equal to the approximate solution of the discretized equations, 
or y(h), plus an error term that is proportional to the rate of convergence: 

)O(hαhy(h)y 1pp
C

+++=  (4)

where the discretization parameter, h, represents a characteristic mesh size or time step, and 
the symbol p denotes the order of convergence. The main difficulty of solving equation (4) is 
that the continuous solution, yC, which here represents a natural frequency, is unknown. 

Solution verification is based on two techniques outlined in Reference [1]. The first one is 
the Grid Convergence Index (GCI) that verifies that a numerical approximation is close to the 
continuous solution. The order of convergence, p, is also verified. The second technique is 
known as the Richardson extrapolation. It estimates the continuous solution by performing an 
extrapolation based on several numerical approximations. Then, errors between the estimated 
true solution, yC, and its numerical approximations, y(h), can be computed. Clearly, a minimum 
of three equations are needed to estimate the unknown triplet (yC;p;α) in equation (4). Solution 
verification therefore starts by calculating the first five natural frequencies using three mesh 
resolutions, hC, hM, and hF, such that (hM/hC) = (hF/hM) = ½. The subscripts “C”, “M”, and “F” 
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identify the coarse, medium, and fine resolutions, respectively. The order of convergence, GCI 
values, and Richardson extrapolation are then computed as: 

( ) ⎟
⎠
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C −
−≈  (6)

where r denotes the ratio of successive refinements, r = (hC/hM) = (hM/hF), and β is a safety 
factor selected such as 1 ≤ β ≤ 3.6 

The order of convergence is verified in Table 10 that also lists the GCI. Small GCI values, 
typically less than 1%, indicate that the approximation is close to the continuous solution. The 
order of convergence averaged for natural frequencies 1-5 is equal to p = 1.8, close to the 
value of two that should be obtained because quadratic elements are used in the analysis. The 
GCI values also suggest asymptotic convergence. When asymptotic converge is reached, a 
two-fold refinement combined with an order of convergence p should decrease the GCI by a 
factor of (2)p. This can be observed in Table 10, for example, with the first natural frequency. 
From the first row, the estimated order of convergence is p = 0.82, which yields (2)0.82 = 1.77, 
while the ratio of GCI values is 0.91/0.52 = 1.75. 

Table 10. Estimation of the order of convergence and grid convergence indices. 

Mode 
Number 

Estimated Order of 
Convergence 

Grid Convergence Index 
Coarse-to-medium 

Grid Convergence Index 
Medium-to-fine 

1 0.82 0.91% 0.52% 
2 2.17 0.31% 0.07% 
3 1.47 0.78% 0.29% 
4 2.82 0.15% 0.02% 
5 1.70 0.61% 0.19% 

Mean 1.80 0.55% 0.22% 
(Results for five natural frequencies with a mesh-size refinement ratio r=2 and safety factor β=3.) 

The relative errors between the Richardson extrapolation and finite element solutions are 
listed In Table 11. It is observed that errors are less than 1%, and that refining the mesh yields 
asymptotic convergence. Errors obtained from converged solutions should be reduced by a 
factor (2)p when the mesh size is halved. This can be observed in Table 11, for example, with 
the first natural frequency: (2)0.82 = 1.77, while 0.54/0.31 = 1.74 and 0.31/0.17 = 1.82. It is 
concluded from the solution verification study that the coarse computational mesh provides 

                                                           
6 Equations (5) and (6) are given for completeness. The reader is referred to other publications listed in 
Reference [1] for a discussion of important caveats of using them for solution verification. In particular, 
the Richardson extrapolation works here because natural frequencies are integral response quantities. 
Equation (4) is, however, not correct in the general case because the theory of finite element stipulates 
that convergence is dictated by a Lp or Hm,n norm such as ||yC-y(h)|| = αhp + O(hp+1). Using equation (4) 
to estimate the convergence of a point-wise quantity, such as a local stress, may not be appropriate. 
Likewise, little work has been done to study the validity of equation (4) for non-linear, fast transient, or 
non-smooth equations; or solvers that feature automated mesh or time step refinement. 
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sufficiently converged estimates of the first five natural frequencies. All results presented for 
effect screening, meta-modeling, propagation of uncertainty, and test-analysis correlation are 
based on the coarse-size finite element mesh where the composite plate is discretized with ten 
elements per side and one element per ply through the thickness. 

Table 11. Errors between numerical solutions and the Richardson extrapolation. 

Mode 
Number 

Relative Error of 
Coarse Solution 

Relative Error of 
Medium Solution 

Relative Error of 
Fine Solution 

1 0.54% 0.31% 0.17% 
2 0.46% 0.10% 0.02% 
3 0.73% 0.26% 0.10% 
4 0.35% 0.05% 0.01% 
5 0.66% 0.20% 0.06% 

Mean 0.55% 0.18% 0.07% 
(The relative error is the difference between the Richardson extrapolation and finite element solution, 
expressed in percentage of Richardson extrapolation. Results for five natural frequencies with a mesh-
size refinement ratio r=2.) 

6. EFFECT SCREENING AND PARAMETER DOWN-SELECTION 
The advantage of implementing a physics-based model is that it can be parameterized to 

describe a wide variety of configurations and materials. This comes at the cost of defining the 
values of a potentially large number of parameters or coefficients. It also implies that unknown 
input parameters introduce uncertainty that must be propagated through the simulation. Prior 
to propagating the uncertainty forward, we seek to better understand the relationship between 
input parameter variability and response feature variability. This is where design of computer 
experiments and effect screening methods come to play. 

Input parameters introduced by the finite element and multi-scale composite models are 
categorized as ply orientation angles or material coefficients. It is suspected that ply angles 
and material properties may vary slightly from plate to plate. The effect of such variability on 
the natural frequencies must therefore be understood. Table 12 defines the eight ply angles 
and their upper and lower bounds. The variation of +/- 5 degrees around nominal orientations 
is an upper bound inferred from expert knowledge about how these plates are manufactured. 

Table 12. Nominal values and variations of fiber orientation angles. 

Symbol Nominal Lower Bound Upper Bound 

θ1 0.0 degree -5.0 degrees 5.0 degrees
θ2 45.0 degrees 40.0 degrees 50.0 degrees
θ3 90.0 degrees 85.0 degrees 95.0 degrees
θ4 -45.0 degrees -50.0 degrees -40.0 degrees
θ5 -45.0 degrees -50.0 degrees -40.0 degrees
θ6 90.0 degrees 85.0 degrees 95.0 degrees
θ7 45.0 degrees 40.0 degrees 50.0 degrees
θ8 0.0 degree -5.0 degrees 5.0 degrees

The second category of input parameters includes material coefficients needed to initialize 
the constitutive behavior. They are restricted to five elastic constants due to the assumption of 
transverse isotropy, three of which are independent. Conservative bounds of variability are 
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assigned in Table 13 to represent three times the standard deviation values estimated from 
coupon testing measurements. Also included is a varying accelerometer and cable mass that 
represents +/- 10% variation around the mean of the mass of transducers. 

Table 13. Nominal values and variations of material properties. 

Symbol Nominal (µ) Lower Bound Upper Bound 

E11 1.324 x 10+11 N/m2 (1 – 9%) x µ (1 + 9%) x µ
E22 9.136 x 10+9 N/m2 (1 – 6%) x µ (1 + 6%) x µ
G12 4.548 x 10+9 N/m2 (1 – 10.8%) x µ (1 + 10.8%) x µ
ν12 0.30 0.10 0.49
ν23 0.40 0.10 0.49
ρ 1,522.0 kg/m3 (1 – 7.5%) x µ (1 + 7.5%) x µ

Ma 0.837 x 10-3 kg (1 – 10%) x µ (1 + 10%) x µ

Effect screening addresses the question: “Which input parameters or combinations of 
inputs explain the variability of outputs?” Screening is typically performed to determine which 
input parameters most influence the variability of response features. Input parameters found to 
have the least influence can be eliminated from the analysis by keeping them constant. Effects 
are screened using methods such as the analysis-of-variance [9] that performs multiple 
regression analyses and estimates the correlation between input effects and output features. 

The data sets from which the influence of input parameters is studied are generated by 
analyzing the FEM for several combinations of the parameters listed in Tables 12 and 13. One 
can take advantage of methods for designing computer experiments to reduce the potentially 
large number of runs [10]. Here, extracting the first five natural frequencies of the composite 
plate model is not computationally expensive. Since we can afford a large number of runs, two 
full-factorial designs are implemented. The first design, referred to as DOE-1, evaluates all 
combinations of low and high ply angles while material properties are kept constant and equal 
to their nominal values. The second design, referred to as DOE-2, evaluates all combinations 
of low and high material coefficients while ply angles are kept constant and equal to their 
nominal values. Table 14 summarizes the properties of the two designs. 

Table 14. Definition of the two designs of computer experiments. 

Attribute DOE-1 DOE-2 

Purpose of the analysis Screen ply angle effects Screen material coefficient effects
Type of Design Full-factorial design Full-factorial design
Number of Variables 8 (From Table 12) 7 (From Table 13)
Number of Levels 2 (low/high) 2 (low/high)
Aliasing No No
Number of FEM runs (2)8 = 256 runs (2)7 = 128 runs

Only the results of main effect screening are presented in Figure 9. Main effect screening, 
also known as linear screening, identifies the input parameters that control the variability of 
output features without accounting for higher-order effects such as the coupling between two 
inputs. The R2 statistic, that estimates a coefficient of correlation, is computed based on data 
provided by DOE-1 and DOE-2 [9]. Figure 9(a) shows the R2 statistics obtained for the first 
nine natural frequencies when ply angles vary according to DOE-1. Figure 9(b) shows the R2 
statistics obtained when material coefficients vary according to DOE-2. 



Laboratory Directed Research and Development (LDRD-DR) “Damage Prognosis” Project 
Los Alamos National Laboratory, Los Alamos, New Mexico, November 2004 

 

 
Approved for unlimited, public release on November 16, 2004                                      LA-UR-04-8195, Unclassified 

16

 
Figure 9 (a). Main effect screening from the analysis of variance of DOE-1. 

 
Figure 9 (b). Main effect screening from the analysis of variance of DOE-2. 
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In Figure 9, a large R2 relative to the other values indicates that the corresponding input 
factor produces a significant variability of the natural frequency. A composite index is created 
for each input parameter by adding R2 values of the first five modes. Values of the composite 
index are listed in Table 15. It is emphasized that this index, unlike the R2 statistic, has no 
meaning other than being useful to identify overall trends across all natural frequencies. 

Table 15. Composite main effect indices obtained from DOE-1 and DOE-2. 

Ply Orientation Angles (DOE-1) 

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 Total 
20.08% 24.68% 5.09% 0.08% 0.09% 5.11% 24.72% 20.15% 100.0% 

Material Coefficients (DOE-2) 

E11 E22 G12 ν12 ν23 ρ Ma Total 
37.20% 0.72% 1.88% 0.63% 0.00% 33.23% 26.34% 100.0% 

The analysis demonstrates that the variability of the five natural frequencies is controlled 
for the most part by four ply orientation angles (θ1, θ2, θ7, θ8), two material coefficients (E11, ρ), 
and the added mass (Ma). Because other factors do not produce significant output variability, 
they are kept constant and equal to their nominal values in the remainder. To conclude, an 
important caveat of this analysis is briefly mentioned. The designs DOE-1 and DOE-2 have 
been chosen to study ply angle effect independently from material property effect because it is 
assumed that the geometry of the composite lay-up should be decoupled from its constitutive 
behavior. Further investigation (not discussed here) demonstrates that this assumption is 
correct for the prediction of low-frequency modes. 

7. META-MODELING OF THE FINITE ELEMENT SIMULATIONS 
The first objective of meta-modeling is to replace the potentially expensive FEM analysis 

by a fast-running surrogate that accurately captures the relationship between input parameters 
and a single response feature without including details of the geometry or material modeling. 
Polynomials are chosen as surrogates to FE models. The second objective is to verify that 
higher-order coupling effects are not significant, as this would invalidate the assumption made 
in Section 6 that ply orientation angles and material coefficients are not coupled. 

Resulting from the main effect screening, only seven inputs are considered. Because 
fewer than the original 15 candidates are used, higher resolution designs can be considered 
for surrogate model fitting. A 7-factor, 3-level, full-factorial design that requires (3)7 = 2,187 
finite element runs is selected. The levels are shown in Table 16 for each input parameter. 

Table 16. Input parameters retained for higher-order screening and meta-modeling. 

Input Factor Nominal Variation Levels 

θ1 0.0 degree +/- 10 degrees (-10.0; 0.0; 10.0) degrees 
θ2 45.0 degrees +/- 10 degrees (35.0; 45.0; 55.0) degrees 
θ7 45.0 degrees +/- 10 degrees (35.0; 45.0; 55.0) degrees 
θ8 0.0 degree +/- 10 degrees (-10.0; 0.0; 10.0) degrees 
E11 1.324 x 10+11 N/m2 +/- 20% (1.0592; 1.3240; 1.5888) x 10+11 N/m2

ρ 1,522.0 kg/m3 +/- 20% (1,217.6; 1,552.0; 1,826.4) kg/m3 
Ma 0.000837 kg +/- 20% (0.6696; 0.8370; 1.0044) x 10-3 kg 
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Screening and model fitting are performed using the Bayesian effect screening method of 
Reference [11]. Because polynomials proposed to fit the data only differ by the effects that 
they do or do not include, such as (θ1; E11; θ2xE11; ρ2), one can look at model fitting as a 
selection of effects that must be included to improve the goodness-of-fit between FEM and 
surrogate predictions of the natural frequencies. The Bayesian screening approach calculates 
the posterior probability of each effect by randomly walking from one surrogate model to the 
next using a Gibbs sampler. Posterior probabilities are obtained by combining, according to 
the Bayes rule, prior probabilities to likelihood values of fitting the data well. Prior probabilities 
are assigned by the analyst. Likelihood values are defined as the goodness-of-fit, for example, 
RMS error, between FEM natural frequencies and predictions of a polynomial surrogate. 

 

 
Figure 10. Accuracy of polynomials developed to predict natural frequencies 1-5. 

The data sets are segregated into 1,750 runs for Bayesian screening (or training step) and 
437 runs to evaluate the quality of the best polynomials (or validation step). The 437 validation 
runs are selected randomly. The procedure is repeated 2,600 times, each time with different 
training and validation data sets, to obtain fit-to-data statistics and distributions of polynomial 
coefficients. A small number of polynomials provide poor goodness-of-fit due to numerical ill-
conditioning. The “worst” 5% of them (or 130 polynomials) are eliminated and statistics are 
estimated from 2,470 replicates. The distributions of prediction errors are shown in Figure 10. 
These are obtained from the validation step, that is, when polynomials are asked to predict 
frequencies that they have never seen before. The small relative errors of 1.3% at most 
indicate an excellent fit-to-data. The conclusion is that finite element analyses can be replaced 
by polynomials with little loss of prediction accuracy. 
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Each random walk consumes 50 iterations for the “burn-in” of the Markov chain and 200 
iterations for exploring the space of all potential polynomials [11]. This means that the first 50 
polynomials visited are ignored to avoid potential bias introduced by the starting point. The 
posterior probabilities, such as those shown in Figure 11 for predicting the first frequency, are 
therefore based on 2,470 x 200 = 494,000 samples. The entire procedure requests 48 hours of 
computing time when running MATLABTM-based algorithms on a laptop computer. 
 

 
Figure 11. Posterior effect probabilities for the meta-model fitting of frequency 1. 

Effects that must be included to obtain an acceptable fit-to-data are identified in Figure 11 
by their large posterior probabilities.7 Effects labeled 1 through 8 are the linear effects; effects 
labeled 9 through 29 are the linear interactions, such as θ2xE11 or ρxMa. Boxes represent the 
mean probability +/- one or three standard deviations, obtained from repeating the procedure 
2,600 times with different training and validation data sets. Similar results (not presented here) 
are obtained for frequencies 2-5. It is verified that linear interactions and higher-order coupling 
between ply angles and material coefficients have little-to-no influence on the variability of the 
natural frequencies. 
                                                           
7 Prior probabilities are set to 25% for any linear effect; 10% for an interaction given that at least one of 
the main effects is included; and 1% for an interaction given that none of the main effects is included. 
Significant effects are not necessarily those indicated by a probability close to 100%, but those that are 
raised above their prior probability levels. 
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This procedure provides a family of polynomials for each of the five natural frequencies. 
The results are presented for the first frequency only, and summarized by a polynomial form 
given in equation (7) and statistics of polynomial coefficients listed in Table 17: 

a292208111219

a871168574231211

ρMβρθβθθβθθβ
MβρβEβθβθβθβθββy

++++
+++++++=

 (7)

where y1 is the first natural frequency and the coefficients βk are sampled from Table 17. The 
input parameters are scaled between -1 and +1, therefore, the numerical values of coefficients 
in Table 17 indicate the importance of the corresponding effects.8 It is further verified using 
Kolmogorov-Smirnov testing that the populations of coefficients are normally distributed. 

Table 17. Statistics of Gaussian-distributed coefficients for meta-model of frequency 1. 

Mean (Hertz) Standard Deviation (Hertz) Effect 
Number 

Type of 
Effect Value Confidence Interval Value Confidence Interval 

1 Mean 107.274 [107.267; 107.281] 0.103 [0.099; 0.108]
2 θ1 -3.928 [-3.931; -3.924] 0.049 [0.046; 0.051]
3 θ2 -1.751 [-1.754; -1.748] 0.047 [0.045; 0.049]
4 θ7 -1.746 [-1.749; -1.743] 0.045 [0.043; 0.047]
5 θ8 -3.929 [-3.932; -3.926] 0.048 [0.046; 0.050]
6 E11 6.087 [6.084; 6.090] 0.047 [0.045; 0.050]
7 ρ -7.342 [-7.345; -7.339] 0.049 [0.047; 0.051]
8 Ma -3.570 [-3.573; -3.567] 0.045 [0.043; 0.047]
9 θ1 x θ2 1.682 [1.679; 1.686] 0.055 [0.052; 0.058]

11 θ1 x θ8 -1.378 [-1.382; -1.375] 0.057 [0.055; 0.060]
20 θ2 x ρ 1.682 [1.678; 1.686] 0.058 [0.055; 0.061]
29 ρ x Ma 0.725 [0.721; 0.729] 0.061 [0.058; 0.064]

(The 99% confidence intervals are shown. Distributions assumed to be Gaussian.) 

It is concluded that polynomial meta-models can be trained to replace the finite element 
simulations and predict the first five natural frequencies. The preliminary down-selection of 
main effects is verified. The prediction accuracy of meta-models is quantified. Distributions of 
polynomial coefficients are obtained that account for the model fitting uncertainty. 

8. PROPAGATION OF UNCERTAINTY FROM INPUTS TO OUTPUTS 
Because we are lacking knowledge about some aspects of the modeling and simulation, 

the uncertainty must be propagated in order to make predictions. The uncertainty considered 
here includes variability of the ply orientation angles and lack-of-knowledge about the material 
properties. Because we have taken the path of substituting statistical meta-models for the FE 
simulations, the model fitting uncertainty must also be accounted for. 
                                                           
8 The meta-model defined by equation (7) lists a term (θ2ρ) that represents the interaction between the 
second ply angle and density. This interaction is perfectly legitimate here because a full-factorial design 
of computer experiments is used to develop the surrogate meta-model. However, it seems to contradict 
the statement made in Section 6 that ply angles do not interact with material properties. Since this 
interaction is the only one found and it has little overall influence over predictions of the meta-model, as 
indicated by the small coefficient value of 1.682 Hertz in Table 17, it is not deemed necessary to revisit 
the assumption of non-interaction between ply angles and material properties. 
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Since the ply angles and material properties are suspected to vary from plate to plate, the 
variability of natural frequency can be obtained by assuming probability distributions for the 
input parameters and propagating them to the output responses. For simplicity and because 
evaluating meta-models is inexpensive, Monte Carlo sampling is implemented for uncertainty 
propagation. Monte Carlo simulations are performed with 10+4, 10+5, 10+6, and 10+7 samples to 
verify convergence of the output statistics. A thorough study of the order of convergence of 
confidence intervals concludes that 10+5 runs provide acceptable statistics. The effects of input 
distribution and correlation structure on output statistics are also investigated. Although the 
results are not presented here, these factors have a significant influence [2]. This indicates 
that analysts should not make assumptions that may not be warranted by what is truly known. 

The results presented combine input parameter variability to model fitting uncertainty. A 
thousand meta-models are generated by sampling the polynomial coefficients using normal 
distributions whose hyper-parameters are listed in Table 17. With each meta-model, 1,000 
combinations of input parameters are evaluated using the uncorrelated uniform distributions 
defined in Table 18. This results in a total of 10+6 Monte Carlo runs. The principle of 
indifference is invoked here to define uniform distributions because no information is available 
to indicate how the ply angles and material properties may vary. 

Table 18. Definition of uncorrelated, uniform input parameter distributions. 

Input Variable Minimum Maximum Range of Variation 

θ1 -9.0 degrees 9.0 degrees +/- 9.0 degrees of nominal
θ2 36.0 degrees 54.0 degrees +/- 9.0 degrees of nominal
θ7 36.0 degrees 54.0 degrees +/- 9.0 degrees of nominal
θ8 -9.0 degrees 9.0 degrees +/- 9.0 degrees of nominal
E11 1.059 x 10+11 N/m2 1.589 x 10+11 N/m2 +/- 10% of nominal 
ρ 1,218.0 kg/m3 1,826.0 kg/m3 +/- 10% of nominal 

Ma 0.000669 kg 0.001000 kg +/- 10% of nominal 

 Table 19 lists the first four statistical moments (mean, standard deviation, skewness, and 
kurtosis) of the populations of natural frequencies. A histogram is shown in Figure 12 for the 
first natural frequency that approximates its unknown distribution. The fit-to-data of a normal 
distribution (continuous curve) is compared to the empirical histogram in Figure 12. 

Table 19. Statistics of frequencies 1-5 obtained from 10+6 Monte Carlo runs. 

Mode 
Number 

Mean 
(Hertz) 

Standard 
Deviation (Hertz) 

Skewness 
(Unit-less) 

Kurtosis 
(Unit-less) 

1 107.473 6.665 0.103 2.744
2 206.642 15.846 0.043 2.555
3 281.155 19.798 0.120 2.733
4 329.032 24.838 0.136 2.404
5 407.985 27.901 0.140 2.395

 Observation of Table 19 and Figure 12 indicates that the output distribution of frequency 1 
is not Gaussian. For example, the skewness and kurtosis indicate non-Gaussian behavior 
since they should be equal to zero and three, respectively, for a perfectly normal distribution. 
This trend is verified in Figure 13 that shows the normal probability plots for the distributions of 
five frequencies. Gaussian curves should be aligned on a straight line, which is not the case at 
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the tails of the distributions. The results indicate that the output variability cannot be described 
using Gaussian laws, and an alternate representation of uncertainty is briefly discussed next. 

 
Figure 12. Histogram of frequency 1 values obtained from 10+6 Monte Carlo runs. 

 
Figure 13. Normal probability plots for the distributions of frequencies 1-5. 
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 Two distinct types of uncertainty have been combined so far. The first one is the variability 
of ply angles and material properties. The second one is the meta-model fitting uncertainty. 
While it has been shown that the second type of uncertainty is normally distributed, this is not 
known of the first type. Therefore, it may be incorrect to assume probability distributions for the 
ply angles and material properties when no evidence suggests how these truly vary. 

Because the populations of polynomial coefficients have been thoroughly characterized, it 
is legitimate to sample their normal distributions. On the other hand, modeling the lack-of-
knowledge about the geometry and material using any probability distribution is assuming 
more than truly known. It is proposed to characterize this lack-of-knowledge with minimum and 
maximum bounds, and propagate intervals from ply angles and material properties to the five 
natural frequencies. 

Figure 14. Interval with randomly distributed end-points for natural frequency 1. 

The calculation starts, as before, by randomly generating 3 x 10+4 meta-models using the 
normal distributions defined in Table 17. For each meta-model, two optimization problems are 
solved to propagate the intervals of input parameters. Numerical optimization searches for the 
minimum and maximum natural frequencies given that each input parameter is bounded. The 
input parameter bounds are set to +/- 10% of their nominal values, as shown in Table 18. It is 
emphasized that the bounds no longer define a probability distribution but, instead, impose 
constraints for the numerical optimization. This procedure hence combines the Monte Carlo 
sampling of polynomial meta-models to the propagation of input parameter intervals. Because 
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the polynomials are well-behaved and inexpensive functions, each optimization convergences 
in less than seven iterations and the computational cost is insignificant. The procedure yields a 
population of intervals for each natural frequency. The results are presented in the form of an 
interval with randomly distributed end-points, such as illustrated in Figure 14 for the first mode. 

It is verified that the populations of lower and upper interval end-points for the five natural 
frequencies follow Gaussian probability laws whose statistics are provided in Table 20. The 
skewness and kurtosis values are very close to zero and three, respectively, and excellent 
goodness-of-fit is obtained with normal probability laws, as illustrated in Figure 14. Also, the 
lower and upper end-points of frequency intervals can be compared to the mean and standard 
deviation values obtained in Table 19 via pure Monte Carlo sampling. The “true” minimum and 
maximum values of end-points in Table 20 are between three and four standard deviations 
away from the mean statistics listed in Table 19. This implies that a very large number of 
Monte Carlo samples would be needed to estimate the lower and upper end-points with good 
accuracy. Combining meta-model sampling to interval propagation is therefore computationally 
more efficient than a pure sampling approach. 

Table 20. Statistics of the upper and lower end-points of frequency intervals. 

Lower End-points of Frequency Intervals 

Mode 
Number 

Minimum 
(Hertz) 

Maximum 
(Hertz) 

Mean 
(Hertz) 

Std. Deviation 
(Hertz) 

Skewness 
(Unit-less) 

Kurtosis 
(Unit-less)

1 81.606 83.076 82.404 0.185 -0.012 3.019
2 151.440 153.831 152.773 0.274 -0.013 3.052
3 208.641 212.064 210.495 0.385 0.023 3.023
4 254.716 258.838 256.803 0.519 0.003 3.018
5 327.414 331.359 329.363 0.493 -0.015 3.002

Upper End-points of Frequency Intervals 

Mode 
Number 

Minimum 
(Hertz) 

Maximum 
(Hertz) 

Mean 
(Hertz) 

Std. Deviation 
(Hertz) 

Skewness 
(Unit-less) 

Kurtosis 
(Unit-less)

1 136.165 137.516 136.820 0.185 0.021 2.979
2 263.265 265.500 264.357 0.274 -0.005 2.988
3 356.923 360.280 358.738 0.384 -0.012 2.979
4 402.380 406.563 404.554 0.518 -0.008 2.973
5 488.051 491.990 489.813 0.493 0.004 2.980

(The minimum, maximum, mean, standard deviation, skewness, and kurtosis statistics are estimated 
from a population of 30,000 frequency intervals. Each frequency interval is obtained for a given meta-
model. Lower and upper frequency bounds are calculated by optimization when input parameters are 
contained within the intervals defined in Table 18.) 

The uncertainty quantification study demonstrates that issues such as the type of input 
distribution, its correlation structure, and the number of samples drawn from the distributions 
can have a significant influence on the statistics of response features [2]. In particular, analysts 
are warned against the temptation of assuming more than is truly known. For this application, 
prediction uncertainty is best characterized as an interval of natural frequency values with 
randomly distributed end-points, which is not without similarity with the recently developed 
concept of lack-of-knowledge proposed to model uncertainty in linear, modal dynamics [12]. 
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9. TEST-ANALYSIS CORRELATION 
Test-analysis correlation is usually where conclusions about the prediction accuracy of the 

model are drawn from comparing measurements to predictions. In this study, the agreement 
between identified and predicted natural frequencies is assessed using quantitative metrics. It 
is also shown that parameters of the model can be calibrated to improve the correlation. An 
alternative to calibration for assessing the accuracy of predictions is illustrated by aggregating 
the sources of testing and modeling uncertainty instead of using measurements to calibrate 
parameters of the model. 

Statistics of the measured and predicted natural frequencies are summarized in Table 21. 
Measurements come from the testing presented in Section 2, see Table 2. Predictions result 
from the propagation of uncertainty discussed in Section 8, see Table 19. The frequencies are 
predicted by combining a thousand meta-models and a thousand samples of uncorrelated, 
uniformly distributed combinations of ply angles and material coefficients. It is observed from 
Table 21 that predictions are systematically stiffer than measurements. The comparison also 
shows that the predicted standard deviations are five to eight times larger than the measured 
standard deviations. This tends to indicate that the assumption made of +/- 10% variability of 
input parameters relative to their nominal values is too conservative. 

Table 21. Statistics of measured and predicted modal frequencies 1-5. 

Identified Frequency Predicted Frequency Mode 
Number Mean Standard Deviation Mean Standard Deviation 

1 107.37 Hertz 1.05 Hertz (0.98%) 107.47 Hertz 6.67 Hertz (6.20%)
2 191.81 Hertz 2.37 Hertz (1.24%) 206.64 Hertz 15.85 Hertz (7.67%)
3 274.06 Hertz 2.92 Hertz (1.07%) 281.16 Hertz 19.80 Hertz (7.04%)
4 315.31 Hertz 3.13 Hertz (0.99%) 329.03 Hertz 24.84 Hertz (7.55%)
5 398.88 Hertz 3.00 Hertz (0.75%) 407.99 Hertz 27.90 Hertz (6.84%)

(Numbers between parentheses are standard deviations given as percentages of mean values.) 

The next step is to calculate test-analysis correlation metrics. Metrics are important to 
offer a quantitative assessment of prediction accuracy, as well as define the objective 
functions needed for model calibration. The simplest test-analysis correlation metrics are those 
whose definition restricts them to the analysis of a single response feature. Examples include 
the absolute error, relative error, and T-test: 
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Examples are the Root Mean Square (RMS) error and the Mean Square Error (MSE): 
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where NF denotes the number of response features, for example NF = 5 natural frequencies 
here. The RMS error makes sense only if physical quantities with similar units are combined. 
The MSE does not suffer from this disadvantage because of the normalization by standard 
deviations. A good match is indicated by small MSE values, typically less than 1%. 

Multivariate statistics are the most general metrics for test-analysis correlation because 
they can handle populations of physically dissimilar response features. Two examples are the 
Mahalanobis distance and Kullback-Leibler entropy: 
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where NF is the number of response features; yTest and y now denote vectors of measured and 
predicted features; and Syy

Test and Syy represent matrices of measured and predicted variance 
and covariance coefficients. The Mahalanobis distance generalizes the T-test to multivariate 
statistics. It is combined with the Hotelling T2-test to assess the confidence level with which the 
vector of predictions estimates the mean vector of measurements. The multivariate Kullback-
Leibler entropy in equation (10-b) assumes Gaussian distribution laws. 

The test-analysis correlation metrics of equations (8-10) are listed in Table 22. Metrics are 
calculated from the mean and standard deviation statistics listed in Table 21. With an error that 
averages 3.41% only, the prediction accuracy is deemed acceptable for the intended purpose. 

Table 22. Test-analysis correlation metrics for modal frequencies 1-5. 

Univariate Test-analysis Correlation Metrics 

Mode Number Absolute Error Relative Error T-test Statistic 
1    -0.10 Hertz -0.09% -0.10
2   -14.83 Hertz -7.73% -6.26
3    -7.09 Hertz -2.59% -2.43
4   -13.72 Hertz -4.35% -4.38
5    -9.10 Hertz -2.28% -3.03

Multivariate Test-analysis Correlation Metrics 

Type of Metric Unit Value 
Root Mean Square (RMS) error, defined in equation (9) Hertz 4.26 Hertz
Mean Square Error (MSE), defined in equation (9) Unit-less 14.70
Multivariate Mahalanobis distance, defined in equation (10-a) Unit-less 73.06
Multivariate Kullback-Leibler entropy, defined in equation (10-b) Unit-less 144.04

The next step is to calibrate the ply angles and material coefficients to improve the test-
analysis correlation. This can be achieved in a number of ways that are overviewed, for 
example, in Reference [13]. We chose to formulate an optimization problem where the MSE is 
minimized given constraints defined in Table 18. The agreement between measurements and 
predictions of the pre-calibrated and post-calibrated models is illustrated in Table 23. Pre-
calibrated predictions are those obtained when the “mean” meta-model is evaluated using the 
nominal input parameters of Table 16. Post-calibrated predictions are made with the calibrated 
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parameter values of Table 24. The “mean” model refers to the polynomial defined by the mean 
coefficients such as those shown in Table 17 for the first mode. It is emphasized that the meta-
models to predict natural frequencies 1-5 are kept constant during numerical optimization; only 
the ply angles and material properties are optimized. 

Table 23. Test-analysis correlation obtained with the nominal and calibrated models. 

Nominal Meta-model Calibrated Meta-model Mode 
Number 

Identified 
Frequency Frequency Error Frequency Error 

1 107.4 Hertz 107.5 Hertz -0.09% 107.4 Hertz -0.00%
2 191.8 Hertz 206.6 Hertz -7.73% 192.1 Hertz -0.18%
3 274.1 Hertz 281.2 Hertz -2.59% 274.1 Hertz +0.00%
4 315.3 Hertz 329.0 Hertz -4.35% 317.5 Hertz -0.70%
5 398.9 Hertz 408.0 Hertz -2.28% 396.8 Hertz +0.52%

(The relative errors are calculated according to equation (8) and given in percentage of the test values.) 

Table 24. Nominal and calibrated values of the ply angles and material properties. 

Constraint Calibration Input 
Parameter 

Nominal 
Value Lower Upper Value Scaling 

θ1 0.0 -9.0 9.0 -5.2 -0.58 
θ2 45.0 36.0 54.0 38.7 -0.70 
θ7 45.0 36.0 54.0 46.8 +0.20 
θ8 0.0 -9.0 9.0 4.3 +0.48 
E11 1.324 x 10+11 1.059 x 10+11 1.589 x 10+11 1.414 x 10+11 +0.34 
ρ 1,522.0 1,218.0 1,826.0 1,826.0 +1.00 

Ma 0.000837 0.000669 0.001000 0.000669 -1.00 
(Units are: degree for θ1, θ2, θ7, θ8; N/m2 for E11; kg/m3 for ρ; and kg for Ma. The “Scaling” column is the 
calibration value scaled in [-1; +1] where -1 and +1 are the lower and upper constraints, respectively.) 

The pre-calibration MSE of 14.70 reported in Table 22 is reduced to 0.20 and Table 23 
shows that the measured frequencies can be reproduced with high accuracy. Input parameters 
listed in Table 24 receive adjustments that stay within the constraints imposed of +/- 10% 
variation relative to the nominal values, except for ρ and Ma. The density and accelerometer 
mass parameters reach the upper and lower bounds, respectively. The physical validity of 
adjustments brought to ρ and Ma is questioned since it has been established from Table 21 
that the 10% bounds are already too large (that is, they produce too much natural frequency 
variability compared to the one measured). 

What this exercise illustrates is simply that the measured features can be matched by a 
calibrated model. It is our opinion that calibration offers little interest, as far as validating a 
model is concerned, because obtaining calibrated solutions is conditioned on choices that 
include the nature of response features, test-analysis metric, optimization solver, starting point, 
constraints, and feasibility to identify the global minimum. 

An alternative to model calibration is presented next based on the recently developed 
concept of total uncertainty [14, 15]. When a model is calibrated, the test data sets and their 
uncertainty are employed in an inverse inference problem to optimize the model parameters. A 
different approach is to aggregate all sources of information and assess the total uncertainty 
represented by the testing and modeling evidence. A Total Uncertainty (TU) metric has been 
proposed to quantify the degree to which several sources of information are consistent with 
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one another, relative to the two extreme cases of absolute certainty and complete uncertainty. 
While a few equations are summarized here for completeness, details about the motivation 
and derivations can be obtained from References [14] and [15]. 

TU metric calculations start by collecting mathematical descriptions of uncertainty in a so-
called information matrix, Hm,N, and performing its Singular Value Decomposition (SVD): 
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where m denotes the number of discretization bins (number of rows) and N is the number of 
distributions (number of columns). The column {h,j} represents the jth uncertainty distribution of 
a response feature y. Choices of mathematical representation of uncertainty include probability 
density functions, possibility distributions, intervals, Dempster-Schafer belief functions, random 
sets, fuzzy membership functions, imprecise probabilities [14, 15]. Multiple representations of 
uncertainty can be combined in Hm,N, as well as multiple features, and representations 
originating from multiple sources of evidence such as testing, modeling, and expert judgment. 

By analogy with the use of SVD in signal processing or Structural Dynamics, the singular 
values σ1, σ2, …, σN characterize the amount of uncertainty and the consistency of information 
included in matrix Hm,N. The TU metric is defined as: 
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where hmax,j denotes the maximum value of the jth column. The definition (12) produces values 
scaled between zero and an upper bound TUMax = N(m-1) that only depends on the size of the 
information matrix. The ratio (TU/TUMax) is a positive number scaled between zero and one. It 
can be verified that zero means absolute certainty and one means complete uncertainty [14]. 

Results of applying the concept of total uncertainty to the test and simulation data sets are 
presented in Table 25. Five information matrices H50,2 are generated, one for each natural 
frequency. The first column stores a histogram of measured values. The second column stores 
a histogram of predicted values. Histograms approximate the unknown probability distributions 
and they are discretized into m = 50 bins, which yields TUMax = 98. TU values in Table 25 are 
computed according to equations (11-12). The last column shows what the TU values would 
be if the distributions of measured and predicted frequencies were described by continuous 
Gaussian laws whose hyper-parameters are listed in Table 21. The average value is only 
19.7%, or 16.0% if Gaussian probability density functions are assumed, which indicates small 
total uncertainty and reasonable consistency between the measured and predicted data sets. 
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Table 25. TU metrics for the measured and predicted natural frequencies 1-5. 

Mode 
Number 

TU Metric Values 
(Unit-less) 

(TU/TUMax) From 
Empirical Distributions 

(TU/TUMax) From 
Gaussian Distributions 

1 18.4 18.7% 15.7% 
2 21.2 21.6% 15.9% 
3 18.7 19.1% 16.2% 
4 18.9 19.3% 15.9% 
5 19.5 19.9% 16.1% 

(TU values are computed with matrices of empirical histograms for the measured and predicted natural 
frequencies. Based on m = 50 bins, N = 2 histograms, and TUMax = 98.) 

One final result is briefly discussed, when the testing and modeling sources of information 
about the five natural frequencies are aggregated into a single matrix, H100,10. Columns store 
the two histograms of measured and predicted natural frequencies for each of the five modes. 
Based on N = 10 columns and a discretization into m = 100 bins, one obtains TU = 171.3, 
TUMax = 990, and (TU/TUMax) = 17.3%, which is consistent with results in Table 25 and offers 
the advantage of a single, compact metric. Aggregating information obtained from testing and 
modeling for several response features illustrates the multivariate potential of the TU metric. 

It is emphasized that the TU metric is not a goodness-of-fit indicator. It is used to assess 
the degree of consistency of information obtained from different sources, such as testing and 
modeling here, but it does not replace test-analysis correlation metrics. The importance of a 
quantification of total uncertainty stems from the fact that, to decide whether or not it would be 
beneficial to spend additional resources refining the model or calibrating its parameters, one 
should examine the agreement between measurements and predictions relative to uncertainty, 
and not in a vacuum like it is usually done. 

10. FINAL ASSESSMENT OF PREDICTION ACCURACY 
This publication discusses the results of a V&V study for the modeling of multi-layered 

composite plates. The response features of interest are the first five natural frequencies. Test 
repeatability, mesh convergence errors, parametric variability, model fitting uncertainty, and 
test-analysis correlation are thoroughly quantified. In this Section, a final statement is made 
about the predictive accuracy of the composite model and the level of confidence with which 
modal frequency predictions can be made for a potentially different multi-layered configuration. 

Table 26 summarizes the quantification of the sources of uncertainty. For simplicity, the 
statistics are averaged over the five natural frequencies. An error model can be proposed to 
aggregate the sources of modeling error and variability. Here, a simple average of statistics for 
solution convergence (µ1;σ1), model fitting (µ2;σ2), and parametric variability (µ3;σ3) is proposed: 
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2
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T321T σσσσ          ,µµµµ ++=++=  (13)

The total error model (13) yields statistics µT = 3.64 Hertz and σT = 19.02 Hertz. These are 
compared to the statistics of test-analysis correlation in Table 26, where µC = 8.97 Hertz and 
σC = 19.18 Hertz. Two observations are made. First, a discrepancy of (µC – µT) = 5.33 Hertz is 
found between the error model (13) and the error inferred from test-analysis correlation. The 
difference is due to the modeling error, that is, the error made when the composite model is 
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substituted to reality. It is a source of error that one should not attempt to reduce by calibrating 
parameters of the model because it is inherent to the modeling assumptions. 

Second, the predicted variability of frequencies, σT = 19.02 Hertz, is several times larger 
than the value of σ4 = 2.49 Hertz measured experimentally. The simulation variance comes for 
the most part from the variability of ply angles and material properties, which could be reduced 
through parameter calibration or better characterization of the geometry and material. 

Table 26. Summary of the quantification of testing and modeling uncertainty. 

Statistics Source of Uncertainty 

Mean (µ) Std. Deviation (σ) 

Evidence 

Code Error, Solution Convergence µ1 = 1.49 Hertz σ1 = 0.87 Hertz Table 11 
Meta-model Fitting Error µ2 = 2.15 Hertz σ2 = 0.18 Hertz Figure 10 
Model Parameter Variability µ3 = 0.00 Hertz σ3 = 19.00 Hertz Table 19 
Experimental Variability µ4 = 0.00 Hertz σ4 = 2.49 Hertz Table 2 
Test-analysis Correlation µC = 8.97 Hertz σC = 19.18 Hertz Table 21 

(The systematic bias from code verification is accounted for in the solution convergence uncertainty. 
Likewise, experimental variability is rolled into the statistics of test-analysis correlation.) 

From these observations, it is concluded that the prediction error (µ +/- σ) can be reduced 
to µ = 5.33 Hertz +/- σ = 2.49 Hertz at the 68% (or one standard deviation, σ) confidence level. 
This would require a better characterization of the composite lay-up and material properties to 
reduce the variability of input parameters. Parameter calibration can also be employed to infer 
the input parameter variability from experimental observations. Because the prediction error is 
small relative to the magnitude of natural frequencies, the composite model is validated with 
sufficient accuracy to simulate the linear, elastic, low-frequency response of the plates. 

We are also confident that natural frequencies for different multi-layered configurations 
can be predicted with a similar degree of accuracy as long as the same modeling rules are 
followed. These rules include: modeling each individual ply with one element through the 
thickness; maintaining an acceptable aspect ratio of elements; adjusting the time step to the 
element size to guarantee accuracy with an explicit time integration scheme; verifying that the 
mesh and time step provide a converged solution; and thoroughly characterizing the ply angle 
and material property variability. 
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